共查询到20条相似文献,搜索用时 15 毫秒
1.
There is increasing consensus that the global climate will continue to warm over the next century. The biodiversity-rich Amazon forest is a region of growing concern because many global climate model (GCM) scenarios of climate change forecast reduced precipitation and, in some cases, coupled vegetation models predict dieback of the forest. To date, fires have generally been spatially co-located with road networks and associated human land use because almost all fires in this region are anthropogenic in origin. Climate change, if severe enough, could alter this situation, potentially changing the fire regime to one of increased fire frequency and severity for vast portions of the Amazon forest. High moisture contents and dense canopies have historically made Amazonian forests extremely resistant to fire spread. Climate will affect the fire situation in the Amazon directly, through changes in temperature and precipitation, and indirectly, through climate-forced changes in vegetation composition and structure. The frequency of drought will be a prime determinant of both how often forest fires occur and how extensive they become. Fire risk management needs to take into account landscape configuration, land cover types and forest disturbance history as well as climate and weather. Maintaining large blocks of unsettled forest is critical for managing landscape level fire in the Amazon. The Amazon has resisted previous climate changes and should adapt to future climates as well if landscapes can be managed to maintain natural fire regimes in the majority of forest remnants. 相似文献
2.
Manoel Cardoso Carlos Nobre Gilvan Sampaio Marina Hirota Dalton Valeriano Gilberto Câmara 《Biologia》2009,64(3):433-437
Biome models of the global climate-vegetation relationships indicate that most of the Brazilian Amazon has potential for being covered by tropical forests. From current land-use processes observed in the region, however, substantial deforestation and fire activity have been verified in large portions of the region, particularly along the Arc of Deforestation. In a first attempt to evaluate the long-term potential for tropical-forest degradation due to deforestation and fires in the Brazilian Amazon, we analysed large-scale data on fire activity and climate factors that drive the distribution of tropical forests in the region. The initial analyses and results from this study lead to important details on the relations between these quantities and have important implications for building future parameterizations of the vulnerability of tropical forests in the region. 相似文献
3.
Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia 总被引:1,自引:0,他引:1
Aragão LE Malhi Y Barbier N Lima A Shimabukuro Y Anderson L Saatchi S 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1498):1779-1785
Understanding the interplay between climate and land-use dynamics is a fundamental concern for assessing the vulnerability of Amazonia to climate change. In this study, we analyse satellite-derived monthly and annual time series of rainfall, fires and deforestation to explicitly quantify the seasonal patterns and relationships between these three variables, with a particular focus on the Amazonian drought of 2005. Our results demonstrate a marked seasonality with one peak per year for all variables analysed, except deforestation. For the annual cycle, we found correlations above 90% with a time lag between variables. Deforestation and fires reach the highest values three and six months, respectively, after the peak of the rainy season. The cumulative number of hot pixels was linearly related to the size of the area deforested annually from 1998 to 2004 (r2=0.84, p=0.004). During the 2005 drought, the number of hot pixels increased 43% in relation to the expected value for a similar deforested area (approx. 19000km2). We demonstrated that anthropogenic forcing, such as land-use change, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region even with decreased deforestation rates. We may expect that the ongoing deforestation, currently based on slash and burn procedures, and the use of fires for land management in Amazonia will intensify the impact of droughts associated with natural climate variability or human-induced climate change and, therefore, a large area of forest edge will be under increased risk of fires. 相似文献
4.
Yadvinder Malhi Stephen Adu-Bredu Rebecca A. Asare Simon L. Lewis Philippe Mayaux 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1625)
The rainforests are the great green heart of Africa, and present a unique combination of ecological, climatic and human interactions. In this synthesis paper, we review the past and present state processes of change in African rainforests, and explore the challenges and opportunities for maintaining a viable future for these biomes. We draw in particular on the insights and new analyses emerging from the Theme Issue on ‘African rainforests: past, present and future’ of Philosophical Transactions of the Royal Society B. A combination of features characterize the African rainforest biome, including a history of climate variation; forest expansion and retreat; a long history of human interaction with the biome; a relatively low plant species diversity but large tree biomass; a historically exceptionally high animal biomass that is now being severely hunted down; the dominance of selective logging; small-scale farming and bushmeat hunting as the major forms of direct human pressure; and, in Central Africa, the particular context of mineral- and oil-driven economies that have resulted in unusually low rates of deforestation and agricultural activity. We conclude by discussing how this combination of factors influences the prospects for African forests in the twenty-first century. 相似文献
5.
