首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current understanding of the tolerance of the frontal bone to blunt impact is limited. Previous studies have utilized vastly different methods, which limits the use of statistical analyses to determine the tolerance of the frontal bone. The purpose of this study is to determine the tolerance of the frontal bone to blunt impact. Acoustic emission sensors were used to provide a noncensored measure of the frontal bone tolerance and were essential due to the increase in impactor force after fracture onset. In this study, risk functions for fracture were developed using parametric and nonparametric techniques. The results of the statistical analyses suggest that a 50% risk of frontal bone fracture occurs at a force between 1885 N and 2405 N. Subjects that were found to have a frontal sinus present within the impacted region had a significantly higher risk of sustaining a fracture. There was no association between subject age and fracture force. The results of the current study suggest that utilizing peak force as an estimate of fracture tolerance will overestimate the force necessary to create a frontal bone fracture.  相似文献   

2.
Less-lethal ballistic projectiles are used by police personnel to temporarily incapacitate suspects. While the frequency of these impacts to the head is low, they account for more serious injuries than impacts to any other body region. As a result, there is an urgent need to assess the tolerance of the head to such impacts. The focus of this study was to investigate the tolerance of the temporo-parietal skull to blunt ballistic impact and establish injury criteria for risk assessment. Seven unembalmed isolated cadaver heads were subjected to fourteen impacts. Specimens were instrumented with a nine-accelerometer array as well as strain gages surrounding the impact site. Impacts were performed with a 38 mm instrumented projectile at velocities ranging from 18 to 37 m/s. CT images and autopsies were performed to document resulting fractures. Peak fracture force for the seven resulting fractures was 5633±2095 N. Peak deformation for fracture-producing impacts was 7.8±3.2 mm. The blunt criterion (BC), peak force and principal strain were determined to be the best predictors of depressed comminuted fractures. Temporo-parietal tolerance levels were consistent with previous studies. An initial force tolerance level of 2346 N is established for the temporo-parietal region for blunt ballistic impact with a 38 mm diameter impactor.  相似文献   

3.
Skull fracture is a frequently observed type of severe head injury. Historically, a variety of impact test set-ups and techniques have been used for investigating skull fracture. The most frequently used are the free-fall technique, the guided fall or drop tower set-up and the piston-driven impactor set-up. This document proposes a new type of set-up for cadaver head impact testing which combines the strengths of the most frequently used techniques and devices. The set-up consists of two pendulums, which allow for a 1 degree of freedom rotational motion. The first pendulum is the impactor and is used to strike the blow. The head is attached to the second pendulum using a polyester resin. Local skull deformation and impact force are measured with a sample frequency of 65 kHz. From these data, absorbed energy until skull fracture is calculated. A set-up evaluation consisting of 14 frontal skull and head impact tests shows an accurate measurement of both force and local skull deformation until fracture of the skull. Simplified mechanical models are used to analyse the different impacting techniques from literature as well as the new proposed set-up. It is concluded that the proposed test set-up is able to accurately calculate the energy absorbed by the skull until fracture with an uncertainty interval of 10%. Second, it is concluded that skull fracture caused by blunt impact occurs before any significant motion of the head. The two-pendulum set-up is the first head impact device to allow a well-controlled measurement environment without altering the skull stress distribution.  相似文献   

4.
Sideways falls onto the hip are a major cause of femoral fractures in the elderly. Martial arts (MA) fall techniques decrease hip impact forces in sideways falls. The femoral fracture risk, however, also depends on the femoral loading configuration (direction and point of application of the force). The purpose of this study was to determine the effect of fall techniques, landing surface and fall height on the impact force and the loading configuration in sideways falls. Twelve experienced judokas performed sideways MA and Block ('natural') falls on a force plate, both with and without a judo mat on top. Kinematic and force data were analysed to determine the hip impact force and the loading configuration. In falls from a kneeling position, the MA technique reduced the impact force by 27%, but did not change the loading configuration. The use of the mat did not change the loading configuration. Falling from a standing changed the force direction. In all conditions, the point of application was distal and posterior to the greater trochanter, but it was less distal and more posterior in falls from standing than from kneeling position. The present decrease in hip impact force with an unchanged loading configuration indicates the potential protective effect of the MA technique on the femoral fracture risk. The change in loading configuration with an increased fall height warrant further studies to examine the effect of MA techniques on fall severity under more natural fall circumstances.  相似文献   

