首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a carangiform robotic fish with 4-DoF (degree of freedom) tail has been developed. The robotic fish has capability of swimming under two modes that are radio control and autonomous swimming. Experiments were conducted to investigate the influences of characteristic parameters including the frequency, the amplitude, the wave length, the phase difference and the coefficient on forward velocity. The experimental results shown that the swimming performance of the robotic fish is affected mostly by the characteristic parameters observed.  相似文献   

2.
A robotic fish driven by oscillating fins, "Cownose Ray-I", is developed, which is in dorsoventrally flattened shape withouta tail. The robotic fish is composed of a body and two lateral fins. A three-factor kinematic model is established and used in thedesign of a mechanism. By controlling the three kinematic parameters, the robotic fish can accelerate and maneuver. Forwardvelocity is dependent on the largest amplitude and the number of waves in the fins, while the relative contribution of fin beatfrequency to the forward velocity of the robotic fish is different from the usual result. On the other hand, experimental results onmaneuvering show that phase difference has a stronger effect on swerving than the largest amplitude to some extent. In addition,as propulsion waves pass from the trailing edge to the leading edge, the robotic fish attains a backward velocity of 0. 15 m·s-1.  相似文献   

3.
In this paper, modeling, locomotion generation, motion library design and path planning for a real prototype of an Anguilliform robotic fish are presented. The robotic fish consists of four links and three joints, and the driving forces are the torques applied to the joints. Considering kinematic constraints and hydrodynamic forces, Lagrangian formulation is used to obtain the dynamic model of the fish. Using this model, three major locomotion patterns of Anguilliform fish, including forward locomotion, backward locomotion and turning locomotion are investigated. It is found that the fish exhibits different locomotion patterns by giving different reference joint angles, such as adding reversed phase difference, or adding deflections to the original reference angles. The results are validated by both simulations and experiments. Furthermore, the relations among the speed of the fish, angular frequency, undulation amplitude, phase difference, as well as the relationship between the turning radius and deflection angle are investigated. These relations provide an elaborated motion library that can be used for motion planning of the robotic fish.  相似文献   

4.
In this paper, we propose a biomimetic learning approach for motion generation of a multi-joint robotic fish. Based on a multi-joint robotic fish model, two basic Carangiform swimming patterns, namely "cruise" and "C sharp turning", are extracted as training samples from the observations of real fish swimming. A General Internal Model (GIM), which is an imitation of Central Pattern Generator (CPG) in nerve systems, is adopted to learn and to regenerate coordinated fish behaviors. By virtue of the universal function approximation ability and the temporal/spatial scalabilities of GIM, the proposed learning approach is able to generate the same or similar fish swimming patterns by tuning two parameters. The learned swimming patterns are implemented on a multi-joint robotic fish in experiments. The experiment results verify the effectiveness of the biomimetic learning approach in generating and modifying locomotion patterns for the robotic fish.  相似文献   

5.
This paper presents the dynamic modeling of a flexible tail for a robotic fish. For this purpose firstly, the flexible tail was simplified as a slewing beam actuated by a driving moment. The governing equation of the flexible tail was derived by using the Euler-Bernoulli theory. In this equation, the resistive forces were estimated as a term analogous to viscous damping. Then, the modal analysis method was applied in order to derive an analytical solution of the governing equation, by which the relationship between the driving moment and the lateral movement of the flexible tail was described. Finally, simulations and experiments were carried out and the results were compared to verify the accuracy of the dynamic model. It was proved that the dynamic model of a fish robot with a flexible tail fin well explains the real behavior of robotic fish in underwater environment.  相似文献   

6.
Vorticity control mechanisms for flapping foils play a guiding role in both biomimetic thrust research and modeling the forward locomotion of animals with wings, fins, or tails. In this paper, a thrust-producing flapping lunate tail is studied through force and power measurements in a water channel. Proper vorticity control methods for flapping tails are discussed based on the vorticity control parameters: the dimensionless transverse amplitude, Strouhal number, angle of attack, and phase angle. Field tests are conducted on a free-swimming biomimetic robotic fish that uses a flapping tail. The results show that active control of Strouhal number using fuzzy logic control methods can efficiently reduce power consumption of the robotic fish and high swimming speeds can be obtained. A maximum speed of 1.17 length specific speed is obtained experimentally under conditions of optimal vorticity control. The St of the flapping tail is controlled within the range of 0.4~0.5.  相似文献   

