首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fabry disease is an X-linked lysosomal disorder characterized by deficient alpha-galactosidase A activity and intracellular accumulations of glycosphingolipids, mainly globotriaosylceramide (Gb3). Clinically, patients occasionally present CNS dysfunction. To examine the pathophysiology underlying brain dysfunction, we examined glucose utilization (CMR(glc)) and cerebral blood flow (CBF) globally and locally in 18 brain structures in the alpha-galactosidase A gene knockout mouse. Global CMR(glc) was statistically significantly reduced by 22% in Fabry mice (p < 0.01). All 18 structures showed decreases in local CMR(glc) ranging from 14% to 33%. The decreases in all structures of the diencephalon, caudate-putamen, brain stem, and cerebellar cortex were statistically significant (p < 0.05). Global cerebral blood flow (CBF) and local CBF measured in the same 18 structures were lower in Fabry mice than in control mice, but none statistically significantly. Histological examination of brain revealed no cerebral infarcts but abundant Gb3 deposits in the walls of the cerebral vessels with neuronal deposits localized to the medulla oblongata. These results indicate an impairment in cerebral energy metabolism in the Fabry mice, but one not necessarily due to circulatory insufficiency.  相似文献   

2.
To evaluate the response of astrocytes in the auditory pathway to increased neuronal signaling elicited by acoustic stimulation, conscious rats were presented with a unilateral broadband click stimulus and functional activation was assessed by quantitative autoradiography using three tracers to pulse label different metabolic pools in brain: [2-14C]acetate labels the 'small' (astrocytic) glutamate pool, [1-14C]hydroxybutyrate labels the 'large' glutamate pool, and [14C]deoxyglucose, reflects overall glucose utilization (CMR(glc)) in all brain cells. CMR(glc) rose during brain activation, and increased activity of the oxidative pathway in working astrocytes during acoustic stimulation was registered with [2-14C]acetate. In contrast, the stimulation-induced increase in metabolic activity was not reflected by greater trapping of products of [1-14C]hydroxybutyrate. The [2-14C]acetate uptake coefficient in the inferior colliculus and lateral lemniscus during acoustic stimulation was 15% and 18% (p < 0.01) higher in the activated compared to contralateral hemisphere, whereas CMR(glc) in these structures rose by 66% (p < 0.01) and 42% (p < 0.05), respectively. Calculated rates of brain utilization of blood-borne acetate (CMR(acetate)) are about 15-25% of total CMR(glc) in non-stimulated tissue and 10-20% of CMR(glc) in acoustically activated structures; they range from 28 to 115% of estimated rates of glucose oxidation in astrocytes. The rise in acetate utilization during acoustic stimulation is modest compared to total CMR(glc), but astrocytic oxidative metabolism of 'minor' substrates present in blood can make a significant contribution to the overall energetics of astrocytes and astrocyte-neuron interactions in working brain.  相似文献   

3.
Glycogen is degraded during brain activation but its role and contribution to functional energetics in normal activated brain have not been established. In the present study, glycogen utilization in brain of normal conscious rats during sensory stimulation was assessed by three approaches, change in concentration, release of (14)C from pre-labeled glycogen and compensatory increase in utilization of blood glucose (CMR(glc)) evoked by treatment with a glycogen phosphorylase inhibitor. Glycogen level fell in cortex, (14)C release increased in three structures and inhibitor treatment caused regionally selective compensatory increases in CMR(glc) over and above the activation-induced rise in vehicle-treated rats. The compensatory rise in CMR(glc) was highest in sensory-parietal cortex where it corresponded to about half of the stimulus-induced rise in CMR(glcf) in vehicle-treated rats; this response did not correlate with metabolic rate, stimulus-induced rise in CMR(glc) or sequential station in sensory pathway. Thus, glycogen is an active fuel for specific structures in normal activated brain, not simply an emergency fuel depot and flux-generated pyruvate greatly exceeded net accumulation of lactate or net consumption of glycogen during activation. The metabolic fate of glycogen is unknown, but adding glycogen to the fuel consumed during activation would contribute to a fall in CMR(O2)/CMR(glc) ratio.  相似文献   

