首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A promising agent for use in prostate cancer therapy is the Hedgehog (Hh) signaling pathway inhibitor, cyclopamine. This compound, however, has the potential for causing serious side effects in non-tumor tissues. To minimize these bystander toxicities, we have designed and synthesized two novel peptide-cyclopamine conjugates as prostate-specific antigen (PSA)-activated prodrugs for use against prostate cancer. These prodrugs were composed of cyclopamine coupled to one of two peptides (either HSSKLQ or SSKYQ) that can be selectively cleaved by PSA, converting the mature prodrug into an active Hedgehog inhibitor within the malignant cells. Of the two prodrugs, Mu-SSKYQ-Cyclopamine was rapidly hydrolyzed, with a half-life of 3.2h, upon incubation with the PSA enzyme. Thus, modulating cyclopamine at the secondary amine with PSA-cleavable peptides is a promising strategy for developing prodrugs to target prostate cancer.  相似文献   

2.
Four novel water-soluble peptide-paclitaxel conjugates were designed and synthesized as prostate-specific antigen (PSA)-activated prodrugs for prostate cancer therapy. These prodrugs were composed of a peptide, HSSKLQ or SSKYQ, each of which is selectively cleavable by PSA; a self-immolative linker, either para-aminobenzyl alcohol (PABS) or ethylene diamine (EDA); and the parent drug, paclitaxel. Introduction of a PABA or EDA linker between the peptide and paclitaxel in prodrugs 2-5 resulted in products with an increased rate of hydrolysis by PSA. The stability of prodrugs 2 and 3, with the PABA linker, was poor in the serum-containing medium because of the weak carbonate bond between the PABA and paclitaxel; however, this disadvantage was overcome by introducing a carbamate bond using an EDA linker in prodrugs 4 and 5. Thus, the incorporation of an EDA linker increased both the stability and PSA-mediated activation of these prodrugs. The cytotoxicity of each prodrug, as compared to paclitaxel, was determined against a variety of cell lines, including the PSA-secreting CWR22Rv1 prostate cancer cell line. The EDA-derived prodrug of paclitaxel 5 was stable and capable of being efficiently converted to an active drug that killed cells specifically in the presence of PSA, suggesting that this prodrug and similarly designed PSA-cleavable prodrugs may have potential as prostate cancer-specific therapeutic agents.  相似文献   

3.
A prodrug conjugate designed to undergo activation by enzymatic prostate specific antigen has been synthesized. The prodrug system undergoes activation with PSA or alpha-chymotrypsin, and shows selective cytotoxicity in a PSA secreting cell line.  相似文献   

4.
Several attempts have been made over the past decade to explore the concept of prodrug strategies that exploit PSA as a molecular target for the release of anticancer drugs in prostate tumors using various prostate specific antigen (PSA)-cleavable peptide linkers, but the desired antitumor and antimetastatic efficacy has not yet been fully achieved. We set out to look for new PSA-cleavable peptide substrates that could be cleaved more rapidly and efficiently than the previously used peptides. To look for the most susceptible PSA-cleavable peptide substrates, we used the so-called spot technology. With the following general formula, we designed 25 different fluorogenic heptapeptides; Cellulose-P5-P4-P3-P2-P1-P1′-P2’ (Fluorophore). The increase of the fluorescence in the supernatant of the reaction mixture was monitored using a 96-well fluorometric plate reader with excitation of λex 485 nm and λem 535 nm. Three sequences showed a high fluorogenic liberation after incubation with PSA, i.e., Arg-Arg-Leu-His-Tyr-Ser-Leu (7), Arg-Arg-Leu-Asn-Tyr-Ser-Leu (8) and Arg-Ser-Ser-Tyr-Arg-Ser-Leu (23). Future incorporation of these optimized substrates in the PSA-cleavable prodrug formulations could further optimize the cleavage pattern and so the release characteristics of these prodrugs to rapidly and efficiently liberate the free cytotoxic agents inside the tumor tissues.  相似文献   