5.
An evaluation of the location of the infraorbital foramina in a transverse plane was undertaken by direct skull and radiographic measurements in unrepaired cleft palate and age- and sex-matched noncleft individuals. Physioprints were obtained on six dry skulls with left-sided clefts of the primary and secondary palates and on six age- and sex-matched noncleft palate skulls. The left infraorbital foramen was found to be significantly superior in a transverse plane to the right infraorbital foramen in the cleft palate skulls. No significant differences in transverse location of the infraorbital foramina were found in the cleft skull group based on differences in sex or age. Posterior-anterior cephalographs were obtained on 15 left unilateral cleft palate individuals and on age- and sex-matched noncleft palate individuals. The location of the infraorbital foramina in a transverse plane in the posterior-anterior cephalographs was found to be too variable to permit the use of parametric statistical tests. When the data on location of the infraorbital foramina were analyzed by a nonparametric statistical test it was found that the left infraorbital foramen was significantly superior to the right infraorbital foramen in the cleft palate individuals. The more superiorly placed infraorbital foramen on the cleft side was suggestive of a vertical deficiency of the maxilla on the cleft side.  相似文献   

6.
The controlled cortical impact (CCI) model is widely used in many laboratories to study traumatic brain injury (TBI). Although external impact parameters during CCI tests could be clearly defined, little is known about the internal tissue-level mechanical responses of the rat brain. Furthermore, the external impact parameters tend to vary considerably among different labs making the comparison of research findings difficult if not impossible. In this study, a design of computer experiments was performed with typical external impact parameters commonly found in the literature. An anatomically detailed finite element (FE) rat brain model was used to simulate the CCI experiments to correlate external mechanical parameters (impact depth, impact velocity, impactor shape, impactor size, and craniotomy pattern) with rat brain internal responses, as predicted by the FE model. Systematic analysis of the results revealed that impact depth was the leading factor affecting the predicted brain internal responses. Interestingly, impactor shape ranked as the second most important factor, surpassing impactor diameter and velocity which were commonly reported in the literature as indicators of injury severity along with impact depth. The differences in whole brain response due to a unilateral or a bilateral craniotomy were small, but those of regional intracranial tissue stretches were large. The interaction effects of any two external parameters were not significant. This study demonstrates the potential of using numerical FE modeling to engineer better experimental TBI models in the future.  相似文献   

7.
Fall techniques that reduce fall severity may decrease the risk of hip fractures. A fundamental variable for fall severity is impact force, but impact velocity is also used. The purpose of the study was to determine whether impact velocity is valid to determine differences in fall severity between different techniques. Five young adults with martial arts (MA) experience performed sideways falls from kneeling height using three techniques: Block with arm (Block) and MA techniques with and without use of the arm to break the fall. In addition, one subject also performed MA falls from standing height. Linear regression analysis showed a moderate relation between hip impact velocity and force, which was depended on technique. In falls with comparable impact velocities, forces in MA falls were lower than forces in Block falls. Hence, differences in impact force could not be predicted by velocity. In conclusion, hip impact velocity may be useful to make an approximate prediction of impact force within fall techniques. However, to determine differences between techniques it was not always a valid predictor. When direct impact force measurements are not possible, methods combining impact velocity with energy estimates before and after impact might be more valid.  相似文献   

8.
Axial loading of the foot/ankle complex is an important injury mechanism in vehicular trauma that is responsible for severe injuries such as calcaneal and tibial pilon fractures. Axial loading may be applied to the leg externally, by the toepan and/or pedals, as well as internally, by active muscle tension applied through the Achilles tendon during pre-impact bracing. The objectives of this study were to investigate the effect of Achilles tension on fracture mode and to empirically model the axial loading tolerance of the foot/ankle complex. Blunt axial impact tests were performed on forty-three (43) isolated lower extremities with and without experimentally simulated Achilles tension. The primary fracture mode was calcaneal fracture in both groups. However, fracture initiated at the distal tibia more frequently with the addition of Achilles tension (p < 0.05). Acoustic sensors mounted to the bone demonstrated that fracture initiated at the time of peak local axial force. A survival analysis was performed on the injury data set using a Weibull regression model with specimen age, gender, body mass, and peak Achilles tension as predictor variables (R2 = 0.90). A closed-form survivor function was developed to predict the risk of fracture to the foot/ankle complex in terms of axial tibial force. The axial tibial force associated with a 50% risk of injury ranged from 3.7 kN for a 65 year-old 5th percentile female to 8.3 kN for a 45 year-old 50th percentile male, assuming no Achilles tension. The survivor function presented here may be used to estimate the risk of foot/ankle fracture that a blunt axial impact would pose to a human based on the peak tibial axial force measured by an anthropomorphic test device.  相似文献   