4.
Abstract: Understanding the mechanism of brain glucose transport across the blood-brain barrier is of importance to understanding brain energy metabolism. The specific kinetics of glucose transport have been generally described using standard Michaelis-Menten kinetics. These models predict that the steady-state glucose concentration approaches an upper limit in the human brain when the plasma glucose level is well above the Michaelis-Menten constant for half-maximal transport, K t. In experiments where steady-state plasma glucose content was varied from 4 to 30 m M , the brain glucose level was a linear function of plasma glucose concentration. At plasma concentrations nearing 30 m M , the brain glucose level approached 9 m M , which was significantly higher than predicted from the previously reported K t of ∼4 m M ( p < 0.05). The high brain glucose concentration measured in the human brain suggests that ablumenal brain glucose may compete with lumenal glucose for transport. We developed a model based on a reversible Michaelis-Menten kinetic formulation of unidirectional transport rates. Fitting this model to brain glucose level as a function of plasma glucose level gave a substantially lower K t of 0.6 ± 2.0 m M , which was consistent with the previously reported millimolar K m of GLUT-1 in erythrocyte model systems. Previously reported and reanalyzed quantification provided consistent kinetic parameters. We conclude that cerebral glucose transport is most consistently described when using reversible Michaelis-Menten kinetics.  相似文献   

5.
Determination of brain glucose transport kinetics in vivo at steady-state typically does not allow distinguishing apparent maximum transport rate (T(max)) from cerebral consumption rate. Using a four-state conformational model of glucose transport, we show that simultaneous dynamic measurement of brain and plasma glucose concentrations provide enough information for independent and reliable determination of the two rates. In addition, although dynamic glucose homeostasis can be described with a reversible Michaelis-Menten model, which is implicit to the large iso-inhibition constant (K(ii)) relative to physiological brain glucose content, we found that the apparent affinity constant (K(t)) was better determined with the four-state conformational model of glucose transport than with any of the other models tested. Furthermore, we confirmed the utility of the present method to determine glucose transport and consumption by analysing the modulation of both glucose transport and consumption by anaesthesia conditions that modify cerebral activity. In particular, deep thiopental anaesthesia caused a significant reduction of both T(max) and cerebral metabolic rate for glucose consumption. In conclusion, dynamic measurement of brain glucose in vivo in function of plasma glucose allows robust determination of both glucose uptake and consumption kinetics.  相似文献   

6.
The effect of plasma glucose concentration on the cerebral uptake of [18F]-fluorodeoxy-D-glucose (FDG) was studied in a broad concentration range in a rabbit brain model using dynamic FDG PET measurements. Hypoglycemic and hyperglycemic conditions were maintained by manipulating plasma glucose applying i.v. glucose or insulin load. FDG utilization (K) and cerebral glucose metabolic rate (CGMR) were evaluated in a plasma glucose concentration range between 0.5 mM and 26 mM from the kinetic constant k1, k2, k3 obtained by the Sokoloff model of FDG accumulation. A decreasing set of standard FDG uptake values found with increasing blood glucose concentration was explained by competition between the plasma glucose and the radiopharmacon FDG. A similar trend was observed for the forward kinetic constants k1, and k3 in the entire concentration range studied. The same decreasing tendency of k2 was of a smaller magnitude and was reverted at the lowest glucose concentrations where a pronounced decrease of this backward transport rate constant was detected. Our kinetic data indicate a modulation of the kinetics of carbohydrate metabolism by the blood glucose concentration and report on a special mechanism compensating for the low glucose supply under conditions of extremely low blood glucose level.  相似文献   

7.
Abstract: Recent studies indicate the lumped constant (LC), which defines the relative rates of brain utilization of glucose and 2-deoxyglucose (2-DG), doubles to values > 1.0 under conditions of hypoglycemia. Since changes in the LC should be predictable given the kinetic parameters of blood-brain barrier (BBB) transport and brain phosphorylation of glucose and 2-DG, the present studies were designed to measure the necessary kinetic parameters. The carotid injection technique was used to determine cerebral blood flow and the Km , Vmax, and K D of glucose and 2-DG transport through the BBB in seven brain regions in rats anesthetized with 50 mg/kg i.p. pentobarbital. Regional glucose transport through the BBB was characterized by an average Km = 6.3 m m , average Vmax = 0.53 μmol min−1g−1, and average K D= 0.022 ml min−1g−1. The nonsaturable route of transport of glucose represented on the average 40% of the total glucose influx into brain regions at an arterial glucose concentration of 10 m m . In addition, the rate constants of phosphorylation of glucose and 2-DG were measured for each region. Substitutions of the measured kinetic parameters for sugar transport and phosphorylation into equations defining the LC confirm the observation that the LC would be expected to vary under extreme conditions such as hypoglycemia and to exceed values of 1.0 under these conditions.  相似文献   