7.
In this paper, a non-uniform flexible tail of a fish robot was presented and the dynamic model was developed. In this model, the non-uniform flexible tail was modeled by a rotary slender beam. The hydrodynamics forces, including the reactive force and resistive force, were analyzed in order to derive the governing equation. This equation is a fourth-order in space and second-order in time Partial Differential Equation (PDE) of the lateral movement function. The coefficients of this PDE were not constants because of the non-uniform beams, so they were approximated by exponential functions in order to obtain an analytical solution. This solution describes the lateral movement of the flexible tail as a function of material, geometrical and actuator properties. Experiments were then carried out and compared to simulations. It was proved that the proposed model is suitable for predicting the real behavior of fish robots.  相似文献   

8.
9.
10.
大川河鱼类区系及其群落生态结构的研究   总被引:1,自引:0,他引:1  
周仰jin  吴万荣 《生态学杂志》1991,10(2):20-24,71
鱼类区系及其群落生态结构,在理论和实践上都有十分重要的意义。但是,关于鱼类区系的生态结构问题,还未见详细报道。本文通过对大川河鱼类区系及其群落生态结构的分析,探讨鱼类区系及其群落生态结构的规律。  相似文献   

11.
We used fishery surveys from 1954 to 1957 to determine the relationship between salinity and prairie stream-fish assemblage composition prior to the major drought of the 1950s and subsequent anthropogenic modifications. A total of 78,931 fishes were captured, representing 13 families and 44 species. Species were classified as having low, moderate, or high salinity tolerances based on k-means clustering of detrended correspondence scores. The proportion of species with high salinity tolerances was correlated positively (r = 0.74) with salinity, whereas the proportion of species with low (r = −0.69) or moderate (r = −0.36) tolerances was correlated strongly and negatively with salinity. Many of the low or moderate salinity tolerant species found in the 1950s were not collected in studies conducted 15 and 35 years later. Examination of these studies provides compelling evidence that salinity has been a dominant and persistent factor in affecting the structure of stream-fish assemblages for the past 50 years.  相似文献   

12.
In present,there are increasing interests in the research on mechanical and control system of underwater vehicles.Theseongoing research efforts are motivated by more pervasive applications of such vehicles including seabed oil and gas explorations,scientific deep ocean surveys,military purposes,ecological and water environmental studies,and also entertainments.However,the performance of underwater vehicles with screw type propellers is not prospective in terms of its efficiency andmaneuverability.The main weaknesses of this kind of propellers are the production of vortices and sudden generation of thrustforces which make the control of the position and motion difficult.On the other hand,fishes and other aquatic animals are efficient swimmers,posses high maneuverability,are able to followtrajectories,can efficiently stabilize themselves in currents and surges,create less wakes than currently used underwater vehicle,and also have a noiseless propulsion.The fish’s locomotion mechanism is mainly controlled by its caudal fin and paired pectoralfins.They are classified into Body and/or Caudal Fin(BCF)and Median and/or paired Pectoral Fins(MPF).The study of highlyefficient swimming mechanisms of fish can inspire a better underwater vehicles thruster design and its mechanism.There are few studies on underwater vehicles or fish robots using paired pectoral fins as thruster.The work presented in thispaper represents a contribution in this area covering study,design and implementation of locomotion mechanisms of pairedpectoral fins in a fish robot.The performance and viability of the biomimetic method for underwater vehicles are highlightedthrough in-water experiment of a robotic fish.  相似文献   

13.
The parasitic fish fauna in Guelph Lake, a four-year old impoundment, were compared with those in upstream and downstream localities. The lacustrine assemblage of the young mesotrophic to eutrophic impoundment was dominated by the cestodes, Ligula intestinalis and Proteocephalus ambloplites, and the nematode, Philometra sp. The acanthocephalan, Neoechinorhynchus saginatus, and the nematode, Rhabdacona cascadilla dominated the rheophilous assemblage of fish parasites, but the prevalence rate and intensity of R. cascadilla was significantly reduced downstream.  相似文献   