Harris PP Huntingford C Cox PM 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1498):1753-1759
The Hadley Centre coupled climate-carbon cycle model (HadCM3LC) predicts loss of the Amazon rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the atmospheric component of HadCM3LC is used to assess the role of simulated changes in mid-twenty-first century sea surface temperature (SST) in Amazon Basin climate change. When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both the tropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest rainfall reduction occurs from May to October, outside of the mature South American monsoon (SAM) season. This dry season response is the combined effect of a more rapid warming of the tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely, a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry season soil moisture deficits from being recharged through the SAM season, leading to a perennial soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary productivity (NPP). A further 23% NPP reduction occurs in response to a 3.5 degrees C warmer air temperature associated with a global mean SST warming. 相似文献
6.
Good P Lowe JA Collins M Moufouma-Okia W 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1498):1761-1766
Future changes in meridional sea surface temperature (SST) gradients in the tropical Atlantic could influence Amazon dry-season precipitation by shifting the patterns of moisture convergence and vertical motion. Unlike for the El Niño-Southern Oscillation, there are no standard indices for quantifying this gradient. Here we describe a method for identifying the SST gradient that is most closely associated with June–August precipitation over the south Amazon. We use an ensemble of atmospheric general circulation model (AGCM) integrations forced by observed SST from 1949 to 2005. A large number of tropical Atlantic SST gradient indices are generated randomly and temporal correlations are examined between these indices and June–August precipitation averaged over the Amazon Basin south of the equator. The indices correlating most strongly with June–August southern Amazon precipitation form a cluster of near-meridional orientation centred near the equator. The location of the southern component of the gradient is particularly well defined in a region off the Brazilian tropical coast, consistent with known physical mechanisms. The chosen index appears to capture much of the Atlantic SST influence on simulated southern Amazon dry-season precipitation, and is significantly correlated with observed southern Amazon precipitation.We examine the index in 36 different coupled atmosphere–ocean model projections of climate change under a simple compound 1% increase in CO2. Within the large spread of responses, we find a relationship between the projected trend in the index and the Amazon dry-season precipitation trends. Furthermore, the magnitude of the trend relationship is consistent with the inter-annual variability relationship found in the AGCM simulations. This suggests that the index would be of use in quantifying uncertainties in climate change in the region. 相似文献
7.
8.
Lemos MC Roberts JT 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1498):1897-1902
This article examines four periods of environmental policy-making in the Amazon region of Brazil. It specifically analyses the role of pro-environment and pro-development policy networks in affecting policy design and implementation. It argues that the efforts of environmentalist networks trying to advocate or block relative developmentalist policies in the Amazon depend on three critical factors-whether they are able to attract the support of elites (or at least block their developmentalist policy initiatives); the type and level of international support they have; and the organizational and financial resources that they are able to mobilize. In analysing the four periods, this article finds that while international influences and resources have been substantial in enabling environmentalist networks to flourish and influence the policy, their effectiveness has been nearly always outweighed by Brazilian developmentalist interests. The outcome in each phase has been a different form of stalemate on environmental protection, and the deforestation continued each time, albeit at slower rates. These findings suggest that the key for significantly lower rates of deforestation on the Amazon may be in the ability of pro-environment networks to neutralize opposition by creating an incentive structure that 'compensates' potential losers of policies that promote conservation. 相似文献
9.
BENJAMIN POULTER FRED HATTERMANN ED HAWKINS SÖNKE ZAEHLE STEPHEN SITCH NATALIA RESTREPO‐COUPE URSULA HEYDER WOLFGANG CRAMER 《Global Change Biology》2010,16(9):2476-2495
Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC‐AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water‐balance‐related parameters. Temperature‐dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon ‘dieback’ results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long‐term investments are required. 相似文献
10.