8.
Astrocytic proliferation is a hallmark of brain injury, but the biological functions and metabolic activities of reactive astrocytes in vivo are poorly understood. [2-14C]Acetate, which is preferentially transported into and, therefore, metabolized by astrocytes, was used to assess injury- and trophic factor-induced changes in astrocyte metabolic activity. Local rates of net [2-14C]acetate uptake and glucose utilization (CMR(glc)), determined with [14C]deoxyglucose to assay overall metabolic activity of all brain cells, were assayed 7 days after a cannula placement; adjacent brain sections were immunostained to identify glial fibrillary acidic protein-positive (GFAP(+)) astrocytes and microglia plus macrophages (lectin-positive cells). GFAP(+) cells were abundant in tissue surrounding the cannula compared to the contralateral hemisphere, whereas lectin(+) cells were restricted to the wound boundary. CMR(glc) fell 25% in regions enriched in reactive astrocytes compared to the homologous contralateral hemisphere, whereas [14C]acetate uptake increased slightly (6%) but statistically significantly; metabolism of both tracers in 13 other brain structures was unchanged. Injection of basic fibroblast growth factor (b-FGF) into cerebral cortex or superior colliculus produced fiber-rich cell clusters containing both GFAP(+) and lectin(+) cells that had a 37% increase in [14C]acetate uptake; GFAP(+)-cell density rose in the nearby neuropil but the corresponding change in [14C]acetate uptake was small (6-8%). Sensory stimulation did not alter [14C]acetate uptake into the clusters. Thus, [14C]acetate uptake was relatively stable with respect to changes in the density of reactive astrocytes that are dispersed throughout the neuropil and to changes in cellular activity arising from sensory stimulation. In contrast, b-FGF-induced cell clusters that contain mixed cell types and numerous fibers accumulated higher levels of [14C]acetate, raising the possibility that increased uptake might be due to high numbers of activated astrocytes and, perhaps, acetate metabolism by other cell types.  相似文献   

9.
The interaction between glucose and galactose during transport across the cerebral capillary endothelium was studied in anesthetized rats. Although galactose is present in the diet of suckling mammals and is a potential substrate for brain metabolism in adult mammals, its effect on glucose transport in adult rats is unknown. A kinetic model was formulated to analyze the effect of chronically elevated galactose levels on glucose transport in adult rats. The analysis indicated that galactose and glucose compete for the same transport mechanism in the cerebral capillary endothelium. The Tmax of glucose and galactose were both about 380 mumol 100 g-1 min-1 and the Kt of galactose (30 mM) was about three times that of glucose (10 mM). During prolonged galactosemia in adult rats, neither the Tmax, nor the Kt of either competitor changed substantially when compared with rats subjected to acute galactosemia. At 10 mM galactose in plasma in rats with acute galactosemia, the inhibition of glucose transport, simulated a 25% reduction of plasma glucose, and in rats with chronic galactosemia a 20% reduction. This moderate effect is in contrast to the effect of galactose in suckling rats in which 10 mM galactose in plasma reduced the glucose transport to a level corresponding to a 50% reduction of the plasma glucose concentration.  相似文献   