5.
 Human prostate-specific antigen (PSA) has a highly restricted tissue distribution. Its expression is essentially limited to the epithelial cells of the prostate gland. Moreover, it continues to be synthesized by prostate carcinoma cells. This makes PSA an attractive candidate for use as a target antigen in the immunotherapy of prostate cancer. As a first step in characterizing the specific immune response to PSA and its potential use as a tumor-rejection antigen, we have incorporated PSA into a well-established mouse tumor model. Line 1, a mouse lung carcinoma, and P815, a mouse mastocytoma, have been transfected with the cDNA for human PSA. Immunization with a PSA-expressing tumor cell line demonstrated a memory response to PSA which protected against subsequent challenge with PSA-expressing, but not wild-type, tumors. Tumor-infiltrating lymphocytes could be isolated from PSA-expressing tumors grown in naive hosts and were specifically cytotoxic against a syngeneic cell line that expressed PSA. Immunization with tumor cells resulted in the generation of primary and memory cytotoxic T lymphocytes (CTL) specific for PSA. The isolation of PSA-specific CTL clones from immunized animals further demonstrated that PSA can serve as a target antigen for antitumor CTL. The immunogenicity studies carried out in this mouse tumor model provide a rationale for the design of methods to elicit PSA-specific cell-mediated immunity in humans. Received: 4 April 1996 / Accepted: 31 May 1996  相似文献   

6.
Antibody-directed enzyme prodrug therapy (ADEPT) separates the cytotoxic function from the targeting function (5). An antibody-carboxypeptidase G2 (CPG2) enzyme is delivered prior to the nontoxic prodrug, CMDA, which is converted to a cytotoxic drug by the action of the localized conjugate at the tumor site. An indirect in vitro assay was developed to detect the presence of functional CPG2 in the plasma of patients in an ADEPT clinical trial. Compounds in the plasma of patients were characterized using liquid chromatography-mass spectrometry. Plasma at three different time points (prior to treatment, post-antibody-enzyme conjugate, and post-galactosylated anti-enzyme antibody clearing agent) was added to the CMDA prodrug and analyzed. Conversion of the CMDA prodrug to its active drug indicates that CPG2-conjugate remains in the plasma. This technique will provide essential data for the timing of prodrug administration in ADEPT.  相似文献   

7.
Prostate-specific antigen (PSA) is widely used as a serum marker for the diagnosis of prostate cancer. To evaluate two anti-free PSA monoclonal antibodies (mAbs) as potential tools in new generations of more relevant PSA assays, we report here their properties towards the recognition of specific forms of free PSA in seminal fluids, LNCaP supernatants, 'non-binding' PSA and sera from cancer patients. PSA from these different origins was immunopurified by the two anti-free PSA mAbs (5D3D11 and 6C8D8) as well as by an anti-total PSA mAb. The composition of the different immunopurified PSA fractions was analysed and their respective enzymatic activities were determined. In seminal fluid, enzymatically active PSA was equally purified with the three mAbs. In LNCaP supernatants and human sera, 5D3D11 immunopurified active PSA mainly, whereas 6C8D8 immunopurified PSA with residual activity. In sera of prostate cancer patients, we identified the presence of a mature inactive PSA form which can be activated into active PSA by use of high saline concentration or capture by an anti-total PSA mAb capable of enhancing PSA activity. According to PSA models built by comparative modelling with the crystal structure of horse prostate kallikrein described previously, we assume that active and activable PSA could correspond to mature intact PSA with open and closed conformations of the kallikrein loop. The specificity of 5D3D11 was restricted to both active and activable PSA, whereas 6C8D8 recognized all free PSA including intact PSA, proforms and internally cleaved PSA.  相似文献   

8.
A specific marker for early prostate cancer would fill an important void. In initial evaluations of the prostate cancer antigen 3 (PCA3) gene vis-à-vis serum prostate-specific antigen (PSA) levels, the gene offers great promise. At the cellular level, PCA3 specificity for cancer is nearly perfect because of the gross overexpression of the gene by cancer cells. As a clinical test for early prostate cancer, heightened specificity is also seen in urine containing prostate cells from men with the disease. PCA3 gene testing holds valuable potential in PSA quandary situations: (1) men with elevated PSA levels but no cancer on initial biopsy; (2) men found to have cancer despite normal levels of PSA; (3) men with PSA elevations associated with varying degrees of prostatitis; and (4) men undergoing active surveillance for presumed microfocal disease.  相似文献   