14.
Fish mortality and physicochemistry in a managed floodplain wetland   总被引:1,自引:0,他引:1  
Patterns of fish mortality and associated physicochemical factors werestudied during late spring in a managed wetland canal along the lowerMissouri River, Missouri. Mean dawn dissolved oxygen was lower and meanun-ionized ammonia and turbidity were higher during the fish kill thanbefore or after the kill, or than was observed in a nearby wetland canalwhere no fish kill occurred. Dissolved oxygen at dawn and un-ionizedammonia concentrations were at critically low and high levels respectively,so that both likely contributed to the fish mortality. Timing and magnitudeof observed carcasses suggested that Ameiurus melas Rafinesques wasthe most tolerant species for the sizes observed compared to Ictiobuscyprinellus Valenciennes, Lepomis macrochirus Rafinesque, Cyprinus carpio Linneaus, and Lepomis cyanellus Rafinesque.Decreasing mean lengths of fish carcasses during the fish kill for C.carpio, L. cyanellus, and A. melas, indicate that smaller fishes mayhave been more tolerant of harsh environmental conditions than largerindividuals of the same species. Differential mortalities among species andsizes during drawdowns in actively managed wetland pools may haveintentional and unintentional ramifications on wetland and riverine fishcommunity structure, fish-avian interactions, and implementing anecosystem management perspective to restoring more naturalized riverfloodplain wetland functions. Late summer and early autumn draining ofmanaged wetlands might be used to benefit a wider diversity of wildlife andfishes.  相似文献   

15.
Inspired by the driving muscles of the human arm,a 4-Degree of Freedom(DOF)concentrated driving humanoid robotic arm is proposed based on a spatial double parallel four-bar mechanism.The four-bar mechanism design reduces the inertia of the elbow-driving unit and the torque by 76.65%and 57.81%,respectively.Mimicking the human pose regulation strategy that the human arm picks up a heavy object by adjusting its posture naturally without complicated control,the robotic arm features an integrated position-level closed-form inverse solution method considering both geometric and load capacity limitations.This method consists of a geometric constraint model incorporating the arm angle(φ)and the Global Configuration(GC)to avoid joint limits and singularities,and a load capacity model to constrain the feasible domain of the arm angle.Further,trajectory tracking simulations and experiments are conducted to validate the feasibility of the proposed inverse solution method.The simulated maximum output torque,maximum output power and total energy consumption of the robotic arm are reduced by up to 2.0%,13.3%,and 33.3%,respectively.The experimental results demonstrate that the robotic arm can bear heavy loads in a human-like posture,effectively reducing the maximum output torque and energy consumption of the robotic arm by 1.83%and 5.03%,respectively,while avoiding joints beyond geometric and load capacity limitations.The proposed design provides a high payload-weight ratio and an efficient pose control solution for robotic arms,which can potentially broaden the application spectrum of humanoid robots.  相似文献   

16.
根据2018年8月大亚湾海域底拖网鱼类资源调查数据,分析了大亚湾夏季鱼类群落结构特征。结果表明:2018年大亚湾夏季渔获鱼类56种,隶属9目、34科、47属。其中,鲈形目(Perciformes)最多(39种,69.64%);物种组成以短吻鲾(Leiognathus brevirostris)、黄斑蓝子鱼(Siganus oramin)、拟矛尾鰕虎鱼(Parachaeturichthys polynema)、六指马鲅(Polynemus sextarius)和二长棘犁齿鲷(Evynnis cardinali)等小型低值鱼类为主;鱼类物种多样性存在明显的空间差异,表现为湾口海域最大,沿岸海域次之,湾中部海域最小。鱼类群落结构大体分为咸淡水湾内和海水广布湾口两个鱼类群组;对比1985—2017年夏季调查资料可知,30多年来大亚湾夏季鱼类群落物种多样性减小;优势种组成更替显著,由以大型中上层的经济鱼类为主演变为以小型底层、近底层的低值鱼类为主,其主要原因是人类活动对大亚湾生态系统的干扰,尤其是捕捞致使鱼类群落结构发生改变、趋向简单化。  相似文献   

