首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
2.
In the interphase cell nucleus, chromosomes adopt a conserved and non-random arrangement in subnuclear domains called chromosome territories (CTs). Whereas chromosome translocation can affect CT organization in tumor cell nuclei, little is known about how aneuploidies can impact CT organization. Here, we performed 3D-FISH on control and trisomic 21 nuclei to track the patterning of chromosome territories, focusing on the radial distribution of trisomic HSA21 as well as 11 disomic chromosomes. We have established an experimental design based on cultured chorionic villus cells which keep their original mesenchymal features including a characteristic ellipsoid nuclear morphology and a radial CT distribution that correlates with chromosome size. Our study suggests that in trisomy 21 nuclei, the extra HSA21 induces a shift of HSA1 and HSA3 CTs out toward a more peripheral position in nuclear space and a higher compaction of HSA1 and HSA17 CTs. We posit that the presence of a supernumerary chromosome 21 alters chromosome compaction and results in displacement of other chromosome territories from their usual nuclear position.  相似文献   

3.
In this work, we have studied the structural and functional linkage between lamin A/C, nuclear actin, and organization of chromosome territories (CTs) in mammary carcinoma MCF-7 cells. Selective down-regulation of lamin A/C expression led to disruption of the lamin A/C perinuclear layer and disorganization of lamin-bound emerin complexes at the inner nuclear membrane. The silencing of lamin A/C expression resulted in a decrease in the volume and surface area of chromosome territories, especially in chromosomes with high heterochromatin content. Inhibition of actin polymerization led to relaxation of the structure of chromosome territories, and an increase in the volumes and surface areas of the chromosome territories of human chromosomes 1, 2 and 13. The results show an important role of polymeric actin in the organization of the nuclei and the chromosome territories.  相似文献   

4.
5.
To study the possible role of the nuclear matrix in chromosome territory organization, normal human fibroblast cells are treated in situ via classic isolation procedures for nuclear matrix in the absence of nuclease (e.g., DNase I) digestion, followed by chromosome painting. We report for the first time that chromosome territories are maintained intact on the nuclear matrix. In contrast, complete extraction of the internal nuclear matrix components with RNase treatment followed by 2 M NaCl results in the disruption of higher order chromosome territory architecture. Correlative with territorial disruption is the formation of a faint DNA halo surrounding the nuclear lamina and a dispersive effect on the characteristically discrete DNA replication sites in the nuclear interior. Identical results were obtained using eight different human chromosome paints. Based on these findings, we developed a fractionation strategy to release the bulk of nuclear matrix proteins under conditions where the chromosome territories are maintained intact. A second treatment results in disruption of the chromosome territories in conjunction with the release of a small subset of acidic proteins. These proteins are distinct from the major nuclear matrix proteins and may be involved in mediating chromosome territory organization.  相似文献   

6.
7.
It is evident that primary DNA sequences, that define genomes, are responsible for genome functions. However, the functional properties of chromatin are additionally regulated by heritable modifications known as epigenetic factors and, therefore, genomes should be also considered with respect to their 'epigenomes'. Nucleosome remodelling, DNA methylation and histone modifications are the most prominent epigenetic changes that play fundamental roles in the chromatin-mediated control of gene expression. Another important nuclear feature with functional relevance is the organization of mammalian chromatin into distinct chromosome territories which are surrounded by the interchromatin compartment that is necessary for transport of regulatory molecules to the targeted DNA. The inner structure of the chromosome territories, as well as the arrangement of the chromosomes within the interphase nuclei, has been found to be non-randomly organized. Therefore, a specific nuclear arrangement can be observed in many cellular processes, such as differentiation and tumour cell transformation.  相似文献   

8.

Background

Local higher-order chromatin structure, dynamics and composition of the DNA are known to determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response affects the spatial organization of chromosome territories is still unexplored.

Results

Our report investigates the effect of DNA damage on the spatial organization of chromosome territories within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions similar to those in undamaged control cells.

Conclusions

Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole chromosomes, which might be an integral aspect of cellular damage response.  相似文献   

9.
傅美丽  李宗芸  胡方方  黄淑峰 《遗传》2006,28(2):236-242
间期核中的染色体并不是散乱分布的,而是每条染色体占据了一块特定的核区域,即染色体领域(chromosome territory, CTs),染色体领域在间期核中的排列与定位是经过严格组织的,并具有一定的动力学特征,染色体领域的这些严格的定位和空间组织与基因的表达调控密切相关。文章综述了这几个方面的研究进展。   相似文献   

