首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of glucagon-like peptide-1 (GLP-1) receptor and the effects of GLP-1-(7-36) amide (t-GLP-1) on glucose metabolism and insulin release by pancreatic islets during rat development were studied. GLP-1 receptor mRNA was found in significant amounts in pancreatic islets from all age groups studied, GLP-1 receptor expression being maximal when pancreatic islets were incubated at physiological glucose concentration (5.5 mM), but decreasing significantly when incubated with either 1.67 or 16.7 mM glucose. Glucose utilization and oxidation by pancreatic islets from fetal and adult rats rose as a function of glucose concentration, always being higher in fetal than in adult islets. The addition of t-GLP-1 to the incubation medium did not modify glucose metabolism but gastric inhibitory polypeptide and glucagon significantly increased glucose utilization by fetal and adult pancreatic islets at 16.7 mM glucose. At this concentration, glucose produced a significant increase in insulin release by the pancreatic islets from 10-day-old and 20-day-old suckling rats and adult rats, whereas those from fetuses showed only a significant increase when glucose was raised from 1.67 to 5.5 mM. t-GLP-1 elicited an increase in insulin release by pancreatic islets from all the experimental groups when the higher glucose concentrations were used. Our findings indicate that GLP-1 receptors and the effect of t-GLP-1 on insulin release are already present in the fetus, and they therefore exclude the possibility that alterations in the action of t-GLP-1 are responsible for the unresponsiveness of pancreatic beta cells to glucose in the fetus, but stimulation of t-GLP-1 release by food ingestion in newborns may partially confer glucose competence on beta cells.  相似文献   

2.
In an attempt to know the role of the pineal gland on glucose homeostasis, the blood plasma concentrations of glucose, insulin and glucagon under basal conditions or after the administration of nutrients were studied in the jugular vein of conscious pinealectomized (Pn), melatonin-treated pinealectomized (Pn + Mel) and control (C) rats. Glucose levels were smaller in C than in Pn rats, while immunoreactive insulin (IRI) concentrations were significantly greater in C than in Pn rats. Contrary to this, immunoreactive glucagon (IRG) levels were significantly greater in Pn than in C animals. Melatonin treatment of Pn rats induces an increase of IRI concentrations and a reduction in IRG levels. Similar changes were obtained when hormonal determinations were carried out in portal blood plasma. Although ether anesthesia increases circulating glucagon levels in the porta and cava veins, the qualitative changes of plasma insulin and glucagon in Pn and Pn + Mel were similar to those found in conscious rats. To determine the effects of nutrients on pancreatic hormone release, intravenous arginine or oral glucose were administered to the animals of the three experimental groups. In C rats, both glucose and IRI levels reached a peak 30 minutes after glucose ingestion, decreasing thereafter. However, in Pn rats a glucose intolerance was observed, with maximum glucose and insulin concentrations at 60 minutes, while in Pn + Mel animals, glucose and IRI concentrations were in between the data obtained with the other two groups. Furthermore, glucose ingestion induced a significant reduction of IRG levels in all the groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In the present study, we evaluated the autocrine modulatory effect of insulin on glucose metabolism and glucose-induced insulin secretion in islets isolated from hamsters with insulin resistance (IR) induced by administration of a sucrose-rich diet (SRD) during 5 weeks. We used an approach of two metabolic pathways (glucose oxidation and utilization) based on the measurement of 14CO2 and 3H2O production from D-[U-14C]-glucose and D-[5-(3)H]-glucose, respectively, in isolated islets incubated with 3.3 and 16.7 mM glucose alone, or with 5 or 15 mU/ml insulin, anti-insulin guinea-pig serum (1:500), 25 microM nifedipine, or 150 nM wortmannin. Insulin release was measured by radioimmunoassay in islets incubated with 3.3 or 16.7 mM glucose, with or without 75, 150, and 300 nM wortmannin. Results showed that the stimulatory effect of insulin upon 14CO2 and 3H2O production in control islets was not observed in SRD islets. Addition of anti-insulin serum, nifedipine or wortmannin to the medium with 16.7 mM glucose decreased 14CO2 and 3H2O production in control but not in SRD islets. Whereas wortmannin did not decrease insulin release induced by 16.7 mM glucose in SRD hamsters, it did in controls. We can conclude that the autocrine stimulatory effect of insulin upon glucose metabolism observed in normal islets is attenuated or even absent in islets from IR animals. Such decreased islet sensitivity to insulin did not prevent the compensatory secretion of insulin from maintaining glucose homeostasis, suggesting that, at least in this model, the islets can put forward alternative mechanisms to overcome such defect.  相似文献   

