首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Processing of ribosomal precursor RNAs in Physarum polycephalum.   总被引:6,自引:5,他引:1  
  相似文献   

2.
3.
Cell division proteins FtsZ (FtsA, ZipA, ZapA), FtsE/X, FtsK, FtsQ, FtsL/B, FtsW, PBP3, FtsN and AmiC localize at mid cell in Escherichia coli in an interdependent order as listed. To investigate whether this reflects a time dependent maturation of the divisome, the average cell age at which FtsZ, FtsQ, FtsW, PBP3 and FtsN arrive at their destination was determined by immuno- and GFP-fluorescence microscopy of steady state grown cells at a variety of growth rates. Consistently, a time delay of 14-21 min, depending on the growth rate, between Z-ring formation and the mid cell recruitment of proteins down stream of FtsK was found. We suggest a two-step model for bacterial division in which the Z-ring is involved in the switch from cylindrical to polar peptidoglycan synthesis, whereas the much later localizing cell division proteins are responsible for the modification of the envelope shape into that of two new poles.  相似文献   

4.
Ferredoxin is a chloroplast stroma protein which is cytosolically synthesized as a precursor with an amino-terminal extension called the transit sequence that is needed for the post-translational uptake by the chloroplast. To characterize the secondary and tertiary structure elements, the full precursor, the holo- and apo- (without iron-sulfur cluster) forms of the mature protein, and the chemically synthesized transit peptide were obtained and analyzed separately. Circular dichroism, tryptophan fluorescence quenching, and protease accessibility experiments indicate that the precursor has a low content of defined secondary structure and resembles unfolded proteins; these properties are due to both the mature part and the transit sequence. This result provides an explanation for the lack of cytosolic factor requirement of this protein for import. In an import competition assay, the isolated transit peptide had an affinity for the chloroplasts comparable to the full precursor. Interestingly and of possible importance to the import process, the transit peptide has conformational flexibility as it adopts alternative secondary structures in different environments.  相似文献   

5.
A partial sequence of a cloned 3.2 Md BamHI fragment from tobacco chloroplast DNA revealed the occurrence of a putative gene for ribosomal protein. The putative gene is located on the left margin of the large single-copy region in the chloroplast DNA. The coding region contains 276 bp (92 codons). The amino acid sequence deduced from the DNA sequence shows 55% homology with that of E. coli S19 (91 amino acid residues).  相似文献   

6.
Summary The nif cistrons indentified by complementation analysis in the preceding paper (Dixon et al., 1977) were mapped with respect to hisD and to each other by Pl cotransduction and three-factor reciprocal crosses. The order obtained was hisD nifB nifA (nifL) nifF nifE nifK nifD nifH. Analysis of hisD2-nif cotransduction data by the Wu equation (Wu, 1966) suggested that the nif genes are divided into two clusters: a his-proximal cluster comprising nifBA(L)F and a his-distal group of nifEKDH.  相似文献   

7.
We have cloned a novel nuclear gene for a ribosomal protein of rice and Arabidopsis that is like the bacterial ribosomal protein S9. To determine the subcellular localization of the gene product, we fused the N-terminal region and green fluorescent protein and expressed it transiently in rice seedlings. Localized fluorescence was detectable only in chloroplasts, indicating that this nuclear gene encodes chloroplast ribosomal protein S9. The N-terminal region of rice ribosomal protein S9 was found to have a high sequence similarity to the transit peptide region of the rice chloroplast ribosomal protein L12, suggesting that these transit peptides have a common lineage.  相似文献   

8.
The apoprotein of yeast cytochrome c1 is made outside the mitochondria as a larger precursor which is then processed in at least two steps. In the first step, it is transported across both mitochondrial membranes and converted by a matrix-localized protease to an intermediate form whose molecular weight is between that of the precursor and the mature form. The intermediate form is bound to the outer face of the inner membrane. This first step requires an energized mitochondrial inner membrane, but no heme. In the second step, the intermediate form is converted to the mature cytochrome. This second step requires heme; it is blocked in a heme-deficient mutant or in wild type cells treated with an inhibitor of heme synthesis. Import of cytochrome c1 into mitochondria thus proceeds via two distinct heme-free precursors and at least two maturation steps, one of them dependent on heme.  相似文献   

