首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The CD8 coreceptor of cytotoxic T lymphocytes binds to a conserved region of major histocompatibility complex class I molecules during recognition of peptide-major histocompatibility complex (MHC) class I antigens on the surface of target cells. This event is central to the activation of cytotoxic T lymphocyte (CTL) effector functions. The contribution of the MHC complex class I light chain, beta(2)-microglobulin, to CD8alphaalpha binding is relatively small and is mediated mainly through the lysine residue at position 58. Despite this, using molecular modeling, we predict that its mutation should have a dramatic effect on CD8alphaalpha binding. The predictions are confirmed using surface plasmon resonance binding studies and human CTL activation assays. Surprisingly, the charge-reversing mutation, Lys(58) --> Glu, enhances beta(2)m-MHC class I heavy chain interactions. This mutation also significantly reduces CD8alphaalpha binding and is a potent antagonist of CTL activation. These results suggest a novel approach to CTL-specific therapeutic immunosuppression.  相似文献   

2.
A20 lymphoma cells were subjected to heat shock for 2 h at 42 and 43 +/- 0.1 degrees C and then evaluated at 37 degrees C for sensitivity to lysis by intact allo-specific cytotoxic T lymphocytes (CTLs), perforin-containing granules isolated from CTLs, and Fas-mediated apoptosis. Heat shock at 42 degrees C caused little change in sensitivity of the lymphoma cell line to lysis by intact CTLs or their isolated cytotoxic granules, but caused increased sensitivity to Fas-mediated apoptosis. However, A20 cells shocked at 43 degrees C declined significantly in sensitivity to lysis by intact CTLs, while remaining very sensitive to perforin granules and to Fas-mediated apoptosis. Expression of the inducible heat shock protein was observed in A20 cells incubated at 43 degrees C, but not in those incubated at 42 degrees C, suggesting a role for heat shock proteins. Furthermore, A20 cells shocked at 43 degrees C did not provoke degranulation and secretion of granzymes by antigen-specific CTLs, although formation of CTL-target conjugates and levels of MHC class I molecules remained unchanged. These observations demonstrate that hyperthermia or febrile conditions may reduce susceptibility of target cells to CTL attack due to failure of antigen presentation and the inability of CTLs to recognize heat stressed targets, thus enabling targets to escape CTL attack.  相似文献   

3.
We have explored further the basis for resistance of cloned cytotoxic T lymphocytes (CTLs) to cell-mediated cytotoxicity. We find that most cloned CTLs recognized as specific target cells by other cloned CTLs used as effector cells fail to activate three early events that may be critical in triggering lysis in the effector CTLs: Ca2+ influx, microtubule organizing center (MTOC) reorientation, and serine esterase release. To the extent that any or all of these events are involved in activation or expression of the lytic pathway in effector CTLs, our results suggest that in addition to being inherently resistant to cytotoxic granule extracts, many CTLs are also unable to induce lytic function in other (effector) CTLs. We have found one CTL clone that can respond to recognizable cloned CTL target cells with at least MTOC reorientation and serine esterase release, although the target CTLs are still not lysed. In this case, the resistance of the target CTL to lysis may be due solely to its resistance to cytoplasmic granule contents.  相似文献   

4.
The enterotoxins of Staphylococcus aureus (SE) are extremely potent activators of human and mouse T lymphocytes. In general, T cell responses to SE are MHC class II dependent (presumably reflecting the ability of SE to bind directly to MHC class II molecules) and restricted to responding cells expressing certain T cell receptor beta-chain variable (TCR V beta) domains. Recently we demonstrated that CD8+ CTL expressing appropriate TCR V beta could recognize SE presented on MHC class II-bearing target cells. We now show that MHC class II expression is not strictly required for T cell recognition of SE. Both human and mouse MHC class II negative target cells could be recognized (i.e., lysed) in a SE-dependent fashion by CD8+ mouse CTL clones and polyclonal populations, provided that the CTL expressed appropriate TCR V beta elements. SE-dependent lysis of MHC class II negative targets by CTL was inhibited by mAb directed against CD3 or LFA-1, suggesting that SE recognition was TCR and cell contact dependent. Furthermore, different SE were recognized preferentially by CTL on MHC class II+ vs MHC class II- targets. Taken together, our data raise the possibility that SE binding structures distinct from MHC class II molecules may exist.  相似文献   