4.
We evaluated the possible autocrine modulatory effect of insulin on glucose metabolism and glucose-induced insulin secretion in islets isolated from normal hamsters. We measured 14CO2 and 3H2O production from d-[U-14C]glucose and d-[5-3H]glucose, respectively, in islets incubated with 0.6, 3.3, 8.3, and 16.7 mM glucose alone or with 5 or 15 mU/ml insulin, anti-insulin guinea pig serum (1:500), 25 microM nifedipine, or 150 nM wortmannin. Insulin release was measured (radioimmunoassay) in islets incubated with 3.3 or 16.7 mM glucose with or without 75, 150, and 300 nM wortmannin. Insulin significantly enhanced 14CO2 and 3H2O production with 3.3 mM glucose but not with 0.6, 8.3, or 16.7 mM glucose. Addition of anti-insulin serum to the medium with 8.3 and 16.7 mM glucose decreased 14CO2 and 3H2O production significantly. A similar decrease was obtained in islets incubated with 8.3 and 16.7 mM glucose and wortmannin or nifedipine. This latter effect was reversed by adding 15 mU/ml insulin to the medium. Glucose metabolism was almost abolished when islets were incubated in a Ca2+-deprived medium, but this effect was not reversed by insulin. No changes were found in 14CO2 and 3H2O production by islets incubated with 3.3 mM glucose and anti-insulin serum, wortmannin, or nifedipine in the media. Addition of wortmannin significantly decreased insulin release induced by 16.7 mM glucose in a dose-dependent manner. Our results suggest that insulin exerts a physiological autocrine stimulatory effect on glucose metabolism in intact islets as well as on glucose-induced insulin release. Such an effect, however, depends on the glucose concentration in the incubation medium.  相似文献   

5.
Galanin is a neurotransmitter peptide that suppresses insulin secretion. The present study aimed at investigating how a non-peptide galanin receptor agonist, galnon, affects insulin secretion from isolated pancreatic islets of healthy Wistar and diabetic Goto-Kakizaki (GK) rats. Galnon stimulated insulin release potently in isolated Wistar rat islets; 100 microM of the compound increased the release 8.5 times (p<0.001) at 3.3 mM and 3.7 times (p<0.001) at 16.7 mM glucose. Also in islet perifusions, galnon augmented several-fold both acute and late phases of insulin response to glucose. Furthermore, galnon stimulated insulin release in GK rat islets. These effects were not inhibited by the presence of galanin or the galanin receptor antagonist M35. The stimulatory effects of galnon were partly inhibited by the PKA and PKC inhibitors, H-89 and calphostin C, respectively, at 16.7 but not 3.3 mM glucose. In both Wistar and GK rat islets, insulin release was stimulated by depolarization of 30 mM KCl, and 100 microM galnon further enhanced insulin release 1.5-2 times (p<0.05). Cytosolic calcium levels, determined by fura-2, were increased in parallel with insulin release, and the L-type Ca2+-channel blocker nimodipine suppressed insulin response to glucose and galnon. In conclusion, galnon stimulates insulin release in islets of healthy rats and diabetic GK rats. The mechanism of this stimulatory effect does not involve galanin receptors. Galnon-induced insulin release is not glucose-dependent and appears to involve opening of L-type Ca2+-channels, but the main effect of galnon seems to be exerted at a step distal to these channels, i.e., at B-cell exocytosis.  相似文献   

6.
Pentitols and insulin release by isolated rat islets of Langerhans   总被引:7,自引:13,他引:7       下载免费PDF全文
1. Insulin secretion was studied in isolated islets of Langerhans obtained by collagenase digestion of rat pancreas. In addition to responding to glucose and mannose as do whole pancreas and pancreas slices in vitro, isolated rat islets also secrete insulin in response to xylitol, ribitol and ribose, but not to sorbitol, mannitol, arabitol, xylose or arabinose. 2. Xylitol and ribitol readily reduce NAD(+) when added to a preparation of ultrasonically treated islets. 3. Adrenaline (1mum) inhibits the effects of glucose and xylitol on insulin release. Mannoheptulose and 2-deoxy-glucose, however, inhibit the response to glucose but not that to xylitol. 4. The intracellular concentration of glucose 6-phosphate is increased when islets are incubated with glucose but not with xylitol, suggesting that xylitol does not promote insulin release by conversion into glucose 6-phosphate. 5. Theophylline (5mm) potentiates the effect of 20mm-glucose on insulin release from isolated rat islets of Langerhans, but has no effect on xylitol-mediated release. These results indicate that xylitol does not stimulate insulin release by alterations in the intracellular concentrations of cyclic AMP. 6. A possible role for the metabolism of hexoses via the pentose phosphate pathway in the stimulation of insulin release is discussed.  相似文献   

