共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of the anti-adipogenic Hedgehog signaling pathway by cyclopamine does not trigger adipocyte differentiation 总被引:1,自引:0,他引:1
Dysregulation of Hedgehog signaling can lead to several pathologies such as congenital defects and cancer. Here, we show that Hedgehog signaling is active in undifferentiated 3T3-L1 cells and decreases during adipocyte differentiation. Interestingly, this is paralleled by a decrease in Indian Hedgehog expression. We then tested if this down-regulation was sufficient to induce adipocyte differentiation. To this end, we demonstrate that the well-characterized Hedgehog inhibitor cyclopamine induced a decrease in Hedgehog signaling, similar to the one observed during adipocyte differentiation. However, cyclopamine did not induce nor potentiate adipocyte differentiation, as monitored by triglyceride staining and by the expression of several adipocyte markers: aP2, adipsin, C/EBPalpha, and Pref-1. Moreover, cyclopamine cannot substitute for other components of the differentiation medium: insulin, dexamethasone or IBMX. These results indicate that although Hedgehog signaling decreases during adipocyte differentiation, this down-regulation is not sufficient to trigger adipocyte differentiation. This suggests that Hedgehog signaling is an inadequate pharmacological target for patient suffering from syndromes associated with a decrease in fat mass, such as the ones observed in lipodystrophies. 相似文献
2.
3.
4.
5.
6.
7.
The endocrine-secreting lobe of the pituitary gland, or adenohypophysis, forms from cells at the anterior margin of the neural plate through inductive interactions involving secreted morphogens of the Hedgehog (Hh), fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) families. To better understand when and where Hh signaling influences pituitary development, we have analyzed the effects of blocking Hh signaling both pharmacologically (cyclopamine treatments) and genetically (zebrafish Hh pathway mutants). While current models state that Shh signaling from the oral ectoderm patterns the pituitary after placode induction, our data suggest that Shh plays a direct early role in both pituitary induction and patterning, and that early Hh signals comes from adjacent neural ectoderm. We report that Hh signaling is necessary between 10 and 15 h of development for induction of the zebrafish adenohypophysis, a time when shh is expressed only in neural tissue. We show that the Hh responsive genes ptc1 and nk2.2 are expressed in preplacodal cells at the anterior margin of the neural tube at this time, indicating that these cells are directly receiving Hh signals. Later (15-20 h) cyclopamine treatments disrupt anterior expression of nk2.2 and Prolactin, showing that early functional patterning requires Hh signals. Consistent with a direct role for Hh signaling in pituitary induction and patterning, overexpression of Shh results in expanded adenohypophyseal expression of lim3, expansion of nk2.2 into the posterior adenohypophysis, and an increase in Prolactin- and Somatolactin-secreting cells. We also use the zebrafish Hh pathway mutants to document the range of pituitary defects that occur when different elements of the Hh signaling pathway are mutated. These defects, ranging from a complete loss of the adenohypophysis (smu/smo and yot/gli2 mutants) to more subtle patterning defects (dtr/gli1 mutants), may correlate to human Hh signaling mutant phenotypes seen in Holoprosencephaly and other congenital disorders. Our results reveal multiple and distinct roles for Hh signaling in the formation of the vertebrate pituitary gland, and suggest that Hh signaling from neural ectoderm is necessary for induction and functional patterning of the vertebrate pituitary gland. 相似文献
8.
Hedgehog (Hh) signaling is proposed to have different roles on differentiation of hypaxial myoblasts of amniotes. Within the somitic environment, Hh signals restrict hypaxial development and promote epaxial muscle formation. On the other hand, in the limb bud, Hh signaling represses hypaxial myoblast differentiation. This poses the question of whether differences in response to Hh signaling are due to variations in local environment or are intrinsic differences between pre- and post-migratory hypaxial myoblasts. We have approached this question by examining the role of Hh signaling on myoblast development in Xenopus laevis, which, due to its unique mode of hypaxial muscle development, allows us to examine myoblast development in vivo in the absence of the limb environment. Cyclopamine and sonic hedgehog (shh) mRNA overexpression were used to inhibit or activate the Hh pathway, respectively. We find that hypaxial myoblasts respond similarly to Hh manipulations regardless of their location, and that this response is the same for epaxial myoblasts. Overexpression of shh mRNA causes a premature differentiation of the dermomyotome, subsequently inhibiting all further growth of the epaxial and hypaxial myotome. Cyclopamine treatment has the opposite effect, causing an increase in dermomyotome and a shift in myoblast fate from epaxial to hypaxial, eventually leading to an excess of hypaxial body wall muscle. Cyclopamine treatment before stage 20 can rescue the effects of shh overexpression, indicating that early Hh signaling plays an essential role in maintaining the balance between epaxial and hypaxial muscle mass. After stage 20, the premature differentiation of the dermomyotome caused by shh overexpression cannot be rescued by cyclopamine, and no further embryonic muscle growth occurs. 相似文献
9.