5.
IGF-I stimulates cell growth through interaction of the IGF receptor with multiprotein signaling complexes. However, the mechanisms of IGF-I receptor-mediated signaling are not completely understood. We have previously shown that IGF-I-stimulated 3T3-L1 cell proliferation is dependent on Src activation of the ERK-1/2 MAPK pathway. We hypothesized that IGF-I activation of the MAPK pathway is mediated through integrin activation of Src-containing signaling complexes. The disintegrin echistatin decreased IGF-I phosphorylation of Src and MAPK, and blocking antibodies to (alpha)v and beta3 integrin subunits inhibited IGF-I activation of MAPK, suggesting that (alpha)v(beta)3 integrins mediate IGF-I mitogenic signaling. IGF-I increased ligand binding to (alpha)v(beta)3 as detected by immunofluorescent staining of ligand-induced binding site antibody and stimulated phosphorylation of the beta3 subunit, consistent with inside-out activation of (alpha)v(beta)3 integrins. IGF-I increased tyrosine phosphorylation of the focal adhesion kinase (FAK) Pyk2 (calcium-dependent proline-rich tyrosine kinase-2) to a much greater extent than FAK, and increased association of Src with Pyk2 but not FAK. The intracellular calcium chelator BAPTA prevented IGF-I phosphorylation of Pyk2, Src, and MAPK, suggesting that IGF-I activation of Pyk2 is calcium dependent. Transient transfection with a dominant-negative Pyk2, which lacks the autophosphorylation and Src binding site, decreased IGF-I activation of MAPK, but no inhibition was seen with transfected wild-type Pyk2. These results indicate that IGF-I signaling to MAPK is dependent on inside-out activation of (alpha)v(beta)3 integrins and integrin-facilitated multiprotein complex formation involving Pyk2 activation and association with Src.  相似文献   

6.
Murine allogeneic cytolytic T lymphocytes (CTLs), including long-term bulk CTL lines, were induced in I-region-incompatible combinations of strains in vitro in order to study the phenotypes of class II major histocompatibility complex (MHC) antigen-specific CTLs, as well as the possible functional involvement of accessory cell interaction molecules such as Lyt-2 and L3T4. This report shows that class II-specific allogeneic CTL populations consist of two types of T cells. Lyt-2+L3T4- (2+4-) and Lyt-2-L3T4+ (2-4+), in variable proportions depending on the strain combination, that in vitro bulk CTL lines with each of these phenotypes can be established, that the killing function of 2-4+ CTL is sensitive to the blocking effect of anti-L3T4 antibodies, suggesting functional involvement of this molecule in the CTL-target interaction, that anti-Lyt-2 antibodies fail to block killing by 2+4- cells, suggesting that such CTLs do not utilize this molecule in their killing function, and that while I-A-specific CTLs of both phenotypes are detectable, 2-4+ cells could not be detected among I-E-specific CTL populations.  相似文献   

7.
Engagement of very late Ag-4 (integrin alpha(4)beta(1)) by ligands such as VCAM-1 markedly stimulates leukocyte migration mediated by LFA-1 (integrin alpha(L)beta(2)). This form of integrin trans-regulation in T cells requires the binding of paxillin to the alpha(4) integrin cytoplasmic domain. This conclusion is based on the abolition of trans-regulation in Jurkat T cells by an alpha(4) mutation (alpha(4)(Y991A)) that disrupts paxillin binding. Furthermore, cellular expression of an alpha(4)-binding fragment of paxillin that blocks the alpha(4)-paxillin interaction, selectively blocked VCAM-1 stimulation of alpha(L)beta(2)-dependent cell migration. The alpha(4)-paxillin association mediates trans-regulation by enhancing the activation of tyrosine kinases, focal adhesion kinase (FAK) and/or proline-rich tyrosine kinase-2 (Pyk2), based on two lines of evidence. First, disruption of the paxillin-binding site in the alpha(4) tail resulted in much less alpha(4)beta(1)-mediated phosphorylation of Pyk2 and FAK. Second, transfection with cDNAs encoding C-terminal fragments of Pyk2 and FAK, which block the function of the intact kinases, blocked alpha(4)beta(1) stimulation of alpha(L)beta(2)-dependent migration. These results define a proximal protein-protein interaction of an integrin cytoplasmic domain required for trans-regulation between integrins, and establish that augmented activation of Pyk2 and/or FAK is an immediate signaling event required for the trans-regulation of integrin alpha(L)beta(2) by alpha(4)beta(1).  相似文献   