Road building, land use and climate change: prospects for environmental governance in the Amazon 总被引:1,自引:0,他引:1
Perz S Brilhante S Brown F Caldas M Ikeda S Mendoza E Overdevest C Reis V Reyes JF Rojas D Schmink M Souza C Walker R 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1498):1889-1895
Some coupled land-climate models predict a dieback of Amazon forest during the twenty-first century due to climate change, but human land use in the region has already reduced the forest cover. The causation behind land use is complex, and includes economic, institutional, political and demographic factors. Pre-eminent among these factors is road building, which facilitates human access to natural resources that beget forest fragmentation. While official government road projects have received considerable attention, unofficial road building by interest groups is expanding more rapidly, especially where official roads are being paved, yielding highly fragmented forest mosaics. Effective governance of natural resources in the Amazon requires a combination of state oversight and community participation in a 'hybrid' model of governance. The MAP Initiative in the southwestern Amazon provides an example of an innovative hybrid approach to environmental governance. It embodies a polycentric structure that includes government agencies, NGOs, universities and communities in a planning process that links scientific data to public deliberations in order to mitigate the effects of new infrastructure and climate change. 相似文献
11.
Pasture degradation in the central Amazon: linking changes in carbon and nutrient cycling with remote sensing 总被引:3,自引:0,他引:3
Gregory P. Asner † Alan R. Townsend‡ Mercedes M. C. Bustamante§ Gabriela B. Nardoto¶ Lydia P. Olander 《Global Change Biology》2004,10(5):844-862
The majority of deforested land in the Amazon Basin has become cattle pasture, making forest‐to‐pasture conversion an important contributor to the carbon (C) and climate dynamics of the region. However, our understanding of biogeochemical dynamics in pasturelands remains poor, especially when attempting to scale up predictions of C cycle changes. A wide range of pasture ages, soil types, management strategies, and climates make remote sensing the only realistic means to regionalize our understanding of pasture biogeochemistry and C cycling over such an enormous geographic area. However, the use of remote sensing has been impeded by a lack of effective links between variables that can be observed from satellites (e.g. live and senescent biomass) and variables that cannot be observed, but which may drive key changes in C storage and trace gas fluxes (e.g. soil nutrient status). We studied patterns in canopy biophysical–biochemical properties and soil biogeochemical processes along pasture age gradients on two important soil types in the central Amazon. Our goals were to (1) improve our understanding of the plot‐scale biogeochemical dynamics of this land‐use change, (2) evaluate the effects of pasture development on two contrasting soil types (clayey Oxisols and sandy Entisols), and (3) attempt to use remotely sensed variables to scale up the site‐specific variability in biogeochemical conditions of pasturelands. The biogeochemical analyses showed that (1) aboveground and soil C stocks decreased with pasture age on both clayey and sandy soils, (2) declines in plant biomass were well correlated with declines in soil C and with available phosphorus (P) and calcium (Ca), and (3) despite low initial values for total and available soil P, ecosystem P stocks declined further with pasture age, as did a number of other nutrients. Spectral mixture analysis of Landsat imagery provided estimates of photosynthetic vegetation (PV) and non‐photosynthetic vegetation (NPV) that were highly correlated with field measurements of these variables and plant biomass. In turn, the remotely sensed sum PV+NPV was well correlated with the changes in soil organic carbon and nitrogen, and available P and Ca. These results suggest that remote sensing can be an excellent indicator of not only pasture area, but of pasture condition and C storage, thereby greatly improving regional estimates of the environmental consequences of such land‐use change. 相似文献
12.