9.
The replication initiator protein of bacteriophage f1 (gene II protein) binds to the phage origin and forms two complexes that are separable by polyacrylamide gel electrophoresis. Complex I is formed at low gene II protein concentrations, and shows protection from DNase I of about 25 base-pairs (from position +2 to +28 relative to the nicking site) at the center of the minimal origin sequence. Complex II is produced at higher concentrations of the protein, and has about 40 base-pairs (from -7 to +33) protected. On the basis of gel mobility, complex II appears to contain twice the amount of gene II protein as does complex I. The 40 base-pair sequence protected in complex II corresponds to the minimal origin sequence as determined by in-vivo analyses. The central 15 base-pair sequence (from +6 to +20) of the minimal origin consists of two repeats in inverted orientation. This sequence, when cloned into a plasmid, can form complex I, but not complex II. We call this 15 base-pair element the core binding sequence for gene II protein. Methylation interference with the formation of complex I by the wild-type origin indicates that gene II protein contacts six guanine residues located in a symmetric configuration within the core binding sequence. Formation of complex II requires, in addition to the core binding sequence, the adjacent ten base-pair sequence on the right containing a third homologous repeat. A methylation interference experiment performed on complex II indicates that gene II protein interacts homologously with the three repeats. In complex II, gene II protein protects from DNase I digestion not only ten base-pairs on the right but also ten base-pairs on the left of the sequence that is protected in complex I. Footprint analyses of various deletion mutants indicate that the left-most ten base-pairs are protected regardless of their sequence. The site of nicking by gene II protein is located within this region. A model is presented for the binding reaction involving both protein-DNA and protein-protein interactions.  相似文献   

10.
11.
Altered pigmentation is an easily scored and sensitive monitor of plastid function. We analyzed in detail a yellow colored transposon-tagged mutant (dal1-2) that is allelic to the dal mutant previously identified (Babiychuk et al., 1997). Mesophyll cells of mutant plants possess abnormal nucleoids and more but smaller plastids than wild type cells. Plastid development in dal1-2 is not altered in the dark but is arrested at the early steps of thylakoid assembly. The amino acid sequence of the protein deduced from our cDNA clone is 21 amino acids longer than the previously published DAL sequence (Babiychuk et al., 1997) and allowed us to show that DAL codes for a chloroplast protein. The dal1-2 mutation has a global negative effect on plastid RNA accumulation and on expression of nuclear encoded photosynthetic genes. We show that the plastid RNA polymerases, the nuclear-encoded NEP and the plastid-encoded PEP, are functional in the mutant. Precursor 16S and 23S rRNA species specifically accumulate at a high level in the mutant but the 5-end and the long 3-end trailer are not modified. We suggest that the dal mutation is involved in plastid rRNA processing and consequently in translation and early chloroplast differentiation.  相似文献   

12.
13.
Cyclotides are a family of plant proteins that have the unusual combination of head-to-tail backbone cyclization and a cystine knot motif. They are exceptionally stable and show resistance to most chemical, physical, and enzymatic treatments. The structure of tricyclon A, a previously unreported cyclotide, is described here. In this structure, a loop that is disordered in other cyclotides forms a beta sheet that protrudes from the globular core. This study indicates that the cyclotide fold is amenable to the introduction of a range of structural elements without affecting the cystine knot core of the protein, which is essential for the stability of the cyclotides. Tricyclon A does not possess a hydrophobic patch, typical of other cyclotides, and has minimal hemolytic activity, making it suitable for pharmaceutical applications. The 22 kDa precursor protein of tricyclon A was identified and provides clues to the processing of these fascinating miniproteins.  相似文献   

14.
We describe the isolation and characterization of a chloroplast ribosomal protein and a clone of its cDNA. This protein has no homology to any Escherichia coli ribosomal protein or to any known proteins. Due to this novel finding we propose it be called PSrp-1, i.e. a plastid-specific ribosomal protein. The precursor form of PSrp-1, deduced from the cDNA sequence, is 302-amino acid residues long. The mature PSrp-1, identified by amino-terminal sequencing, is a protein of 236 residues. The NH2-terminal 66 amino acids form the transit peptide that targets PSrp-1 into the chloroplast. We show that PSrp-1 is a protein of the chloroplast 30 S ribosomal subunit by Western blotting and sequencing the excised protein after two-dimensional gel electrophoresis. The possible evolutionary origin of PSrp-1 from the nucleated host cell of the endosymbiont theory is discussed.  相似文献   