9.
Falls to the side and those with impact on the hip are risky for hip fractures in the elderly. A previous study has indicated that martial arts (MA) fall techniques can reduce hip impact force, but the underlying mechanism is unknown. Furthermore, the high impact forces at the hand used to break the fall have raised concerns because of the risk for wrist fractures. The purpose of the study was to get insight into the role of hand impact, impact velocity, and trunk orientation in the reduction of hip impact force in MA techniques. Six experienced judokas performed sideways falls from kneeling height using three fall techniques: block with arm technique (control), MA technique with use of the arm to break the fall (MA-a), and MA technique without use of the arm (MA-na). The results showed that the MA-a and MA-na technique reduced the impact force by 27.5% and 30%, respectively. Impact velocity was significantly reduced in the MA falls. Trunk orientation was significantly less vertical in the MA-a falls. No significant differences were found between the MA techniques. It was concluded that the reduction in hip impact force was associated with a lower impact velocity and less vertical trunk orientation. Rolling after impact, which is characteristic for MA falls, is likely to contribute to the reduction of impact forces, as well. Using the arm to break the fall was not essential for the MA technique to reduce hip impact force. These findings provided support for the incorporation of MA fall techniques in fall prevention programs for elderly.  相似文献   

10.
Pelvic fractures resulting from automotive side impacts are associated with high mortality and morbidity, as well as substantial economic costs. Previous experimental studies have produced varying results regarding the tolerance of the pelvis to lateral force and compression. While bone mineral density (BMD) has been shown to correlate with fracture loads in the proximal femur, no such correlation has been established for the pelvis. Presently, we studied the relationships between total hip BMD and impact response parameters in lateral impacts of twelve isolated human pelves. The results indicated that total hip BMD significantly correlated with fracture force, Fmax, and maximum ring compression, Cmax, of the fractured pelves. These findings are evidence that BMD may be useful in assessing the risk of pelvic fracture in automotive side impacts. Poor correlation was observed between total hip BMD and maximum viscous response, (VC)max, energy at fracture, Epeak, and time to fracture, tpeak. Mean Fmax and calculated tolerances for Cmax and (VC)max were lower than those established in previous studies using full cadavers, likely a result of our removal of soft tissues from the pelves prior to impact.  相似文献   

11.
There are over 1.9 million eye injuries per year in the United States, with blunt impacts the cause of approximately one-half of all civilian eye injuries. No previous experimental studies have investigated the effects of the extraocular muscles on the impact response of the eye. A spring-powered blunt impactor was used to determine the effects that the extraocular muscles have on the force–deflection and injury response of the eye to blunt trauma. A total of 10 dynamic impact tests were performed at 8.2±0.1 m/s on five human cadaver heads. With the extraocular muscles left intact, the average peak force was found to be 271±51 N at 7.5±0.9 mm posterior translation; with the muscles transected, the average peak force was 268±26 N at 7.6±1.3 mm of posterior translation. From the data available from this study, the peak impact force and overall amount of translation during the impact are not affected by the extraocular muscles. Additionally, from the data presented in this study, the eyes with the extraocular muscles left intact do not rupture with a different injury pattern or display an increased risk for rupture than the eyes with the extraocular muscles transected. Therefore, it is believed that the effect of the extraocular muscles is not sufficient to drastically alter the response of the eye under dynamic impact. This information is useful to characterize the boundary conditions that dictate the eye response from blunt impact and can be used to define the biofidelity requirements for the impact response of synthetic eyes.  相似文献   