9.
Prostate-specific antigen (PSA) is a widely used marker for prostate cancer. The utility of PSA tests is limited by their inability to differentiate prostate cancer from non-malignant conditions such as benign prostatic hyperplasia and prostatitis. In circulation, PSA occurs in various complexed and free forms, and specific determination of some of these can be used to improve the diagnostic accuracy of PSA tests. We have previously identified peptides that specifically bind to enzymatically active PSA and using such a peptide we have developed an immunopeptidometric assay for this form of PSA. However, the sensitivity of that assay is too low to measure active PSA at clinically important levels. Recently a novel sensitive immunoassay for analysis of proteins, termed the proximity ligation assay, has been established. Here we describe a sensitive implementation of the proximity ligation assay, which utilizes a PSA-binding peptide and antibody as probes to detect active PSA. The assay has a sensitivity of 0.07 microg/l, which is approximately ten-fold lower than that of our previous assay. It does not cross-react with inactive proPSA or the highly similar kallikrein hK2. Our results show that a highly sensitive immunopeptidometric assay can be developed using proximity ligation. This principle should facilitate establishment of specific assays for active forms of other proteases.  相似文献   

10.
11.
Human prostate-specific antigen (PSA), a 33 kDa serine protease with comprehensive homology to glandular kallikrein, is secreted from prostatic tissue into the seminal fluid and enters into the circulation. The level of PSA increases in the serum of patients with prostatic cancer and hence is widely employed as a marker of the disease status. In particular, an enzymatically active PSA that is a form cleaved at the N-terminal seven-amino-acids prosequence, APLILSR, of proPSA may play an important roll in the progression of prostate cancer. Thus, the presence of the active form would selectively discriminate the cancer from benign prostatic hyperplasia. In this study, we developed a convenient purification method for the acquisition of active PSA and proPSA. Recombinant proPSA and active PSA were expressed directly in Escherichia coli, easily and efficiently isolated from inclusion bodies, refolded, and purified. Moreover, the enzymatic activity of the recombinant active PSA was confirmed as serine protease using chromogenic chymotrypsin substrate. This purified active PSA could be further applied to scrutinize the biological or conformational characteristics of the protein and to develop specific diagnostic and/or therapeutic agents against prostate cancer.  相似文献   

12.
A simple technique for synchronization of human lymphocyte cultures with fluorodeoxyuridine (FudR) is presented. The S-phase block induced by the FudR is released by simultaneous exposure to 5-bromodeoxyuridine (BrdU) and Hoechst 33258 or by thymidine and Hoechst 33258. This method provides a high mitotic index with high percentage of prometaphase chromosomes. This simple method is highly advantageous and easy to utilize in clinical cytogenetics.  相似文献   

13.
Due to their capacity to induce primary immune responses, dendritic cells (DC) are attractive vectors for immunotherapy of cancer. Yet the targeting of tumor Ags to DC remains a challenge. Here we show that immature human monocyte-derived DC capture various killed tumor cells, including Jurkat T cell lymphoma, malignant melanoma, and prostate carcinoma. DC loaded with killed tumor cells induce MHC class I- and class II-restricted proliferation of autologous CD8+ and CD4+ T cells, demonstrating cross-presentation of tumor cell-derived Ags. Furthermore, tumor-loaded DC elicit expansion of CTL with cytotoxic activity against the tumor cells used for immunization. CTL elicited by DC loaded with the PC3 prostate carcinoma cell bodies kill another prostate carcinoma cell line, DU145, suggesting recognition of shared Ags. Finally, CTL elicited by DC loaded with killed LNCap prostate carcinoma cells, which express prostate specific Ag (PSA), are able to kill PSA peptide-pulsed T2 cells. This demonstrates that induced CTL activity is not only due to alloantigens, and that alloantigens do not prevent the activation of T cells specific for tumor-associated Ags. This approach opens the possibility of using allogeneic tumor cells as a source of tumor Ag for antitumor therapies.  相似文献   