17.
In this study the molecular evolution of duplicated HoxA genes in zebrafish and fugu has been investigated. All 18 duplicated HoxA genes studied have a higher non-synonymous substitution rate than the corresponding genes in either bichir or paddlefish, where these genes are not duplicated. The higher rate of evolution is not due solely to a higher non-synonymous-to-synonymous rate ratio but to an increase in both the non-synonymous as well as the synonymous substitution rate. The synonymous rate increase can be explained by a change in base composition, codon usage, or mutation rate. We found no changes in nucleotide composition or codon bias. Thus, we suggest that the HoxA genes may experience an increased mutation rate following cluster duplication. In the non-Hox nuclear gene RAG1 only an increase in non-synonymous substitutions could be detected, suggesting that the increased mutation rate is specific to duplicated Hox clusters and might be related to the structural instability of Hox clusters following duplication. The divergence among paralog genes tends to be asymmetric, with one paralog diverging faster than the other. In fugu, all b-paralogs diverge faster than the a-paralogs, while in zebrafish Hoxa-13a diverges faster. This asymmetry corresponds to the asymmetry in the divergence rate of conserved non-coding sequences, i.e., putative cis-regulatory elements. These results suggest that the 5′ HoxA genes in the same cluster belong to a co-evolutionary unit in which genes have a tendency to diverge together. Reviewing Editor: Dr. Axel Meyer  相似文献   

18.
The study of fish feeding guild structure is a useful method to compare fish communities of complex marine ecosystems. Guild structure was determined in four coral reef depth zones, viz. the fringing reef at depths of 2, 5, 10, and 15 m, as well as in seven shallow-water biotopes within a single bay, viz. notches in fossil reef rock, mangroves, fossil reef boulders, seagrass beds, algal beds at a depth of 2 m, algal beds at a depth of 5 m, and the channel. The study was done in an inland bay on the Caribbean island of Curaçao, using a visual census technique. Total fish densities within the different feeding guilds varied considerably between the biotopes, and were generally higher in the reef biotopes and on the boulders than in the remaining bay biotopes. Cluster analysis revealed that the greatest dissimilarity in guild structures in terms of fish densities was that between the algal beds and all other biotopes, followed by that between the reef depth zones and other bay biotopes (notches, mangroves, seagrass beds, channel). The species composition of the guilds also differed considerably among the various biotopes. Species richness within the various guilds showed much smaller differences between the biotopes, but was generally somewhat higher in the reef biotopes. Cluster analysis of guild structures in terms of species richness revealed little dissimilarity among the various biotopes. The coral reef was dominated by omnivores and zooplanktivores, whereas the bay was dominated by zoobenthivores and herbivores. Differences in guild structure between the bay and the adjacent reef indicate differences in food availability.  相似文献   

19.
Inspired by the way sea turtles rely on the Earth's magnetic field for navigation and locomotion,a novel magnetic soft robotic turtle with programmable magnetization has been developed and investigated to achieve biomimetic locomotion patterns such as straight-line swimming and turning swimming.The soft robotic turtle(12.50 mm in length and 0.24 g in weight)is integrated with an Ecoflex-based torso and four magnetically programmed acrylic elastomer VHB-based limbs containing samarium-iron-nitrogen particles,and was able to carry a load more than twice its own weight.Similar to the limb locomo-tion characteristics of sea turtles,the magnetic torque causes the four limbs to mimic sinusoidal bending deformation under the influence of an external magnetic field,so that the turtle swims continuously forward.Significantly,when the bending deformation magnitudes of its left and right limbs differ,the soft robotic turtle switches from straight-line to turning swim-ming at 6.334 rad/s.Furthermore,the tracking swimming activities of the soft robotic turtle along specific planned paths,such as square-shaped,S-shaped,and double U-shaped maze,is anticipated to be utilized for special detection and targeted drug delivery,among other applications owing to its superior remote directional control ability.  相似文献   

20.
ABSTRACT:?

Fish metabolism needs special enzymes that have maximum activity at very different conditions than their mammalian counterparts. Due to the differences in activity, these enzymes, especially cold-adapted proteases, could be used advantageously for the production of some foods. In addition to the enzymes, this review describes some other unique fish polypeptides such as antifreeze proteins, fluorescent proteins, antitumor peptides, antibiotics, and hormones, that have already been cloned and used in food processing, genetic engineering, medicine, and aquaculture. Recombinant DNA technology, which allows these biological molecules to be cloned and overexpressed in microorganisms is also described, highlighting innovative applications. The expected impact of cloning fish proteins in different fields of technology is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号