15.
Many plants express enzymes which specifically remove an adenine residue from the skeleton of the 28 S RNA in the major subunit of the eukaryotic ribosome (ribosome inactivating proteins, RIPs). The site of action of RIPs (A4324 in the rRNA from rat liver) is in a loop structure whose nucleotide sequence all around the target adenine is also conserved in those species which are completely or partially insensitive to RIPs. In this paper we identify a covalent complex between saporin (the RIP extracted from Saponaria officinalis) and ribosomal proteins from yeast (Saccharomyces cerevisiae), by means of chemical crosslinking and immunological or avidin-biotin detection. The main complex (mol. wt. congruent to 60 kDa) is formed only with a protein from the 60 S subunit of yeast ribosomes, and is not detected with ribosomes from E. coli, a resistant species. This observation supports the hypothesis for a molecular recognition mechanism involving one or more ribosomal proteins, which could provide a 'receptor' site for the toxin and favour optimal binding of the target adenine A4324 to the active site of the RIP.  相似文献   

16.
A multifunctional calmodulin-dependent protein kinase in the canine cardiac cytosol was purified to near homogeneity. The purified enzyme inactivated glycogen synthase by means of phosphorylation. The enzyme also phosphorylated phospholamban and several other proteins. In view of its physicochemical properties and substrate specificity, the enzyme differed from myosin light chain kinase and phosphorylase kinase, and was considered to belong to a class of similar calmodulin-dependent protein kinases from brain, liver, and skeletal muscle. The results suggest that the enzyme mediates multiple Ca2+-dependent functions in the heart.  相似文献   

17.
We have isolated a nuclear mutant (tsp-1) of Chlamydomonas reinhardtii which is resistant to thiostrepton, an antibiotic that blocks bacterial protein synthesis. The tsp-1 mutant grows slowly in the presence or absence of thiostrepton, and its chloroplast ribosomes, although resistant to the drug, are less active than chloroplast ribosomes from the wild type. Chloroplast ribosomal protein L-23 was not detected on stained gels or immunoblots of total large subunit proteins from tsp-1 probed with antibody to the wild-type L-23 protein from C. reinhardtii. Immunoprecipitation of proteins from pulse-labeled cells showed that tsp-1 synthesizes small amounts of L-23 and that the mutant protein is stable during a 90 min chase. Therefore the tsp-1 phenotype is best explained by assuming that the mutant protein synthesized is unable to assemble into the large subunit of the chloroplast ribosome and hence is degraded over time. L-23 antibodies cross-react with Escherichia coli r-protein L11, which is known to be a component of the GTPase center of the 50S ribosomal subunit. Thiostrepton-resistant mutants of Bacillus megaterium and B. subtilis lack L11, show reduced ribosome activity, and have slow growth rates. Similarities between the thiostreptonresistant mutants of bacteria and C. reinhardtii and the immunological relatedness of Chlamydomonas L-23 to E. coli L11 suggest that L-23 is functionally homologous to the bacterial r-protein L11.  相似文献   

18.
Protein conformational changes related to transport into chloroplasts have been studied. Two chimaeric proteins carrying the transit peptide of either ferredoxin or plastocyanin linked to the mouse cytosolic enzyme dihydrofolate reductase (EC 1.5.1.3.) were employed. In contrast to observations in mitochondria, we found in chloroplasts that transport of a purified ferredoxin-dihydrofolate reductase fusion protein is not blocked by the presence of methotrexate, a folate analogue that stabilizes the structural conformation of dihydrofolate reductase. It is shown that transport competence of this protein in the presence of methotrexate is not a consequence of alteration of the folding characteristics or methotrexate binding properties of dihydrofolate reductase by fusion to the ferredoxin transit peptide. Binding of dihydrofolate reductase fusion proteins to chloroplast envelopes is not inhibited by low temperature and it is only partially diminished by methotrexate. It is demonstrated that the dihydrofolate reductase fusion proteins unfold, despite the presence of methotrexate, on binding to the chloroplast envelopes. We propose the existence of a strong protein unfolding activity associated to the chloroplast envelopes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号