BENJAMIN POULTER LUIZ ARAGÃO URSULA HEYDER MARLIES GUMPENBERGER JENS HEINKE FANNY LANGERWISCH ANJA RAMMIG KIRSTEN THONICKE WOLFGANG CRAMER 《Global Change Biology》2010,16(7):2062-2075
Global change includes multiple stressors to natural ecosystems ranging from direct climate and land‐use impacts to indirect degradation processes resulting from fire. Humid tropical forests are vulnerable to projected climate change and possible synergistic interactions with deforestation and fire, which may initiate a positive feedback to rising atmospheric CO2. Here, we present results from a multifactorial impact analysis that combined an ensemble of climate change models with feedbacks from deforestation and accidental fires to quantify changes in Amazon Basin carbon cycling. Using the LPJmL Dynamic Global Vegetation Model, we modelled spatio‐temporal changes in net biome production (NBP); the difference between carbon fluxes from fire, deforestation, soil respiration and net primary production. By 2050, deforestation and fire (with no CO2 increase or climate change) resulted in carbon losses of 7.4–20.3 Pg C with the range of uncertainty depending on socio‐economic storyline. During the same time period, interactions between climate and land use either compensated for carbon losses due to wetter climate and CO2 fertilization or exacerbated carbon losses from drought‐induced forest mortality (?20.1 to +4.3 Pg C). By the end of the 21st century, depending on climate projection and the rate of deforestation (including its interaction with fire), carbon stocks either increased (+12.6 Pg C) or decreased (?40.6 Pg C). The synergistic effect of deforestation and fire with climate change contributed up to 26–36 Pg C of the overall decrease in carbon stocks. Agreement between climate projections (n=9), not accounting for deforestation and fire, in 2050 and 2098 was relatively low for the directional change in basin‐wide NBP (19–37%) and aboveground live biomass (13–24%). The largest uncertainty resulted from climate projections, followed by implementation of ecosystem dynamics and deforestation. Our analysis partitions the drivers of tropical ecosystem change and is relevant for guiding mitigation and adaptation policy related to global change. 相似文献
13.
Aim To model long‐term trends in plant species distributions in response to predicted changes in global climate. Location Amazonia. Methods The impacts of expected global climate change on the potential and realized distributions of a representative sample of 69 individual Angiosperm species in Amazonia were simulated from 1990 to 2095. The climate trend followed the HADCM2GSa1 scenario, which assumes an annual 1% increase of atmospheric CO2 content with effects mitigated by sulphate forcing. Potential distributions of species in one‐degree grid cells were modelled using a suitability index and rectilinear envelope based on bioclimate variables. Realized distributions were additionally limited by spatial contiguity with, and proximity to, known record sites. A size‐structured population model was simulated for each cell in the realized distributions to allow for lags in response to climate change, but dispersal was not included. Results In the resulting simulations, 43% of all species became non‐viable by 2095 because their potential distributions had changed drastically, but there was little change in the realized distributions of most species, owing to delays in population responses. Widely distributed species with high tolerance to environmental variation exhibited the least response to climate change, and species with narrow ranges and short generation times the greatest. Climate changed most in north‐east Amazonia while the best remaining conditions for lowland moist forest species were in western Amazonia. Main conclusions To maintain the greatest resilience of Amazonian biodiversity to climate change as modelled by HADCM2GSa1, highest priority should be given to strengthening and extending protected areas in western Amazonia that encompass lowland and montane forests. 相似文献
14.