10.
The human multi-drug resistance membrane transporter, P-glycoprotein, or P-gp, has been extensively studied due to its importance to human health and disease. Thus far, the kinetic analysis of P-gp transport has been limited to steady-state Michaelis-Menten approaches or to compartmental models, neither of which can prove molecular mechanisms. Determination of the elementary kinetic rate constants of transport will be essential to understanding how P-gp works. The experimental system we use is a confluent monolayer of MDCKII-hMDR1 cells that overexpress P-gp. It is a physiologically relevant model system, and transport is measured without biochemical manipulations of P-gp. The Michaelis-Menten mass action reaction is used to model P-gp transport. Without imposing the steady-state assumptions, this reaction depends upon several parameters that must be simultaneously fitted. An exhaustive fitting of transport data to find all possible parameter vectors that best fit the data was accomplished with a reasonable computation time using a hierarchical algorithm. For three P-gp substrates (amprenavir, loperamide, and quinidine), we have successfully fitted the elementary rate constants, i.e., drug association to P-gp from the apical membrane inner monolayer, drug dissociation back into the apical membrane inner monolayer, and drug efflux from P-gp into the apical chamber, as well as the density of efflux active P-gp. All three drugs had overlapping ranges for the efflux active P-gp, which was a benchmark for the validity of the fitting process. One novel finding was that the association to P-gp appears to be rate-limited solely by drug lateral diffusion within the inner monolayer of the plasma membrane for all three drugs. This would be expected if P-gp structure were open to the lipids of the apical membrane inner monolayer, as has been suggested by recent structural studies. The fitted kinetic parameters show how P-gp efflux of a wide range of xenobiotics has been maximized.  相似文献   

11.
Developing rat brain undergoes a series of functional and anatomic changes which affect its rate of cerebral glucose utilization (CGU). These changes include increases in the levels of the glucose transporter proteins, GLUT1 and GLUT3, in the blood-brain barrier as well as in the neurons and glia. 55 kDa GLUT1 is concentrated in endothelial cells of the blood-brain barrier, whereas GLUT3 is the predominant neuronal transporter. 45 kDa GLUT1 is in non-vascular brain, probably glia. Studies of glucose utilization with the 2-14C-deoxyglucose method of Sokoloffet al., (1977), rely on glucose transport rate constants, k1 and k2, which have been determined in the adult rat brain. The determination of these constants directly in immature brain, in association with the measurement of GLUT1, GLUT3 and cerebral glucose utilization suggests that the observed increases in the rate constants for the transport of glucose into (k1) and out of (k2) brain correspond to the increases in 55 kDa GLUT1 in the blood-brain barrier. The maturational increases in cerebral glucose utilization, however, more closely relate to the pattern of expression of non-vascular GLUT1 (45 kDa), and more specifically GLUT3, suggesting that the cellular expression of the glucose transporter proteins is rate limiting for cerebral glucose utilization during early postnatal development in the rat.  相似文献   

12.
Abstract: The relative cerebral cortical metabolism of glucose (GLU) and 2-deoxy-D-glucose (DG) was measured in vivo in control and insulin-treated hypoglycemic rats. The ratio of the utilization rate constants for the two hexoses, i.e., K DG/ K CLU is defined as the Hexose Utilization Index (HUI). The HUI was found to be invariant in rats whose cerebral glucose content exceeded 1 μmo1.g−1 wet weight (HUI = 0.48 ± 0.07). Severe hypoglycemia (plasma glucose <2 mM) effected a shift in the HUI to 1.04 ± 0.21. The results are consistent with a model in which the interpretation of the HUI is determined by the rate of transport into brain, or subsequent phosphorylation, as the rate-limiting step for hexose utilization.  相似文献   

13.
Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-13C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMRace) increased progressively and reached close to saturation for plasma acetate concentration > 2–3 mM, whereas brain acetate concentration continued to increase. The Michaelis–Menten constant for brain acetate utilization (      = 0.01 ± 0.14 mM) was much smaller than for acetate transport through the blood–brain barrier (BBB) (      = 4.18 ± 0.83 mM). The maximum transport capacity of acetate through the BBB (      = 0.96 ± 0.18 μmol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization (      = 0.50 ± 0.08 μmol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2–3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.  相似文献   