10.
11.
12.
13.
Background
The intricate regulation of several signaling pathways is essential for embryonic development and adult tissue homeostasis. Cancers commonly display aberrant activity within these pathways. A population of cells identified in several cancers, termed cancer stem cells (CSCs) show similar properties to normal stem cells and evidence suggests that altered developmental signaling pathways play an important role in maintaining CSCs and thereby the tumor itself.Scope of review
This review will focus on the roles of the Notch, Wnt and Hedgehog pathways in the brain, breast and colon cancers. We describe the roles these pathways play in normal tissue homeostasis through the regulation of stem cell fate in these three tissues, and the experimental evidence indicating that the role of these pathways in cancers of these is directly linked to CSCs.Major conclusions
A large body of evidence is accumulating to indicate that the deregulation of Notch, Wnt and Hedgehog pathways play important roles in both normal and cancer stem cells. We are only beginning to understand how these pathways interact, how they are coordinated during normal development and adult tissue homeostasis, and how they are deregulated during cancer. However, it is becoming increasingly clear that if we are to target CSCs therapeutically, it will likely be necessary to develop combination therapies.General significance
If CSCs are the driving force behind tumor maintenance and growth then understanding the molecular mechanisms regulating CSCs is essential. Such knowledge will contribute to better targeted therapies that could significantly enhance cancer treatments and patient survival. This article is part of a Special Issue entitled Biochemistry of Stem Cells. 相似文献14.
Myelination is an essential prerequisite for the nervous system to transmit an impulse efficiently by a saltatory conduction. In the peripheral nervous system (PNS), Schwann cells (SCs) engage in myelination. However, a detailed molecular mechanism underlying myelination still remains unclear. In this study, we hypothesized that the primary cilia of SCs are the regulators of Hedgehog (Hh) signaling-mediated myelination. To confirm our hypothesis, we used mouse dorsal root ganglion (DRG)/SC co-cultures, wherein the behavior of SCs could be analyzed by maintaining the interaction of SCs with DRG neurons. Under these conditions, SCs had primary cilia, and Hh signaling molecules accumulated on the primary cilia. When the SCs were stimulated by the addition of desert hedgehog or smoothened agonist, formation of myelin segments on the DRG axons was facilitated. On the contrary, upon administration of cyclopamine, an inhibitor of Hh signaling, myelin segments became comparable to those of controls. Of note, the ratio of SCs harboring primary cilium reached the highest point during the early phase of myelination. Furthermore, the strongest effects of Hh on myelination were encountered during the same stage. These results collectively indicate that Hh signaling regulates myelin formation through primary cilia in the PNS. 相似文献
15.
Jun Long Bin Li Jezabel Rodriguez-Blanco Chiara Pastori Claude-Henry Volmar Claes Wahlestedt Anthony Capobianco Feng Bai Xin-Hai Pei Nagi G. Ayad David J. Robbins 《The Journal of biological chemistry》2014,289(51):35494-35502
Epigenetic enzymes modulate signal transduction pathways in different biological contexts. We reasoned that epigenetic regulators might modulate the Hedgehog (HH) signaling pathway, a main driver of cell proliferation in various cancers including medulloblastoma. To test this hypothesis, we performed an unbiased small-molecule screen utilizing an HH-dependent reporter cell line (Light2 cells). We incubated Light2 cells with small molecules targeting different epigenetic modulators and identified four histone deacetylase inhibitors and a bromodomain and extra terminal domain (BET) protein inhibitor (I-BET151) that attenuate HH activity. I-BET151 was also able to inhibit the expression of HH target genes in Sufu−/− mouse embryonic fibroblasts, in which constitutive Gli activity is activated in a Smoothened (Smo)-independent fashion, consistent with it acting downstream of Smo. Knockdown of Brd4 (which encodes one of the BET proteins) phenocopies I-BET151 treatment, suggesting that Brd4 is a regulator of the HH signaling pathway. Consistent with this suggestion, Brd4 associates with the proximal promoter region of the Gli1 locus, and does so in a manner that can be reversed by I-BET151. Importantly, I-BET151 also suppressed the HH activity-dependent growth of medulloblastoma cells, in vitro and in vivo. These studies suggest that BET protein modulation may be an attractive therapeutic strategy for attenuating the growth of HH-dependent cancers, such as medulloblastoma. 相似文献
16.