14.
A glucuronide-based prodrug of etoposide has been synthesized for a Prodrug Mono Therapy strategy. The aim is to selectively liberate the active compound by beta-D-glucuronidase already present in necrotic tumours. Outside from these sites, this enzyme is known to be localised inside the lysosomes. The three components of this prodrug are the glucuronic acid (substrate of the enzyme), the spacer (for a faster cleavage), and the active etoposide. In vitro, the prodrug was shown to be less cytotoxic and more water-soluble than etoposide itself. Finally, in the presence of the beta-D-glucuronidase, cleavage of the prodrug with complete release of the drug has been observed.  相似文献   

15.
Prostate-specific antigen (PSA) is an important marker for the diagnosis and management of prostate cancer. Free PSA has been shown to be more extensively cleaved in sera from benign prostatic hyperplasia patients than in sera from prostate cancer patients. Moreover, the presence of enzymatically activatable PSA was characterized previously in sera from patients with prostate cancer by the use of the specific anti-free PSA monoclonal antibody (mAb) 5D3D11. As an attempt to obtain ligands for the specific recognition of different PSA forms including active PSA, phage-displayed linear and cyclic peptide libraries were screened with PSA coated directly into microplate wells or presented by two different anti-total PSA mAbs. Four different phage clones were selected for their ability to recognize PSA and the inserted peptides were produced as synthetic peptides. These peptides were found to capture and to detect specifically free PSA, even in complex biological media such as sera or tumour cell culture supernatants. Alanine scanning of peptide sequences showed the involvement of aromatic and hydrophobic residues in the interaction of the peptides with PSA whereas Spotscan analysis of overlapping peptides covering the PSA sequence identified a peptide binding to the kallikrein loop at residues 82-87, suggesting that the peptides could recognize a non-clipped form of PSA. Moreover, the PSA-specific peptides enhance the enzymatic activity of PSA immobilized into microplate wells whereas the capture of PSA by the peptides inhibited totally its enzymatic activity while the peptide binding to PSA had no effect in solution. These PSA-specific peptides could be potential tools for the recognition of PSA forms more specifically associated to prostate cancer.  相似文献   

16.

Background

Enzyme prodrug therapy shows promise for the treatment of solid tumors, but current approaches lack effective/safe delivery strategies. To address this, we previously developed three enzyme-containing fusion proteins targeted via annexin V to phosphatidylserine exposed on the tumor vasculature and tumor cells, using the enzymes L-methioninase, purine nucleoside phosphorylase, or cytosine deaminase. In enzyme prodrug therapy, the fusion protein is allowed to bind to the tumor before a nontoxic drug precursor, a prodrug, is introduced. Upon interaction of the prodrug with the bound enzyme, an anticancer compound is formed, but only in the direct vicinity of the tumor, thereby mitigating the risk of side effects while creating high intratumoral drug concentrations. The applicability of these enzyme prodrug systems to treating prostate cancer has remained unexplored. Additionally, target availability may increase with the addition of low dose docetaxel treatment to the enzyme prodrug treatment, but this effect has not been previously investigated. To this end, we examined the binding strength and the cytotoxic efficacy (with and without docetaxel treatment) of these enzyme prodrug systems on the human prostate cancer cell line PC-3.

Results

All three fusion proteins exhibited strong binding; dissociation constants were 0.572 nM for L-methioninase-annexin V (MT-AV), 0.406 nM for purine nucleoside phosphorylase-annexin V (PNP-AV), and 0.061 nM for cytosine deaminase-annexin V (CD-AV). MT-AV produced up to 99% cell death (p < 0.001) with limited cytotoxicity of the prodrug alone. PNP-AV with docetaxel created up to 78% cell death (p < 0.001) with no cytotoxicity of the prodrug alone. CD-AV with docetaxel displayed up to 60% cell death (p < 0.001) with no cytotoxicity of the prodrug alone. Docetaxel treatment created significant increases in cytotoxicity for PNP-AV and CD-AV.