14.
Yao L  Li Y  Wu Y  Liu A  Yan H 《Biochemistry》2005,44(15):5940-5947
Yeast cytosine deaminase (yCD), a zinc metalloenzyme, catalyzes the hydrolytic deamination of cytosine to uracil. The enzyme is of great biomedical interest because it also catalyzes the deamination of the prodrug 5-fluorocytosine (5FC) to form the anticancer drug 5-fluorouracil (5FU). yCD/5FC is one of the most widely used enzyme/prodrug combinations for gene-directed enzyme prodrug therapy for the treatment of cancers. A pH indicator assay has been developed for the measurement of the steady-state kinetic parameters for the deamination reaction. Transient kinetic studies have shown that the product release is a rate-limiting step in the activation of the prodrug 5FC by yCD. The rate constant of the chemical step for the forward reaction (250 s(-)(1)) is approximately 8 times that of the product release (31 s(-)(1)) and approximately 15 times k(cat) (17 s(-)(1)). The transient kinetic results are consistent with those of the steady-state kinetic analysis in the sense that the k(cat) and K(m) values calculated from the rate constants determined by the transient kinetic analysis are in close agreement with those measured by the steady-state kinetic analysis. NMR experiments have demonstrated that free 5FU is in slow exchange with its complex with yCD but has a low affinity for yCD. The transient kinetic and NMR results together suggest that the release of 5FU is rate-limiting in the activation of the prodrug 5FC by yCD and may involve multiple steps.  相似文献   

15.
The adult brain relies on glucose for its energy needs and stores it in the form of glycogen, primarily in astrocytes. Animal and culture studies indicate that brain glycogen may support neuronal function when the glucose supply from the blood is inadequate and/or during neuronal activation. However, the concentration of glycogen and rates of its metabolism in the human brain are unknown. We used in vivo localized 13C-NMR spectroscopy to measure glycogen content and turnover in the human brain. Nine healthy volunteers received intravenous infusions of [1-(13)C]glucose for durations ranging from 6 to 50 h, and brain glycogen labeling and washout were measured in the occipital lobe for up to 84 h. The labeling kinetics suggest that turnover is the main mechanism of label incorporation into brain glycogen. Upon fitting a model of glycogen metabolism to the time courses of newly synthesized glycogen, human brain glycogen content was estimated at approximately 3.5 micromol/g, i.e., three- to fourfold higher than free glucose at euglycemia. Turnover of bulk brain glycogen occurred at a rate of 0.16 micromol.g-1.h-1, implying that complete turnover requires 3-5 days. Twenty minutes of visual stimulation (n=5) did not result in detectable glycogen utilization in the visual cortex, as judged from similar [13C]glycogen levels before and after stimulation. We conclude that the brain stores a substantial amount of glycogen relative to free glucose and metabolizes this store very slowly under normal physiology.  相似文献   

16.
Abstract: The kinetics of transport across the blood-brain barrier and metabolism in brain (hemisphere) of [14C]2-fluoro-2-deoxy-d -glucose (FDG) were compared to that of [3H]2-deoxy-d -glucose (DG) and d -glucose in the pentobarbital-anesthetized adult rat. Saturation kinetics of transport were measured with the brain uptake index (BUI) method. The BUI for FDG was 54.3 ± 5.6. Nonlinear regression analysis gave a Km of 6.9 ± 1.1 mM and a Vmax of 1.70 ± 0.32 μmol/min/g. The K1 for glucose inhibition of FDG transport was 10.7 ± 4.4 mM. The kinetic constants of influx (k1) and efflux (K2) for FDG were calculated from the Km, Vmax, and glucose concentrations of the hemisphere and plasma (2.3 ± 0.2 μmol/g and 9.9 ± 0.4 mM, respectively). The transport coefficient (k1 FDG/k1glucose) was 1.67 ± 0.07 and the phosphorylation constant was 0.55 ± 0.16. The predicted lumped constant for FDG was 0.89, whereas the measured hexose utilization index for FDG was 0.85 ± 0.16. Conclusion: The value for the lumped constant can be predicted on the basis of the known kinetic constants of FDG and glucose transport and metabolism, as well as brain and plasma glucose levels. Knowledge of the lumped constant is crucial in interpreting data obtained from 18FDG analysis of regional glucose utilization in human brain in pathological states. We propose that the lumped constant will rise to a maximum equal to the transport coefficient for FDG under conditions of transport limitation (hypoglycemia) or elevated glycolysis (ischemia, seizures), and will fall to a minimum equal to the phosphorylation coefficient during phosphorylation limitation (extreme hyperglycemia).  相似文献   

