首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A normalized cDNA library was constructed from the adductor muscle of M. yessoensis and acquired 4595 high quality expressed sequence tags (ESTs). After clustering and assembly of the ESTs, 3061 unigenes containing 654 contigs and 2407 singletons were identified. The contig length ranged from 266 bp to 2364 bp and the average length of these contigs was 544 bp. Blastx nonredundant protein database analysis showed that 1522 unigenes had significant homology to known genes (E value ≤ 10? 5). By comparing to Clusters of Orthologous Groups (COG) categories, 460 unigenes were annotated (E value ≤ 10? 10). Using Kyoto Encyclopedia of Genes and Genomes (KEGG), 345 of 3061 unigenes were assigned into 103 pathways (E value ≤ 10? 5). For InterProScan searches, 1237 unigenes were annotated containing 727 different types of protein domains. 941 of the 1237 unigenes were annotated for Gene Ontology (GO) classification using Uniprot2GO associations in any category (biological, cellular, and molecular). By sequences comparability and analysis of Blastx NCBI nonredundant protein database and KEGG, 66 unigenes were identified that may be involved in genetic information processing based on the known knowledge. The study provides a material basis as useful information for the genomic analysis of shellfish.  相似文献   

3.
The monogonont rotifer, Brachionus ibericus (S type), is considered to be a promising model species for developmental biology, evolution, and environmental genomics. In an attempt to accelerate the molecular understanding of B. ibericus, we sequenced 680.5 Mb of genomic DNA using the genome sequencer GS-FLX-Titanium. We obtained 2,062,621 reads (average read length 329.9 bp) and 145,418 contigs (total contigs length 125.7 Mb) after excluding small reads (less than 200 bp) from the assembly, and finally obtained 10,133 unigenes (E value ?? 9.00E?04) after non-redundant (NR) BLAST search. In this article, we summarize the genomic DNA sequences of B. ibericus and discuss their potential use in the study of reproductive biology, endocrinology, environmental genomics, and ecotoxicological studies, and for providing insight into the genetic basis of mechanisms such as egg formation, antioxidant stress defense, and xenobiotic metabolism.  相似文献   

4.
Illumina's Genome Analyzer generates ultra-short sequence reads, typically 36 nucleotides in length, and is primarily intended for resequencing. We tested the potential of this technology for de novo sequence assembly on the 6 Mbp genome of Pseudomonas syringae pv. syringae B728a with several freely available assembly software packages. Using an unpaired data set, velvet assembled >96% of the genome into contigs with an N50 length of 8289 nucleotides and an error rate of 0.33%. edena generated smaller contigs (N50 was 4192 nucleotides) and comparable error rates. ssake and vcake yielded shorter contigs with very high error rates. Assembly of paired-end sequence data carrying 400 bp inserts produced longer contigs (N50 up to 15 628 nucleotides), but with increased error rates (0.5%). Contig length and error rate were very sensitive to the choice of parameter values. Noncoding RNA genes were poorly resolved in de novo assemblies, while >90% of the protein-coding genes were assembled with 100% accuracy over their full length. This study demonstrates that, in practice, de novo assembly of 36-nucleotide reads can generate reasonably accurate assemblies from about 40 × deep sequence data sets. These draft assemblies are useful for exploring an organism's proteomic potential, at a very economic low cost.  相似文献   

5.
6.
7.
The wrasses (Labridae) are one of the most successful and species-rich families of the Perciformes order of teleost fish. Its members display great morphological diversity, and occupy distinct trophic levels in coastal waters and coral reefs. The cleaning behaviour displayed by some wrasses, such as corkwing wrasse (Symphodus melops), is of particular interest for the salmon aquaculture industry to combat and control sea lice infestation as an alternative to chemicals and pharmaceuticals. There are still few genome assemblies available within this fish family for comparative and functional studies, despite the rapid increase in genome resources generated during the past years. Here, we present a highly continuous genome assembly of the corkwing wrasse using PacBio SMRT sequencing (x28.8) followed by error correction with paired-end Illumina data (x132.9). The present genome assembly consists of 5040 contigs (N50?=?461,652?bp) and a total size of 614 Mbp, of which 8.5% of the genome sequence encode known repeated elements. The genome assembly covers 94.21% of highly conserved genes across ray-finned fish species. We find evidence for increased copy numbers specific for corkwing wrasse possibly highlighting diversification and adaptive processes in gene families including N-linked glycosylation (ST8SIA6) and stress response kinases (HIPK1). By comparative analyses, we discover that de novo repeats, often not properly investigated during genome annotation, encode hundreds of immune-related genes. This new genomic resource, together with the ballan wrasse (Labrus bergylta), will allow for in-depth comparative genomics as well as population genetic analyses for the understudied wrasses.  相似文献   