7.
Islets of Langerhans, isolated from normal or 19-day pregnant rats, were cultured for 20 h at 37 degrees C in tissue culture medium 199. When islets were cultured in medium containing low glucose (5.5 mM), the higher adenylate cyclase activity and insulin secretory responses characteristic of islets from pregnant rats were maintained during the test period of 29 h. Islets from normal and pregnant rats were also cultured for 20 h in medium containing a very high glucose concentration (83.3 mM) in order to load the B cells with glycogen. It was found, after glycogen loading, that, while adenylate cyclase activity increased to a greater extent in islets from pregnant rats than controls, this activity was not increased in proportion to the striking changes in insulin release rate observed in pregnant rat islets. The results show that the difference in insulin secretory response between islets from normal and pregnant rats may be preserved when the islets are cultured for 20 h, and that these differences are enhanced for a variety of reasons after culture of islets in 83.3 mM glucose.  相似文献   

8.
Female Sprague-Dawley rats exposed to a short (6L:18D) photoperiod from 21 days of age were mated when they reached 55 days of age. On Day 2 of gestation animals were pinealectomized or sham-operated. On Day 5 after birth male pups of the two groups of dams were either pinealectomized or sham-operated. They were killed at 42 and 49 days of age. In offspring born to sham-operated dams and in those born to pinealectomized mothers, neonatal pineal ablation resulted in increased testicular testosterone and androstenedione content. In sham-operated and neonatally pinealectomized rats removal of the maternal pineal gland induced a decrease in testicular testosterone and androstenedione content. In contrast, after maternal pinealectomy there was a decrease in plasma testosterone and dihydrotestosterone values and testicular dihydrotestosterone content in sham-operated rats but not in those neonatally pinealectomized. We conclude that (1) the pineal glands of the mother and offspring are required to maintain normal testicular testosterone and androstenedione content in the rat, and (2) the pineal of the offspring influences the inhibitory effects of maternal pinealectomy on testicular dihydrotestosterone content and on plasma testosterone and dihydrotestosterone concentration in the offspring.  相似文献   

9.
We studied the effect of a specific-competitive inhibitor of the sucrose taste response, p-nitrophenyl-D-glucopyranoside (PNP-Glu) on insulin release and phosphoinositide metabolism in rat pancreatic islets. The alpha-anomer, but not the beta-anomer, of PNP-Glu at a concentration of 5 mM inhibited insulin release induced by 10 mM glucose. Islets were labeled by exposure for 2 h to 10 uCi of myo-[2-3H] inositol solution supplemented with 2.8 mM glucose. Forty islets were then incubated in the presence of 10 mM LiCl, 1 mM inositol and 10 mM glucose with or without the anomers of PNP-Glu. [3H] radioactivity in the incubation medium remained significantly greater in the presence of the alpha-anomer of PNP-Glu than in the presence of glucose alone after 5- and 20-min incubation. The inositol monophosphate levels in the islets incubated with glucose alone were increased more than in the islets with alpha-anomer. The beta-anomer of PNP-Glu did not change either glucose-induced insulin release or phosphoinositide breakdown. A patch-clamp study revealed that neither anomer affected the glucose-dependent ATP-sensitive K(+)-channels. These results indicate that the anomeric preference for glucose in insulin release in the pancreatic islets is closely associated with phosphoinositide breakdown.  相似文献   

10.
Time course of the changes in insulin release and cyclic AMP levels in isolated rat islets incubated in media containing 5 or 16.7 mM of glucose were followed. The higher glucose concentration caused a slight but significant increase of cyclic AMP levels after 10 min incubation, but not 5 min incubation, whereas the stimulation of insulin release by 16.7 mM of glucose was apparent in both incubation times. Theophylline increased cyclic AMP levels markedly but did not stimulate insulin release when the glucose concentration was 5 mM. A slight augmentation by theophylline of insulin release was observed in the incubation medium containing 16.7 mM glucose. All these findings suggest that the elevation of cyclic AMP in islets may not play a role for the initiation of the insulin release induced by glucose, though it may act to modulate the glucose effect.  相似文献   