Conclusions

Strong binding of fusion proteins to the prostate cancer cells and effective cell killing suggest that the enzyme prodrug systems with MT-AV and PNP-AV may be effective treatment options. Additionally, low-dose docetaxel treatment was found to increase the cytotoxic effect of the annexin V-targeted therapeutics for the PNP-AV and CD-AV systems.  相似文献   

17.
Prostate-specific antigen (PSA) is currently the most frequently used marker for the identification of normal and pathologically altered prostatic tissue in the male and female. Immunohistochemically PSA is expressed in the highly specialized apically-superficial layer of female and male secretory cells of the prostate gland, and as well as in uroepithelial cells at other sites of the urogenital tract of both sexes. Unique active moieties of cells of the female and the male prostate gland and in other parts of the urogenital tract are indicative of secretory and protective function of specialized prostatic and uroepithelial cells with strong immunological properties given by the presence of PSA. In clinical practice, PSA is a valuable marker for the diagnosis and monitoring of diseases of the male and the female prostate, especially carcinoma. In the female, similarly as in the male, the prostate (Skene's gland) is the principal source of PSA. The value of PSA in women increases in the pathological female prostate, e.g., carcinoma. Nevertheless, the total amount of PSA in the female is the sum of normal or pathological female prostate and non-prostatic female tissues production, e.g., of diseased female breast tissue. The expression of an antigen specific for the male prostate, i.e., PSA in female Skene's glands and ducts, and structural and functional parameters and diseases similar to that of the male prostate, have provided convincing evidence of the existence of a prostate in women and definitive preference of the term "prostate" over that of Skene's glands and ducts. The use of the term Skene's glands incorrectly implies that some other structure rather than prostate is involved, promoting the vestigial position of this female organ.  相似文献   

18.
Varner JD 《Systems biology》2005,152(4):291-302
Antibody-directed enzyme prodrug therapy (ADEPT) can generate highly localised concentrations of cytotoxic agents directly in a tumour, thereby reducing the collateral toxicity associated with normal tissue exposure. ADEPT is a two-component approach. First, a non-toxic antibody-enzyme fusion protein is localised in the tumour matrix by binding a specific antigen expressed only on the surface of a cancer cell. Once the fusion protein is bound, an inert small molecule prodrug is administered which is the substrate for the enzyme bound to the tumour surface. When the prodrug comes into contact with the bound enzyme, an active cytotoxic agent is generated. A multiple length-scale model of ADEPT therapy in solid tumours is presented. A four-compartment pharmacokinetic (PK) model is formulated where the tumour is comprised of interstitial and cell-surface subcompartments. The macroscopic PK model which describes the biodistribution of antibody-enzyme conjugate, prodrug and active drug at the largest length scale is coupled to a reaction-diffusion tumour model. The models are qualitatively validated against current literature and experimental understanding. The relationship between tumour localisation and the affinity of the antibody-enzyme conjugate for its surface antigen is explored by simulation. The influence of pharmacokinetic and biophysical parameters such as renal elimination rate and permeability of the tumour vasculature upon tumour uptake and retention of the fusion protein are also explored. Lastly, a technique for establishing an optimal prodrug dosing schedule is formulated and initial simulation results are presented.  相似文献   

19.
Prakash S  Robbins PW 《Glycobiology》2000,10(2):173-176
Measurement of serum levels of the prostate specific antigen (PSA) is now widely used for the diagnosis of prostate cancer and benign prostate hyperplasia. This serum marker is of value since it is derived only from the tissue of interest, but increased levels of PSA in serum do not allow a completely clear cut diagnosis of benign versus malignant changes. Since PSA is a glycoprotein with one asparagine linked oligosaccharide, and since malignant transformation often leads to an increased branching of such oligosaccharides, we initially studied the asparagine linked structures on PSA made by a cell line derived from malignant metastatic prostate tissue. We observed that unlike normal PSA, which bears only biantennary oligosaccharides, PSA from the metastatic cell line has a mixture of biantennary and triantennary oligosaccharides. Further experiments will reveal carbohydrate differences derived from the PSA from sera or, prostate tissue of normal versus prostate cancer patients, and of the utility of such carbo-hydrate differences as a possible diagnostic marker for prostate cancer.  相似文献   

20.
PSA启动子结构和表达调控研究进展   总被引:3,自引:0,他引:3  
王健  周建光  黄翠芬 《遗传》2004,26(5):739-744
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号