8.
The T cell response to microbial T cell mitogens (MTM) such as enterotoxins from Staphylococcus aureus (SE) and the soluble mitogen from Mycoplasma arthritidis, resemble the minor lymphocyte stimulatory locus (Mls) response in several aspects. An important feature of the Mls response is it restriction to CD4+ cells. This study demonstrates that in contrast to Mls, the MTM response includes both CD4+ and CD8+ subsets. Both CD4+ and CD8+ cells expanded in IL-2 after stimulation with SEB showed preferential expression of T cell receptors bearing V beta 8 domains. Mouse and human target cells could be lysed in the presence of MTM both by MTM-stimulated CD8+ lymphocytes and by MHC class I-restricted CTL clones of defined Ag specificity. MTM-induced lysis required the expression of MHC class II, but not class I Ag, on the target cells. Inhibition studies of SEB and Ag-dependent cytolysis by CTL clones underlined the crucial role of CD3 and LFA-1 in both instances, but showed CD8 dependence only for AG-dependent cytolysis. Together these findings suggest important differences between the putative MTM-mediated interaction of TCR with MHC molecules and the classical TCR/MHC interaction involved in MHC-restricted Ag recognition.  相似文献   

9.
The evolutionary preservation of reactive oxygen species in innate immunity underscores the important roles these constituents play in immune cell activity and as signaling intermediates. In an effort to exploit these pathways to achieve control of aberrant immune activation we demonstrate that modulation of redox status suppresses cell proliferation and production of IL-2, IFN-gamma, TNF-alpha, and IL-17 in two robust CD8 T-cell-dependent in vitro mouse models: (1) response to alloantigen in an mixed leukocyte reaction and (2) CD8 T cell receptor transgenic OT-1 response to cognate peptide (SIINFEKL). To correlate these findings with cytotoxic lymphocyte (CTL) function we performed cytotoxicity assays and found that redox modulation diminishes the ability of alloantigen-specific and antigen-specific OT-1 CTLs to kill their corresponding antigen-expressing target cells. To further examine the mechanisms of redox-mediated repression of CTL target cell lysis, we analyzed the expression of the effector molecules IFN-gamma, perforin, and granzyme B and the degranulation marker CD107a (LAMP-1). In both models, redox modulation reduced the expression of these effector components by at least fivefold. These results demonstrate that redox modulation quells the CD8 T cell response to alloantigen and the T cell receptor transgenic CD8 T cell response to its cognate antigen by inhibiting proliferation, proinflammatory cytokine synthesis, and CTL effector mechanisms.  相似文献   

10.
Level and persistence of antigenic peptides presented by APCs on MHC class I (MHC-I) molecules influence the magnitude and quality of the ensuing CTL response. We recently demonstrated the unique immunological properties conferred on APCs by expressing beta2-microglobulin (beta2m) as an integral membrane protein. In this study, we explored membrane-anchored beta2m as a platform for cancer vaccines using as a model MO5, an OVA-expressing mouse B16 melanoma. We expressed in mouse RMA-S cells two H-2Kb binding peptides from MO5, OVA257-264, and TRP-2181-188, each genetically fused with the N terminus of membranal beta2m via a short linker. Specific Ab staining and T cell hybridoma activation confirmed that OVA257-264 was properly situated in the MHC-I binding groove. In vivo, transfectants expressing both peptides elicited stronger CTLs and conferred better protection against MO5 than peptide-saturated RMA-S cells. Cells expressing OVA257-264/beta2m were significantly superior to OVA257-264-charged cells in their ability to inhibit the growth of pre-established MO5 tumors. Our results highlight the immunotherapeutic potential of membranal beta2m as a universal scaffold for optimizing Ag presentation by MHC-I molecules.  相似文献   