11.
A wasp venom, mastoparan, rapidly stimulated insulin release by rat pancreatic islets in a dose-related manner. The amount of insulin released in response to 58 microM mastoparan far exceeded that induced by 27.8 mM glucose. Mastoparan stimulated insulin release to similar degrees at ambient glucose concentrations of 1.7 mM and 5.6 mM. The islets obtained from pertussis toxin-treated rats showed unequivocally less response to mastoparan. Pretreatment of islets with bromophenacyl bromide, a phospholipase A2 inhibitor, abolished their responsiveness to mastoparan. Pretreatment of islets with nifedipine, a Ca2+ channel blocker, was without effect. Mastoparan is a unique stimulator of insulin release by the pancreatic islets, which acts through GTP-binding protein(s) and phospholipase A2.  相似文献   

12.
The pineal hormone, melatonin, is known to modify, under different experimental conditions, neurohypophysial hormone secretion in the rat. The aim of this study was to investigate the effect of melatonin on the vasopressin biosynthesis rate in the hypothalamus of either pinealectomized or sham-operated rats, using the colchicine method. To estimate whether colchicine affects the function of the neurohypophysis in these animals, the neurohypophysial and plasma vasopressin levels were also measured. The vasopressin synthesis rate was increased after pineal removal, when compared with sham-operated animals, and melatonin strongly inhibited the rise in the hormone synthesis due to pinealectomy. After pineal removal plasma vasopressin concentration was significantly elevated, and melatonin attenuated this effect. On the contrary, the neurohypophysial vasopressin content was significantly decreased after pinealectomy, but it was not further modified by melatonin.Thus, melatonin suppresses the synthesis and secretion of vasopressin in pinealectomized rats. The present results confirm our previous reports as to the inhibitory impact of the pineal on both vasopressin synthesis and release and suggest that melatonin may mediate the effect of the pineal gland on vasopressinergic neuron activity.  相似文献   

13.
In order to study the role of cyclic AMP in the inhibition by somatostatin of glucose-induced insulin release, the effect of somatostatin on the potentiation by dibutyryl-cyclic AMP (db-cAMP) of insulin release from isolated pancreatic islets of rats was examined. Isolated islets were obtained from the rat pancreas by the collagenase method. Ten islets were incubated for periods of 30 min in Krebs-Ringer bicarbonate buffer containg albumin and glucose 2.0 mg/ml in the presence or absence of somatostatin (1 microgram/ml or 100 ng/ml) and/or db-cAMP 1 mM. Glucose-induced insulin release was reduced by somatostatin in concentrations of 1 microgram/ml. Somatostatin in a concentration of 100 ng/ml significantly abolished the potentiation by db-cAMP of insulin release (p less than 0;01), in spite of exerting no inhibition of glucose-induced insulin release. However, in the presence of theophylline 5 mM, somatostatin 100 ng/ml did not show that inhibitory effect on the potentiated insulin release.  相似文献   

14.
Islet responses of two different Mus geni, the laboratory mouse (Mus musculus) and a phylogenetically more ancient species (Mus caroli), were measured and compared with the responses of islets from rats (Rattus norvegicus). A minimal and flat second-phase response to 20 mM glucose was evoked from M. musculus islets, whereas a large rising second-phase response characterized rat islets. M. caroli responses were intermediate between these two extremes; a modest rising second-phase response to 20 mM glucose was observed. Prior, brief stimulation of rat islets with 20 mM glucose results in an amplified insulin secretory response to a subsequent 20 mM glucose challenge. No such potentiation or priming was observed from M. musculus islets. In contrast, M. caroli islets displayed a modest twofold potentiated first-phase response upon subsequent restimulation with 20 mM glucose. Inositol phosphate (IP) accumulation in response to 20 mM glucose stimulation in [(3)H]inositol-prelabeled rat or mouse islets paralleled the insulin secretory responses. The divergence in 20 mM glucose-induced insulin release between these species may be attributable to differences in phospholipase C-mediated IP accumulation in islets.  相似文献   