12.
Oscar M Ramirez 《Plastic and reconstructive surgery》2002,109(1):329-40; discussion 341-9
Standard face-lift techniques are excellent for the treatment of the jawline and neck. Treatment of the area between the lower eyelid and the corner of the mouth required the development of techniques in the intermediate lamella of the face. Alternative techniques of subperiosteal dissection by means of lower eyelid incisions were described with good aesthetic results but at the expense of increased morbidity and complications. All these techniques were also two-dimensional manipulations of the soft tissues of the face. The author presents a different approach that he believes is close to the ideal in terms of safety, morbidity, and complications.Although midface rejuvenation may be performed alone, it is more commonly done as a component of total facial rejuvenation. The midface is approached by means of a combination of a temporal slit incision and an upper oral sulcus incision; no eyelid access is used. Fifty percent of the midface dissection is performed under direct visualization, and 50 percent is performed under endoscopic control. Dissection of the temporal area is done under the temporoparietal fascia down to the zygomatic arch. The anterior two-thirds of the zygomatic arch periosteum is elevated along with a few millimeters of the intermediate temporal fascia and the fascia of the masseter muscle. The subperiosteal dissection of the zygoma and maxilla is completed with the medial extension of the dissection just medial to the infraorbital nerve. The orbital fat pads are released by means of intraoral route, and the lateral and middle fat pads are advanced over the orbital rim and fixed to the masseter tendon and the periosteum of the maxillary shelf at the intraoral incision. Three suspension points are typically used on the midface, each one with a different action. All are anchored to the temporal fascia proper. The vascularized Bichat's fat pad is mobilized and fixed with 4-0 polydioxanone sutures. This provides a volumetric cheek augmentation and improvement of the jowl. The inferior malar periosteum and fascia is used for malar imbrication with 4-0 polydioxanone sutures. This provides an anterior projection of the cheek and elevates the corner of the mouth. The suborbicularis oculi fat is used for en bloc vertical suspension of the cheek. This also improves the infraorbital V deformity.This technique has been used in close to 200 patients over the last 5 years. The complications have been minimal: two cases of temporary paresis of the levator of the upper lip, one case of paresis of the orbicularis oris (unilateral), one case of buccinator muscle dysfunction, and two moderate infections that were treated with simple drainage. The degree of facial edema has been minimal compared with the open or the transblepharoplasty approach. Typically, patients can return to work 2 weeks after surgery.The three-dimensional endoscopic midface enhancement provides a technique of midface remodeling that provides the missing dimension (volume) to the rejuvenation of the midface. This can be done with a minimal rate of complications, and the aesthetic results surpass by far the results of other midface techniques previously described by the author.  相似文献   

13.
Kidneys are third most injured organs in abdominal trauma after liver and spleen; this study therefore is an attempt to understand the behaviour of kidneys under blunt trauma. Dynamic impact tests were performed on 20 fresh porcine kidneys to study the injury propagation in the organ, and the acceleration of the impactor was measured. A kidney model was developed with structural details like capsule and cortex. The kidney cortex was modelled with solid hexahedral elements and the capsule was modelled with quadratic shell elements. The material models for the capsule and cortex were used from the experimental data reported in our previous study. The developed model was calibrated using previous and current experimental results to reproduce the injuries of the organ in terms of acceleration of the impactor, and the injuries sustained by the organ during the experiments. The developed kidney model is observed to be robust and can be integrated with the available human body finite element models to simulate accidents and to predict or simulate injuries.  相似文献   

14.
15.
Traumatic brain injury (TBI), induced by impact of an object with the head, is a major health problem worldwide. Rats are a well-established animal analogue for study of TBI and the weight-drop impact-acceleration (WDIA) method is a well-established model in rats for creating diffuse TBI, the most common form of TBI seen in humans. However, little is known of the biomechanics of the WDIA method and, to address this, we have developed a four-degrees-of-freedom multi-body mass-spring-damper model for the WDIA test in rats. An analytical expression of the maximum skull acceleration, one of the important head injury predictor, was derived and it shows that the maximum skull acceleration is proportional to the impact velocity but independent of the impactor mass. Furthermore, a dimensional analysis disclosed that the maximum force on the brain and maximum relative displacement between brain and skull are also linearly proportional to impact velocity. Additionally, the effects of the impactor mass were examined through a parametric study from the developed multi-body dynamics model. It was found that increasing impactor mass increased these two brain injury predictors.  相似文献   

16.
The force applied to the proximal femur during a fall, and thus hip fracture risk, is dependent on the effective stiffness of the body during impact. Accurate estimates of pelvis stiffness are required to predict fracture risk in a fall. However, the dynamic force–deflection properties of the human pelvis have never been measured in-vivo. Our objectives were to (1) measure the force–deflection properties of the pelvis during lateral impact to the hip, and (2) determine whether the accuracy of a mass-spring model of impact in predicting peak force depends on the characterization of non-linearities in stiffness. We used a sling and electromagnet to release the participant’s pelvis from heights up to 5 cm, simulating low-severity sideways falls. We measured applied loads with a force plate, and pelvis deformation with a motion capture system. In the 5 cm trials peak force averaged 1004 (SD 115) N and peak deflection averaged 26.3 (5.1) mm. We observed minimal non-linearities in pelvic force–deflection properties characterized by an 8% increase in the coefficient of determination for non-linear compared to linear regression equations fit to the data. Our model consistently overestimated peak force (by 49%) when using a non-linear stiffness equation, while a piece-wise non-linear fit (non-linear for low forces, linear for loads exceeding 300 N) predicted peak force to within 1% at our highest drop height. This study has important implications for mathematical and physical models of falls, including mechanical systems that assess the biomechanical effectiveness of protective devices aimed at reducing hip fracture risk.  相似文献   