10.
Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.  相似文献   

11.
12.
13.
In mammals, the non-random organization of the sperm nucleus supports an early function during embryonic development. Altering this organization may interfere with the zygote development and reduce fertility or prolificity. Thus, rare studies on sperm cells from infertile patients described an altered nuclear organization that may be a cause or a consequence of their respective pathologies. Thereby, chromosomal rearrangements and aneuploidy can be studied not only for their adverse effects on production of normal/balanced gametes at meiosis but also for their possible impact on sperm nuclear architecture and the epigenetic consequences of altered chromosome positioning. We decided to compare the global architecture of sperm nuclei from boars, either with a normal chromosome composition or with a Robertsonian translocation involving chromosomes 13 and 17. We hypothesized that the fusion between these chromosomes may change their spatial organization and we examined to what extend it could also modify the global sperm nuclear architecture. Analysis of telomeres, centromeres and gonosomes repartition does not support a global nuclear disorganization. But specific analysis of chromosomes 13 and 17 territories highlights an influence of chromosome 17 for the positioning of the fused chromosomes within the nucleus. We also observed a specific clustering of centromeres depending of the chromosome subtypes. Altogether our results showed that chromosome fusion does not significantly alter sperm nucleus architecture but suggest that centromere remodelling after chromosome fusion locally impacts chromosome positioning.  相似文献   

14.
Chromosomes are intricately folded and packaged in the cell nucleus and interact with the nuclear envelope. This complex nuclear architecture has a profound effect on how the genome works and how the cells function. The main goal of review is to highlight recent studies on the effect of chromosome–nuclear envelope interactions on chromatin folding and function in the nucleus. The data obtained suggest that chromosome–nuclear envelope attachments are important for the organization of nuclear architecture in various organisms. A combination of experimental cell biology methods with computational modeling offers a unique opportunity to explore the fundamental relationships between different aspects of 3D genome organization in greater details. This powerful interdisciplinary approach could reveal how the organization and function of the genome in the nuclear space is affected by the chromosome–nuclear envelope attachments and will enable the development of novel approaches to regulate gene expression.  相似文献   

15.
During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)-spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners.  相似文献   

16.
17.
The ability of cloned embryos to sustain full-term development depends on the ability of the recipient ooplasm to reprogram the donor cell genome. As the nuclear architecture has recently emerged as a key-factor in the regulation of gene expression, we questioned whether early embryos obtained from transfer of ES metaphasic chromosomes into mouse ooplasm would adopt the somatic or embryonic type of nuclear organization. We have particularly focused on the arrangement of chromosomal territories with respect to the nucleolar compartment, and the pericentric heterochromatin domains called chromocenters. We found that nuclear transfer triggers profound chromatin rearrangements including the dispersion of the donor cell chromocenters components. These rearrangements lead to a typical 1-cell pronuclear organization, namely a radial arrangement of the chromosome territories with centromeres attached to the nucleoli, which adopt the compact fibrillar structure of nucleolar precursor bodies (NPBs). Subsequently, during the second cycle, the cloned embryos undergo further reorganization with the establishment of new chromocenters, clustered in one part of the nucleus, as during normal embryogenesis. We could also establish that the adequate distribution of chromosomal territories at the pronuclear stage seems important for the development until blastocyst.  相似文献   

18.
It is now generally accepted that chromosomes in the cell nucleus are organized in distinct domains, first called chromosome territories in 1909 by the great cytologist Theodor Boveri. Yet, even today chromosomes have remained enigmatic individuals, whose structures, arrangements and functions in cycling and post-mitotic cells still need to be explored in full detail. Whereas numerous recent reviews describe present evidence for a dynamic architecture of chromosome territories and discuss the potential significance within the functional compartmentalization of the nucleus, a comprehensive historical account of this important concept of nuclear organization was lacking so far. Here, we describe the early rise of chromosome territories within the context of the discovery of chromosomes and their fundamental role in heredity, covering a period from the 1870th to the early 20th century (part I, this volume). In part II (next volume) we review the abandonment of the chromosome territory concept during the 1950th to 1980th and the compelling evidence, which led to its resurrection during the 1970th to 1980th.  相似文献   

19.
20.
《The Journal of cell biology》1996,135(5):1195-1205
The intranuclear position of a set of genes was analyzed with respect to the territories occupied by the whole chromosomes in which these genes are localized. Genes and their respective chromosome territories were simultaneously visualized in three-dimensionally preserved nuclei applying dual color fluorescence in situ hybridization. Three coding (DMD, MYH7, and HBB) and two noncoding sequences (D1Z2 and an anonymous sequence) were analyzed in four different cell types, including cells where DMD and MYH7 are actively transcribed. Spatial analysis by confocal laser scanning microscopy revealed that the genes are preferentially located in the periphery of chromosome territories. This positioning was independent from the activity of the genes. In contrast, the non-expressed anonymous fragment was found randomly distributed or localized preferentially in the interior of the corresponding chromosome territory. Furthermore, the distribution of the analyzed genes within the territorial peripheries was found to be highly characteristic for each gene, and, again, independent from its expression. The impact of these findings with regard to the three- dimensional arrangement of the linear DNA string within chromosome territories, as well as with respect to a putative nuclear subcompartment confining gene expression, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号