15.
We examined the effects of a pentadecapeptide having the 104-118 aminoacid sequence of islet neogenesis-associated protein (INGAP-PP) on insulin secretion, and the morphological characteristics of adult and neonatal pancreatic rat islets cultured in RPMI and 10 mM glucose for 4 days, with or without different INGAP-PP concentrations (0.1-100 mug/ml). A scrambled 15 aminoacid peptide was used as control for the specificity of INGAP-PP effect. Cultured neonatal and adult islets released insulin in response to glucose (2.8-16.7 mM) in a dose-dependent manner, and to leucine and arginine (10 mM). In all cases, the response was greater in adult islets. INGAP-PP added to the culture medium significantly enhanced glucose- and aminoacid-induced insulin release in both adult and newborn rats; however, no changes were observed with the scrambled peptide. Similar results were obtained incubating freshly isolated adult rat islets with INGAP-PP. Whereas INGAP-PP did not induce significant changes in islet survival rate or proportion/number of islet cells, it increased significantly beta-cell size. This first demonstration of the enhancing effect of INGAP-PP on the beta-cell secretory response of adult and newborn islets opens a new avenue to study its production mechanism and potential use to increase the secretory capacity of endogenous islets in intact animals or of islets preserved for future transplants.  相似文献   

16.
The effects of mannoheptulose and DL-glyceraldehyde on glucose-induced insulin release and cycli AMP levels in islets isolated from rat pancreas were investigated. Mannoheptulose inhibition on glucose-induced insulin release was observed after only 5-min incubation period, indicating an inhibitory effect on the early phase of insulin release. This inhibition on insulin release was accompanied with the simultaneous depression of cyclic AMP levels in islets. By the addition of DL-glyceraldehyde to the medium in which glucose and mannoheptulose were present, the depressed cyclic AMP levels in islets were recovered to the control level completely but the restoration of insulin release in the early phase was not complete. In the absence of glucose, DL-glyceraldehyde did not demonstrate a significant increase of insulin release during 5 min incubation, though a marked stimulation was observed after 30-min incubation. Cyclic AMP levels in islets were not affected by DL-glyceraldehyde. When DL-glyceraldehyde was added to the medium with glucose, significant inhibition of glucos-induced insulin release in its early phase was observed without the reduction of cyclic AMP levels in islets. From these findings, the following possibilities are suggested and discussed. 1. Maintenance of the cyclic AMP levels in islets is a necessary but insufficient condition for glucose-induced insulin release particularly for its early phase. 2. Glucose-induced insulin release seems to depend on both the binding of glucose with glucoreceptor and the supply of some metabolites. Mannoheptulose inhibits both mechanisms. DL-glyceraldehyde may supply metabolites but competitively inhibit the binding of glucose to the glucoreceptor.  相似文献   

17.
Pancreatic islets were maintained in culture with or without islet-activating protein (IAP), which is a new protein purified from culture medium of Bordetella pertussis. These cultured islets (IAP-treated or control) were then incubated for 30 min in IAP-free medium with various insulin secretagogues. During incubation, much more insulin was released from IAP-treated islets than control islets in response to glucose, arginine, glucagon, and sulfonylurea. IAP was effective in this regard when added to cultures at concentrations higher than 0.01 ng/ml; the effect was dependent on concentration up to 100 ng/ml. Enhanced insulin secretion was associated with accumulation of cyclic AMP when breakdown of the nucleotide was prevented by a methylxanthine. Epinephrine caused marked inhibitions, via alpha-adrenergic receptors, of glucose-induced insulin release, cyclic AMP accumulation and 45Ca uptake in control islets but did not in IAP-treated islets during incubation. None of these effects of IAP pretreatment were observed unless the medium for incubation was supplemented with Ca ions. 45Ca ion flux through the islet cell membrane was accelerated by the IAP treatment; conceivably, IAP was effective in causing sustained activation of native calcium ionophores on the membrane, which would be responsible for the enhanced insulin and cyclic AMP responses characteristic of IAP-treated islets.  相似文献   

18.

Background

The possible participation of endogenous islet catecholamines (CAs) in the control of insulin secretion was tested.

Methods

Glucose-induced insulin secretion was measured in the presence of 3-Iodo-L-Tyrosine (MIT), a specific inhibitor of tyrosine-hydroxylase activity, in fresh and precultured islets isolated from normal rats. Incubated islets were also used to measure CAs release in the presence of low and high glucose, and the effect of α2-(yohimbine [Y] and idazoxan [I]) and α1-adrenergic antagonists (prazosin [P] and terazosin [T]) upon insulin secretion elicited by high glucose.