CLAUDIA M. STICKLER †‡ DANIEL C. NEPSTAD † MICHAEL T. COE DAVID G. McGRATH † HERMANN O. RODRIGUES§ WAYNE S. WALKER BRITALDO S. SOARES-FILHO § ERIC A. DAVIDSON 《Global Change Biology》2009,15(12):2803-2824
The United Nations climate treaty may soon include a mechanism for compensating tropical nations that succeed in reducing carbon emissions from deforestation and forest degradation, source of nearly one fifth of global carbon emissions. We review the potential for this mechanism [reducing emissions from deforestation and degradation (REDD)] to provoke ecological damages and promote ecological cobenefits. Nations could potentially participate in REDD by slowing clear‐cutting of mature tropical forest, slowing or decreasing the impact of selective logging, promoting forest regeneration and restoration, and expanding tree plantations. REDD could also foster efforts to reduce the incidence of forest fire. Potential ecological costs include the accelerated loss (through displaced agricultural expansion) of low‐biomass, high‐conservation‐value ecosystems, and substitution of low‐biomass vegetation by monoculture tree plantations. These costs could be avoided through measures that protect low‐biomass native ecosystems. Substantial ecological cobenefits should be conferred under most circumstances, and include the maintenance or restoration of (1) watershed functions, (2) local and regional climate regimes, (3) soils and biogeochemical processes, (4) water quality and aquatic habitat, and (5) terrestrial habitat. Some tools already being developed to monitor, report and verify (MRV) carbon emissions performance can also be used to measure other elements of ecosystem function, making development of MRV systems for ecological cobenefits a concrete possibility. Analysis of possible REDD program interventions in a large‐scale Amazon landscape indicates that even modest flows of forest carbon funding can provide substantial cobenefits for aquatic ecosystems, but that the functional integrity of the landscape's myriad small watersheds would be best protected under a more even spatial distribution of forests. Because of its focus on an ecosystem service with global benefits, REDD could access a large pool of global stakeholders willing to pay to maintain carbon in forests, thereby providing a potential cascade of ecosystem services to local stakeholders who would otherwise be unable to afford them. 相似文献
15.
Mark B. Bush 《Global Ecology and Biogeography》2002,11(6):463-473
Aim To review the insights that palaeoecology can offer on the threat posed to Andean communities by global climate change. Location The geographical focus is the eastern flank of the tropical Andes, with particular reference to Peru. Method The article presents a synthetic review of the problem. Results Species‐rich communities of the eastern Andean flank are threatened both by development and climate change. If, as predicted, the cloudbase and frost line lifts 600 m elevation this century, there will be a substantial loss of cloud forest habitat. Palaeoecology provides insights on the location and nature of past ecotones, the continuity of niche availability, and estimates for rates and modes of migration. With further warming and drying of lower montane regions, upslope migration of species will be individualistic: a new equilibrium with the altered climate is unlikely to be attained. The zone of agriculture will move upslope faster than the migrating trees and so landscape conversion will negate the ability of some species to respond to the new conditions. Conservation of the lower reaches of modern cloud forest is advocated as a means to limit this foreseeable extinction event. Main Conclusions Climate change will induce changes in plant and animal communities. Human disturbance will invade climatically marginal agricultural lands at the pace of climate change. Rapid migratory response such as that witnessed at the onset of the Holocene may not be evident as climates warm, because Holocene climatic stability has reduced outlying upslope populations that may have served as expansion nuclei. Conservation must aim to maintain plant and animal niches, rather than particular communities of species. 相似文献
16.
Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point 总被引:1,自引:0,他引:1
Nepstad DC Stickler CM Filho BS Merry F 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1498):1737-1746
Some model experiments predict a large-scale substitution of Amazon forest by savannah-like vegetation by the end of the twenty-first century. Expanding global demands for biofuels and grains, positive feedbacks in the Amazon forest fire regime and drought may drive a faster process of forest degradation that could lead to a near-term forest dieback. Rising worldwide demands for biofuel and meat are creating powerful new incentives for agro-industrial expansion into Amazon forest regions. Forest fires, drought and logging increase susceptibility to further burning while deforestation and smoke can inhibit rainfall, exacerbating fire risk. If sea surface temperature anomalies (such as El Niño episodes) and associated Amazon droughts of the last decade continue into the future, approximately 55% of the forests of the Amazon will be cleared, logged, damaged by drought or burned over the next 20 years, emitting 15–26 Pg of carbon to the atmosphere. Several important trends could prevent a near-term dieback. As fire-sensitive investments accumulate in the landscape, property holders use less fire and invest more in fire control. Commodity markets are demanding higher environmental performance from farmers and cattle ranchers. Protected areas have been established in the pathway of expanding agricultural frontiers. Finally, emerging carbon market incentives for reductions in deforestation could support these trends. 相似文献
17.