11.
Signaling through the TCR as well as engagement of costimulatory molecules are required for efficient T cell activation and progression into differentiated effector cells. The beta2 integrin LFA-1 (CD11a/CD18) has been implicated in TCR costimulation as well as in cell-cell adhesion function, but its exact role is still ambiguous. The present study focuses on the requirement for LFA-1 in CD8+ T cell activation and effector function using LFA-1-deficient cells expressing the 2C transgenic TCR as a model system. The lack of LFA-1 expression in 2C T cells resulted in severely diminished proliferative response toward allogeneic BALB/c splenocytes. Increase in TCR signaling alone by pulsing stimulators with high affinity peptides, p2Ca or QL9, had minimal effects in restoring proliferation. Addition of exogenous IL-2, however, enhanced the effect of peptide pulsing on proliferation of LFA-1-deficient 2C T cells. LFA-1-deficient 2C CTLs generated from alloantigen stimulation exhibited a defective cytotoxic activity when tested on a variety of target cells. Cytolysis could be improved, but not fully rectified by peptide pulsing of target cells. Thus, in the 2C TCR model, LFA-1 has a requisite role for optimal CD8+ T cell activation and effector function, which cannot be overcome by increasing peptide/MHC density on either the APCs or target cells, respectively.  相似文献   

12.
I have compared the requirements for T helper (Th) cell function during the generation of virus-specific and alloreactive cytotoxic thymus (T)-derived lymphocyte (CTL) responses. Restimulation of vesicular stomatitis virus (VSV)-immune T cells (VSV memory CTLs) with VSV-infected stimulators resulted in the generation of class I-restricted, VSV-specific CTLs. Progression of VSV memory CTLs (Lyt-1-2+) into VSV-specific CTLs required inductive signals derived from VSV-induced, Lyt-1+2- Th cells because: (i) cultures depleted by negative selection of Lyt-1+ T cells failed to generate CTLs; (ii) titration of VSV memory CTLs into a limiting dilution (LD) microculture system depleted of Th cells generated curves which were not consistent with a single limiting cell type; (iii) LD analysis of VSV memory CTLs did produce single-hit curves in the presence of Lyt-1+2- T cells sensitized against VSV; and (iv) monoclonal anti-L3T4 antibody completely abrogated CTL generation against VSV. Similar results were also obtained with Sendai virus (SV), a member of the paramyxovirus family. The notion that a class II-restricted, L3T4+ Th cell plays an obligatory role in the generation of CTLs against these viruses is also supported by the observation that purified T cell lymphoblasts (class II antigen negative) failed to function as antigen-presenting cells for CTL responses against VSV and SV. T cell lymphoblasts were efficiently lysed by class I-restricted, anti-VSV and -SV CTLs, indicating that activated T cells expressed the appropriate viral peptides for CTL recognition. Furthermore, heterogeneity in the VSV-induced Th cell population was detected by LD analysis, suggesting that at least two types of Th cells were required for the generation of an anti-VSV CTL response. VSV-induced Th cell function could not simply be replaced by exogenous IL-2 because this lymphokine induced cytotoxic cells that had the characteristics of lymphokine-activated killer (LAK) cells and not anti-viral CTLs. In contrast, CTL responses against allogeneic determinants could not be completely blocked with antibodies against L3T4 and depletion of L3T4+ cells did not prevent the generation of alloreactive CTLs in cultures stimulated with allogeneic spleen cells or activated T cell lymphoblasts. Thus, these studies demonstrate an obligatory requirement for an L3T4-dependent Th cell pathway for CTL responses against viruses such as VSV and SV; whereas, CTL responses against allogeneic determinants can utilize an L3T4-independent pathway.  相似文献   

13.
Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin superfamily receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t1/2) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8+ cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with sub-nanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8+ CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.  相似文献   