17.
OBJECTIVES: To assess the ability of a biomechanical impact model to predict the likelihood of distal radius fracture in children using data gathered for a previous epidemiological case-control study of falls from playground equipment. METHODOLOGY: Factor of Risk (FR) values were generated for each of selected subjects from the case-control study using a biomechanical model. Logistic regression curves were fitted to examine the relationship between the FR values and the probability of radius fracture. RESULTS: Forty-five cases and thirty-one controls were selected. The logistic regression analyses showed a significant association between the probability of fracture and FR. CONCLUSIONS: The biomechanical model distinguished between children who fractured their distal radius and those who did not. The model can be used to test how risk factors, such as fall height and ground surface type, affect physical stresses transmitted through the arm and their relation to the fracture tolerance of the distal radius.  相似文献   

18.
Landing mats that can undergo a large amount of area deformation are now essential for the safe completion of landings in gymnastics. The objective of this study was to develop an analytical model of a landing mat that reproduces the key characteristics of the mat-ground force during impact with minimal simulation run time. A force plate and two high-speed video cameras were used to record the mat deformation during vertical drop testing of a 24-kg impactor. Four increasingly complex point mass spring-damper models, from a single mass spring-damper system, Model 1, to a 3-layer mass spring-damper system, Model 4, were constructed using Matlab to model the mat's behavior during impact. A fifth model composed of a 3-layer mass spring-damper system was developed using visual Nastran 4D. The results showed that Models 4 and 5 were able to match the loading phase of the impact with simulation times of less than 1 second for Model 4 and 28 seconds for Model 5. Both Models 4 and 5 successfully reproduced the key force-time characteristics of the mat-ground interface, such as peak forces, time of peak forces, interpeak minima and initial rates of loading, and could be incorporated into a gymnast-mat model.  相似文献   

19.
Wearable hip protectors (padded garments) represent a promising strategy to decrease impact force and hip fracture risk during falls, and a wide range of products are currently marketed. However, little is known about how design features of hip protectors influence biomechanical effectiveness. We used a mechanical test system (simulating sideways falls) to measure the attenuation in femoral neck force provided by 26 commercially available hip protectors at three impact velocities (2, 3, and 4m/s). We also used a materials testing machine to characterize the force-deflection properties of each device. Regression analyses were performed to determine which geometric (e.g., height, width, thickness, volume) and force-deflection properties were associated with force attenuation. At an impact velocity of 3m/s, the force attenuation provided by the various hip protectors ranged between 2.5% and 40%. Hip protectors with lower stiffness (measured at 500N) provided greater force attenuation at all velocities. Protectors that absorbed more energy demonstrated greater force attenuation at the higher impact velocities (3 and 4m/s conditions), while protectors that did not directly contact (but instead bridged) the skin overlying the greater trochanter attenuated more force at velocities of 2 and 3m/s. At these lower velocities, the force attenuation provided by protectors that contacted the skin overlying the greater trochanter increased with increasing pad width, thickness, and energy dissipation. By providing a comparison of the protective value of a large range of existing hip protectors, these results can help to guide consumers and researchers in selecting hip protectors, and in interpreting the results of previous clinical trials. Furthermore, by determining geometric and material parameters that influence biomechanical performance, our results should assist manufacturers in designing devices that offer improved performance and clinical effectiveness.  相似文献   

20.
A pilot study was performed to investigate whether the G?ttingen minipig is a suitable animal model for creating and closing oroantral communications (OACs) and to test whether these defects can be closed with a biodegradable polyurethane (PU) foam. In three adult minipigs, an OAC was created on both sides of the maxilla. The left side was closed by a standard surgical buccal flap procedure, the right side by applying a PU foam. The pigs were killed after two weeks, one month and three months, respectively. Postmortem and histological examination showed that an OAC was created in only one of six cases. In the remaining cases, the infraorbital canal was perforated instead of the floor of the maxillary sinus. It was concluded that the G?ttingen minipig is not a suitable animal model for OAC investigations. As a result, the closure of OACs with a biodegradable PU could not be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号