17.
Lactate Utilization by Isolated Cells from Early Neonatal Rat Brain   总被引:6,自引:3,他引:3  
The utilization of lactate, glucose, 3-hydroxybutyrate, and glutamine has been studied in isolated brain cells from early newborn rats. Isolated brain cells actively utilized these substrates, showing saturation at concentrations near physiological levels during the perinatal period. The rate of lactate utilization was 2.5-fold greater than that observed for glucose, 3-hydroxybutyrate, or glutamine, suggesting that lactate is the main metabolic substrate for the brain immediately after birth. The apparent Km for glucose utilization suggested that this process is limited by the activity of hexokinase. However, lactate, 3-hydroxybutyrate, and glutamine utilization seems to be limited by their transport through the plasma membrane. The presence of fatty acid-free bovine serum albumin (BSA) in the incubation medium significantly increased the rate of lipogenesis from lactate or 3-hydroxybutyrate, although this was balanced by the decrease in their rates of oxidation in the same circumstances. BSA did not affect the rate of glucose utilization. The effect of BSA was due not to the removal of free fatty acid, but possibly to the binding of long-chain acyl-CoA, resulting in the disinhibition of acetyl-CoA carboxylase and citrate carrier.  相似文献   

18.
Objectives of this study were to develop a technique for quantifying cardiac-specific norepinephrine (NE) mass transport and determine whether cardiac NE kinetic modeling parameters were related to physiological variables of left ventricular (LV) size and systolic performance in nine patients with chronic mitral regurgitation. Biplane contrast cineventriculograms were used to determine LV size and ejection fraction (EF), micromanometer LV pressures and radionuclide LV volumes from a range of loading conditions to calculate LV end-systolic elastance, and [(3)H]NE infusions with LV and coronary sinus sampling for [(3)H]NE and endogenous NE during and after termination of infusions to model NE mass transport. Total NE release rate into cardiac interstitial fluid (M(IF)(R)) averaged 859 +/- 214 and NE released de novo into cardiac interstitial fluid (M(IF)(u,r,en)) averaged 546 +/- 174 pmol/min. Both M(IF)(R) and M(IF)(u,r,en)correlated directly with LV end-systolic volume (r = 0.84, P = 0.005; r = 0.86, P = 0.003); inversely with LV EFs (r = -0.75, P = 0.02; r = -0.81, P = 0.008); and inversely with LV end-systolic elastance values, optimally fit by a nonlinear function (r = 0.89, P = 0.04; r = 0.96, P = 0.01). We conclude that total and newly released NE into interstitial fluid of the heart, determined by regional mass transport kinetic model, are specific measures of regional cardiac-specific sympathetic nervous system activity and are strongly related to measures of LV size and systolic performance. These data support the concept that this new model of organ-specific NE kinetics has physiological relevance.  相似文献   

19.
While chronic hypoglycaemia has been reported to increase unidirectional glucose transport across the blood-brain barrier (BBB) and to increase GLUT1 expression at the endothelium, the effect on steady-state brain d-glucose and brain glycogen content is currently unknown. Brain glucose and glycogen concentrations were directly measured in vivo using localized 13C magnetic resonance spectroscopy (MRS) following 12-14 days of hypoglycaemia. Brain glucose content was significantly increased by 48%, which is consistent with an increase in the maximal glucose transport rate, Tmax, by 58% compared with the sham-treated animals. The localized 13C NMR measurements of brain glucose were directly validated by comparison with biochemically determined brain glucose content after rapid focused microwave fixation (1.4 s at 4 kW). Both in vivo MRS and biochemical measurements implied that brain glycogen content was not affected by chronic hypoglycaemia, consistent with brain glucose being a major factor controlling brain glycogen content. We conclude that the increased glucose transporter expression in chronic hypoglycaemia leads to increased brain glucose content at a given level of glycaemia. Such increased brain glucose concentrations can result in a lowered glycaemic threshold of counter-regulation observed in chronic hypoglycaemia.  相似文献   

20.
Abstract— The uptake into the non-raffinose space of cerebral cortex slices of a number of 14C-labelled glucose analogues has been studied. Evidence on competition with glucose for the transport process has been used to derive information on the substrate specificity of sugar uptake to the brain. The kinetic properties of the uptake of 2-deoxygIucose indicate that the transport is a facilitated process rather than diffusion. Classical competition between glucose and 2-deoxyglucose for transport is shown and arguments are advanced for regarding glucose as a competitive inhibitor of 2-deoxyglucose transport. The apparent Km for deoxyglucose is 10 mM and for glucose is suggested to be of the order of 5 mm , The value of such a kinetic approach to sugar transport in various conditions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号