The Hedgehog (Hh) family of secreted signaling proteins plays a critical role in regulating the development of several tissues and organ systems.The ability of Hh proteins to exert their biological effects is regulated by a series of post-translational processes.These processes include an intramolecular cleavage,covalent addition of cholesterol and/or palmitate,and conversion into a multimeric freely diffusible form.The processing of Hh proteins affects their trafficking,potency,and ability to signal over several cell diameters.Here we review the current understanding of the Hh signaling mechanisms that govern the establishment of the Hh gradient and the transduction of the Hh signal in the light of recent data. 相似文献
17.
In the embryonic mouse retina, retinoic acid (RA) is unevenly distributed along the dorsoventral axis: RA-rich zones in dorsal and ventral retina are separated by a horizontal RA-poor stripe that contains the RA-inactivating enzyme CYP26A1. To explore the developmental role of this arrangement, we studied formation of the retina and its projections in Cyp26a1 null-mutant mice. Expression of several dorsoventral markers was not affected, indicating that CYP26A1 is not required for establishing the dorsoventral retina axis. Analysis of the mutation on a RA-reporter mouse background confirmed, as expected, that the RA-poor stripe was missing in the retina and its projections at the time when the optic axons first grow over the diencephalon. A day later, however, a gap appeared both in retina and retinofugal projections. As explanation, we found that CYP26C1, another RA-degrading enzyme, had emerged centrally in a narrower domain within the RA-poor stripe. While RA applications increased retinal Cyp26a1 expression, they slightly reduced Cyp26c1. These observations indicate that the two enzymes function independently. The safeguard of the RA-poor stripe by two distinct enzymes during later development points to a role in maturation of a significant functional feature like an area of higher visual acuity that develops at its location. 相似文献
18.
Hedgehog(HH)信号通路在胚胎发育和器官形成中发挥重要作用。当该通路中成员发生异常如patched(PTCH)发生缺失或突变,smoothened(SMO)发生突变,Gli异常扩增或者蛋白质稳定性增加等,都会导致该通路异常激活,并诱导如基底细胞癌、成神经管细胞瘤等癌症发生。因此阻断HH信号通路是应用于癌症治疗的一个有效手段。目前以HH信号通路不同成员为靶点已开发出多种HH信号通路小分子抑制剂,其中以HH信号通路上游成员为靶点的抑制剂最多。在今后的研究中,应该更加注重于以HH信号通路下游为靶点,开发更加有效的抗癌药物。 相似文献
19.
Li-Na Zhong Yu-Zhu Zhang Hong Li Hui-Ling Fu Cheng-Xiu Lv Xiu-Juan Jia 《Journal of cellular biochemistry》2019,120(12):19422-19431
Osteoporosis (OP), a common metabolic bone disease, is accompanied by reduced bone mass, bone mineral density (BMD), as well as microstructure destruction of bone. Previously, microRNA-196a-2 (miR-196a-2) and miR-196a-3p were reported for its involvement in BMD. Herein, this study set out to identify the functional relevance of miR-196a in osteogenic differentiation in osteoporotic mice and explore the associated mechanism by establishing an OP mouse model. Guanine nucleotide binding protein, alpha stimulating (GNAS) was verified as a target gene of miR-196a, which was decreased in OP mice. Furthermore, the bone marrow stromal cells (BMSCs) were then extracted from OP mice and treated with miR-196 mimic/inhibitor or small interfering RNA against GNAS to investigate miR-196a interaction with GNAS and the Hedgehog signaling pathway. BMSCs in OP mice transfected with miR-196a mimic or si-GNAS displayed the elevated expression of Smo, ALP, Runx2, and OPN, as well as bone gla protein and tartrate-resistant acid phosphatase, elevated ALP vitality and bone formation ability as well as reduced expression of GNAS and PTCH. Taken conjointly, overexpression of miR-196a repressed GNAS expression by activating the Hedgehog signaling pathway, thus promoting osteogenic differentiation in mice with OP. 相似文献
20.
Induction of early pituitary progenitors is achieved through combined activities of signals from adjacent embryonic tissues. Previous studies have identified a requirement for oral ectoderm derived Sonic Hedgehog (Shh) in specification and/or proliferation of early pituitary progenitors, however how different Gli genes mediate Shh signaling to control pituitary progenitor development has not yet been determined. Here we show that Gli2, which encodes a major Gli activator, is required for proliferation of specific groups of pituitary progenitors but not for initial dorsoventral patterning. We further show that the action of Gli2 occurs prior to the closure of Rathke' pouch. Lastly, we show that Shh/Gli2 signaling controls the diencephalic expression of Bone morphogenetic protein 4 (Bmp4) and Fibroblast growth factor 8 (Fgf8), two genes that are known to play critical roles in patterning and growth of Rathke's pouch. Our results therefore suggest both cell-autonomous and non-cell-autonomous requirements for Gli2 in regulation of pituitary progenitor specification, proliferation and differentiation. 相似文献