14.
The MHC class I- restricted processing and presentation pathway is frequently nonfunctional in tumor cells; therefore, the direct targeting of tumor cells by CTLs may be difficult, if at all possible, to achieve. We used neuroblastoma (NB), which represents a striking example of a tumor with an impaired MHC class I pathway, as a model to study bystander effects of activated T lymphocytes on tumor cells. We found that NB cell lines are susceptible to killing by differentiated CD8(+) CTL clones in a MHC class I-nonrestricted manner that involves two programs of cell death distinguished on the basis of different kinetics, sensitivities to caspase inhibitors, and cytokine-blocking reagents. The "early" death exhibited characteristic features of apoptosis, whereas the "delayed" caspase-independent death exhibited features associated with necrosis and was partially inhibited by TNF-alpha-blocking and prevented by overexpression of Bcl-2 or Bcl-x(L). Our data reveal a previously unappreciated complexity of death pathways induced in tumor cells by immune activation and suggest that redirecting nonspecific effector CTLs to even a small proportion of NB cells or activating CTLs in a tumor's proximity may have therapeutic effects in patients with NB.  相似文献   

15.
Cytotoxic CD8 T cells are key effectors in the immunotherapy of malignant and viral diseases. However, the lack of efficient methods for their in vitro priming and expansion has become a bottleneck to the development of vaccines and adoptive transfer strategies. Synthetic artificial APCs (aAPCs) are now emerging as an attractive tool for eliciting and expanding CTL responses. We show that, by controlling the MHC density on aAPCs, high- or low-avidity tumor-directed human CTL lines can be raised effectively in vitro if costimulation via CD28 and IL-12 is provided. Compared with low-avidity CTL lines, high-avidity CTLs need 100- to 1000-fold less peptide for activation, bind more MHC tetramers, and, as expected, are superior in recognizing tumor cell lines expressing Ag. We believe that the possibility to raise Ag-specific T cells with predetermined avidity will be crucial for the future use of aAPCs in immunotherapeutical settings.  相似文献   

16.
Influenza virus stimulates a vigorous cytolytic T lymphocyte (CTL) response in the mouse that is directed to several virion polypeptides. This report examines the fine specificity of a panel of murine influenza-specific CTL clones restricted by MHC class I products of the H-2d haplotype. Ten of 22 A/JAPAN/305/57-specific CTL clones analyzed were directed to the A/JAPAN/305/57 hemagglutinin protein as detected by using target cells infected with a recombinant vaccinia virus containing hemagglutinin gene. Based on their fine specificity of hemagglutinin recognition, these clones defined four functional epitopes on the hemagglutinin. The remaining 12 cytolytic clones exhibited cross-reactivity for type A influenza viruses of the major human subtypes, and approximately 60% of these clones were directed to the nucleocapsid protein. KJ16-133 monoclonal antibody analysis of the utilization of the T cell receptor V beta 8 gene segment subfamily revealed that members of this V beta gene subfamily are expressed by both hemagglutinin- and nucleocapsid-specific MHC class I-restricted CTL (and by influenza-specific MHC class II-restricted T lymphocytes as well). These results suggest that CTL detect several distinct antigenic sites on the hemagglutinin. In addition, these results reveal no direct correlation between viral antigenic specificity and V beta gene expression by these virus-specific CLT clones.  相似文献   

17.
Protein tyrosine kinase activation is one of the first biochemical events in the signaling pathway leading to activation of NK cell cytolytic machinery. Here we investigated whether proline-rich tyrosine kinase 2 (Pyk2), the nonreceptor protein tyrosine kinase belonging to the focal adhesion kinase family, could play a role in NK cell-mediated cytotoxicity. Our results demonstrate that binding of NK cells to sensitive target cells or ligation of beta2 integrins results in a rapid induction of Pyk2 phosphorylation and activation. By contrast, no detectable Pyk2 tyrosine phosphorylation is found upon CD16 stimulation mediated by either mAb or interaction with Ab-coated P815 cells. A functional role for Pyk2 in natural but not Ab-mediated cytotoxicity was demonstrated by the use of recombinant vaccinia viruses encoding the kinase dead mutant of Pyk2. Finally, we provide evidence that Pyk2 is involved in the beta2 integrin-triggered extracellular signal-regulated kinase activation, supporting the hypothesis that Pyk2 plays a role in the natural cytotoxicity by controlling extracellular signal-regulated kinase activation.  相似文献   