Betts R Sanderson M Woodward S 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1498):1873-1880
Loss of large areas of Amazonian forest, through either direct human impact or climate change, could exert a number of influences on the regional and global climates. In the Met Office Hadley Centre coupled climate-carbon cycle model, a severe drying of this region initiates forest loss that exerts a number of feedbacks on global and regional climates, which magnify the drying and the forest degradation. This paper provides an overview of the multiple feedback process in the Hadley Centre model and discusses the implications of the results for the case of direct human-induced deforestation. It also examines additional potential effects of forest loss through changes in the emissions of mineral dust and biogenic volatile organic compounds. The implications of ecosystem-climate feedbacks for climate change mitigation and adaptation policies are also discussed. 相似文献
18.
A nonequilibrium, dynamic, global vegetation model, Hybrid v4.1, with a subdaily timestep, was driven by increasing CO2 and transient climate output from the UK Hadley Centre GCM (HadCM2) with simulated daily and interannual variability. Three IPCC emission scenarios were used: (i) IS92a, giving 790 ppm CO2 by 2100, (ii) CO2 stabilization at 750 ppm by 2225, and (iii) CO2 stabilization at 550 ppm by 2150. Land use and future N deposition were not included. In the IS92a scenario, boreal and tropical lands warmed 4.5 °C by 2100 with rainfall decreased in parts of the tropics, where temperatures increased over 6 °C in some years and vapour pressure deficits (VPD) doubled. Stabilization at 750 ppm CO2 delayed these changes by about 100 years while stabilization at 550 ppm limited the rise in global land surface temperature to 2.5 °C and lessened the appearance of relatively hot, dry areas in the tropics. Present‐day global predictions were 645 PgC in vegetation, 1190 PgC in soils, a mean carbon residence time of 40 years, NPP 47 PgC y?1 and NEP (the terrestrial sink) about 1 PgC y?1, distributed at both high and tropical latitudes. With IS92a emissions, the high latitude sink increased to the year 2100, as forest NPP accelerated and forest vegetation carbon stocks increased. The tropics became a source of CO2 as forest dieback occurred in relatively hot, dry areas in 2060–2080. High VPDs and temperatures reduced NPP in tropical forests, primarily by reducing stomatal conductance and increasing maintenance respiration. Global NEP peaked at 3–4 PgC y?1 in 2020–2050 and then decreased abruptly to near zero by 2100 as the tropical source offset the high‐latitude sink. The pattern of change in NEP was similar with CO2 stabilization at 750 ppm, but was delayed by about 100 years and with a less abrupt collapse in global NEP. CO2 stabilization at 550 ppm prevented sustained tropical forest dieback and enabled recovery to occur in favourable years, while maintaining a similar time course of global NEP as occurred with 750 ppm stabilization. By lessening dieback, stabilization increased the fraction of carbon emissions taken up by the land. Comparable studies and other evidence are discussed: climate‐induced tropical forest dieback is considered a plausible risk of following an unmitigated emissions scenario. 相似文献
19.
The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps 总被引:3,自引:0,他引:3
Forest landscape dynamics result from the complex interaction of driving forces and ecological processes operating on various scales. Projected climate change for the 21st century will alter climate‐sensitive processes, causing shifts in species composition and also bringing about changes in disturbance regimes, particularly regarding wildfires. Previous studies of the impact of climate change on forests have focused mainly on the direct effects of climate. In the present study, we assessed the interactions among forest dynamics, climate change and large‐scale disturbances such as fire, wind and forest management. We used the Land Clim model to investigate the influence, interactions and the relative importance of these different drivers of landscape dynamics in two case study areas of the European Alps. The simulations revealed that projected future climate change would cause extensive forest cover changes, beginning in the coming decades. Fire is likely to become almost as important for shaping the landscape as the direct effects of climate change, even in areas where major wildfires do not occur under current climatic conditions. The effects of variable wind disturbances and harvesting regimes, however, are less likely to have a considerable impact on forest development compared with the direct effects of climate change coupled with the indirect effects of increased fire activity. We conclude that the joint direct and indirect effects of climate change are likely to have major consequences for mountain forests in the European Alps, including their ability to provide protection against natural hazards. 相似文献
20.
Mayle FE Power MJ 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1498):1829-1838
This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future. 相似文献