8.
The ridgetail white prawn Exopalaemon carinicauda is one of the most important commercial species in eastern China. However, little information of immune genes in E. carinicauda has been reported. To identify distinctive genes associated with immunity, an expressed sequence tag (EST) library was constructed from hemocytes of E. carinicauda. A total of 3411 clones were sequenced, yielding 2853 ESTs and the average sequence length is 436 bp. The cluster and assembly analysis yielded 1053 unique sequences including 329 contigs and 724 singletons. Blast analysis identified 593 (56.3%) of the unique sequences as orthologs of genes from other organisms (E-value < 1e-5). Based on the COG and Gene Ontology (GO), 593 unique sequences were classified. Through comparison with previous studies, 153 genes assembled from 367 ESTs have been identified as possibly involved in defense or immune functions. These genes are categorized into seven categories according to their putative functions in shrimp immune system: antimicrobial peptides, prophenoloxidase activating system, antioxidant defense systems, chaperone proteins, clottable proteins, pattern recognition receptors and other immune-related genes. According to EST abundance, the major immune-related genes were thioredoxin (141, 4.94% of all ESTs) and calmodulin (14, 0.49% of all ESTs). The EST sequences of E. carinicauda hemocytes provide important information of the immune system and lay the groundwork for development of molecular markers related to disease resistance in prawn species.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Background

The availability of diverse second- and third-generation sequencing technologies enables the rapid determination of the sequences of bacterial genomes. However, identifying the sequencing technology most suitable for producing a finished genome with multiple chromosomes remains a challenge. We evaluated the abilities of the following three second-generation sequencers: Roche 454 GS Junior (GS Jr), Life Technologies Ion PGM (Ion PGM), and Illumina MiSeq (MiSeq) and a third-generation sequencer, the Pacific Biosciences RS sequencer (PacBio), by sequencing and assembling the genome of Vibrio parahaemolyticus, which consists of a 5-Mb genome comprising two circular chromosomes.

Results

We sequenced the genome of V. parahaemolyticus with GS Jr, Ion PGM, MiSeq, and PacBio and performed de novo assembly with several genome assemblers. Although GS Jr generated the longest mean read length of 418 bp among the second-generation sequencers, the maximum contig length of the best assembly from GS Jr was 165 kbp, and the number of contigs was 309. Single runs of Ion PGM and MiSeq produced data of considerably greater sequencing coverage, 279× and 1,927×, respectively. The optimized result for Ion PGM contained 61 contigs assembled from reads of 77× coverage, and the longest contig was 895 kbp in size. Those for MiSeq were 34 contigs, 58× coverage, and 733 kbp, respectively. These results suggest that higher coverage depth is unnecessary for a better assembly result. We observed that multiple rRNA coding regions were fragmented in the assemblies from the second-generation sequencers, whereas PacBio generated two exceptionally long contigs of 3,288,561 and 1,875,537 bps, each of which was from a single chromosome, with 73× coverage and mean read length 3,119 bp, allowing us to determine the absolute positions of all rRNA operons.

Conclusions

PacBio outperformed the other sequencers in terms of the length of contigs and reconstructed the greatest portion of the genome, achieving a genome assembly of “finished grade” because of its long reads. It showed the potential to assemble more complex genomes with multiple chromosomes containing more repetitive sequences.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-699) contains supplementary material, which is available to authorized users.  相似文献   

19.
Assembling individual genomes from complex community metagenomic data remains a challenging issue for environmental studies. We evaluated the quality of genome assemblies from community short read data (Illumina 100 bp pair-ended sequences) using datasets recovered from freshwater and soil microbial communities as well as in silico simulations. Our analyses revealed that the genome of a single genotype (or species) can be accurately assembled from a complex metagenome when it shows at least about 20 × coverage. At lower coverage, however, the derived assemblies contained a substantial fraction of non-target sequences (chimeras), which explains, at least in part, the higher number of hypothetical genes recovered in metagenomic relative to genomic projects. We also provide examples of how to detect intrapopulation structure in metagenomic datasets and estimate the type and frequency of errors in assembled genes and contigs from datasets of varied species complexity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号