18.
Linker for activation of T cells (LAT) is a transmembrane adaptor protein that is essential to bridge T cell receptor (TCR) engagement to downstream signaling events. The indispensable role of LAT in thymocyte development and T cell activation has been well characterized; however, the function of LAT in cytotoxic-T-lymphocyte (CTL) cytotoxicity remains unknown. We show here that LAT-deficient CTLs failed to upregulate FasL and produce gamma interferon after engagement with target cells and had impaired granule-mediated killing. We further dissected the effect of the LAT deletion on each step of granule exocytosis. LAT deficiency led to altered synapse formation, subsequently causing unstable T cell-antigen-presenting cell (APC) conjugates. Microtubule organizing center polarization and granule reorientation were also impaired by LAT deficiency, leading to reduced granule delivery. Despite these defects, granule release was still observed in LAT-deficient CTLs due to residual calcium flux and phospholipase C (PLC) activity. Our data demonstrated that LAT-mediated signaling intricately regulates CTL cytotoxicity at multiple steps.  相似文献   

19.
Multiple paths for activation of naive CD8+ T cells: CD4-independent help   总被引:2,自引:0,他引:2  
CD8(+) CTLs play a pivotal role in immune responses against many viruses and tumors. Two models have been proposed. The "three-cell" model focuses on the role of CD4(+) T cells, proposing that help is only provided to CTLs by CD4(+) T cells that recognize Ag on the same APC. The sequential "two-cell" model proposes that CD4(+) T cells can first interact with APCs, which in turn activate naive CTLs. Although these models provide a general framework for the role of CD4(+) T cells in mediating help for CTLs, a number of issues are unresolved. We have investigated the induction of CTL responses using dendritic cells (DCs) to immunize mice against defined peptide Ags. We find that help is required for activation of naive CTLs when DCs are used as APCs, regardless of the origin or MHC class I restriction of the peptides we studied in this system. However, CD8(+) T cells can provide self-help if they are present at a sufficiently high precursor frequency. The important variable is the total number of T cells responding, because class II-knockout DCs pulsed with two noncompeting peptides are effective in priming.  相似文献   

20.
Focal adhesion kinase-null (FAK(-/-) fibroblasts exhibit morphological and motility defects that are reversed by focal adhesion kinase (FAK) reexpression. The FAK-related kinase, proline-rich tyrosine kinase 2 (Pyk2), is expressed in FAK(-/-) cells, yet it exhibits a perinuclear distribution and does not functionally substitute for FAK. Chimeric Pyk2/FAK proteins were created and expressed in FAK(-/-) cells to determine the impact of Pyk2 localization to focal contacts. Whereas an FAK/Pyk2 COOH-terminal (CT) domain chimera was perinuclear distributed, stable expression of a Pyk2 chimera with the FAK-CT domain (Pyk2/FAK-CT) localized to focal contact sites and enhanced fibronectin (FN)-stimulated haptotactic cell migration equal to FAK-reconstituted cells. Disruption of paxillin binding to the FAK-CT domain (S-1034) inhibited Pyk2/FAK-CT localization to focal contacts and its capacity to promote cell motility. Paxillin binding to the FAK-CT was necessary but not sufficient to mediate the indirect association of FAK or Pyk2/FAK-CT with a beta 1-integrin-containing complex. Both FAK and Pyk2/FAK-CT but not Pyk2/FAK-CT S-1034 reconstituted FAK(-/-) cells, exhibit elevated FN-stimulated extracellular signal-regulated kinase 2 (ERK2) and c-Jun NH(2)-terminal kinase (JNK) kinase activation. FN-stimulated FAK or Pyk2/FAK-CT activation enhanced both the extent and duration of FN-stimulated ERK2 activity which was necessary for cell motility. Transient overexpression of the FAK-CT but not FAK-CT S-1034 domain inhibited both FN-stimulated ERK2 and JNK activation as well as FN-stimulated motility of Pyk2/FAK-CT reconstituted cells. These gain-of-function studies show that the NH(2)-terminal and kinase domains of Pyk2 can functionally substitute for FAK in promoting FN-stimulated signaling and motility events when localized to beta-integrin-containing focal contact sites via interactions mediated by the FAK-CT domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号