Results

Fresh islets incubated with 16.7 mM glucose released significantly more insulin in the presence of 1 μM MIT (6.66 ± 0.39 vs 5.01 ± 0.43 ng/islet/h, p < 0.02), but did not affect significantly the insulin response to low glucose. A similar enhancing effect of MIT upon insulin secretion was obtained using precultured islets devoid of neural cells, but absolute values were lower than those from fresh islets, suggesting that MIT inhibits islet rather than neural tyrosine hydroxylase. CAs concentration in the incubation media of fresh isolated islets was significantly higher in the presence of 16.7 than 3.3 mM glucose: dopamine 1.67 ± 0.13 vs 0.69 ± 0.13 pg/islet/h, p < 0.001, and noradrenaline 1.25 ± 0.17 vs 0.49 ± 0.04 pg/islet/h, p < 0.02. Y and I enhanced the release of insulin elicited by 16.7 mM glucose while P and T decreased such secretion.

Conclusion

Our results suggest that islet-originated CAs directly modulate insulin release in a paracrine manner.  相似文献   

19.
The cryoprotectants dimethyl sulfoxide (Me2SO) and glycerol have been used for the cryopreservation of fetal rat pancreases but only Me2SO has been reported for the cryopreservation of adult rat islets. Since glycerol may be preferred to Me2SO for clinical use, this study was undertaken to compare the effectiveness of these cryoprotectants during the slow cooling of isolated adult rat islets. Islets of Langerhans prepared from the pancreases of WAG rats by collagenase digestion were stored at -196 degrees C after slow cooling (0.3 degrees C/min) to -70 degrees C in the presence of multimolar concentrations of either Me2SO or glycerol. Samples were rewarmed slowly (approximately 10 degrees C/min) and dilution of the cryoprotectant was achieved using medium containing sucrose. Function was assessed by determination of the time course of the glucose-induced insulin release during in vitro perifusion at 37 degrees C and also by isograft transplantation. Transplants were carried out by intraportal injection of a minimum of 1700 frozen and thawed islets into streptozotocin-induced diabetic recipients and tissue function was assessed by monitoring blood glucose levels and body weight changes. Without exception the islets frozen and thawed in the presence of glycerol failed to reduce high serum glucose levels of recipient rats and in vitro dynamic release curves showed to demonstrate a glucose-sensitive insulin release pattern. Reversal of the diabetic conditions was achieved in two of five animals receiving islets which had been frozen and thawed with 2 M Me2SO; and in one of three animals receiving islets cryopreserved with 3 M Me2SO. Nevertheless, perifusion studies showed that the pattern of insulin secretion from groups of cryopreserved islets which did show an ability to secrete insulin was atypical compared with that of untreated controls, suggesting that the tissue was altered or damaged in some way.  相似文献   

20.
Our previous work has demonstrated that islet depolarization with KCl opens connexin36 hemichannels in β-cells of mouse pancreatic islets allowing the exchange of small metabolites with the extracellular medium. In this study, the opening of these hemichannels has been further characterized in rat islets and INS–1 cells. Taking advantage of hemicannels’opening, the uptake of extracellular ATP and its effect on insulin release were investigated. 70 mM KCl stimulated light emission by luciferin in dispersed rat islets cells transduced with the fire-fly luciferase gene: it was suppressed by 20 mM glucose and 50 μM mefloquine, a specific connexin36 inhibitor. Extracellular ATP was taken up or released by islets depolarized with 70 mM KCl at 5 mM glucose, depending on the external ATP concentration. 1 mM ATP restored the loss of ATP induced by the depolarization itself. ATP concentrations above 5 mM increased islet ATP content and the ATP/ADP ratio. No ATP uptake occurred in non-depolarized or KCl-depolarized islets simultaneously incubated with 50 μM mefloquine or 20 mM glucose. Extracellular ATP potentiated the secretory response induced by 70 mM KCl at 5 mM glucose in perifused rat islets: 5 mM ATP triggered a second phase of insulin release after the initial peak triggered by KCl-depolarization itself; at 10 mM, it increased both the initial, KCl-dependent, peak and stimulated a greater second phase of secretion than at 5 mM. These stimulatory effects of extracellular ATP were almost completely suppressed by 50 μM mefloquine. The magnitude of the second phase of insulin release due to 5 mM extracellular ATP was decreased by addition of 5 mM ADP (extracellular ATP/ADP ratio = 1). ATP acts independently of KATP channels closure and its intracellular concentration and its ATP/ADP ratio seems to regulate the magnitude of both the first (triggering) and second (amplifying) phases of glucose-induced insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号