首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muslin AJ  Xing H 《Cellular signalling》2000,12(11-12):703-709
14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic, and nutrient-sensing pathways. 14-3-3 proteins act by binding to partner proteins, and this binding often leads to the altered subcellular localization of the partner. 14-3-3 proteins promote the cytoplasmic localization of many binding partners, including the pro-apoptotic protein BAD and the cell cycle regulatory phosphatase Cdc25C, but they can also promote the nuclear localization of other partners, such as the catalytic subunit of telomerase (TERT). In some cases, 14-3-3 binding has no effect on the subcellular localization of a partner. 14-3-3 may affect the localization of a protein by interfering with the function of a nearby targeting sequence, such as a nuclear localization sequence (NLS) or a nuclear export sequence (NES), on the binding partner.  相似文献   

2.
14-3-3 proteins are phosphoserine/threonine-binding proteins that play important roles in many regulatory processes, including intracellular protein targeting. 14-3-3 proteins can anchor target proteins in the cytoplasm and in the nucleus or can mediate their nuclear export. So far, no role for 14-3-3 in mediating nuclear import has been described. There is also mounting evidence that nuclear import is regulated by the phosphorylation of cargo proteins, but the underlying mechanism remains elusive. Myopodin is a dual-compartment, actin-bundling protein that functions as a tumor suppressor in human bladder cancer. In muscle cells, myopodin redistributes between the nucleus and the cytoplasm in a differentiation-dependent and stress-induced fashion. We show that importin alpha binding and the subsequent nuclear import of myopodin are regulated by the serine/threonine phosphorylation-dependent binding of myopodin to 14-3-3. These results establish a novel paradigm for the promotion of nuclear import by 14-3-3 binding. They provide a molecular explanation for the phosphorylation-dependent nuclear import of nuclear localization signal-containing cargo proteins.  相似文献   

3.
The receptor for parathyroid hormone (PTH) and PTH-related protein (PTHrP) regulates calcium homeostasis, bone remodeling and skeletal development. 14-3-3 proteins bind to signaling proteins and act as molecular scaffolds and regulators of subcellular localization. We show that the parathyroid hormone receptor (PTHR) interacts with 14-3-3 and the proteins colocalize within the cell. 14-3-3 interacts with the C-terminal tail of the receptor containing a consensus 14-3-3 binding motif, but additional binding sites are also used. Protein kinase-A treatment of the receptor and especially the C-terminal tail reduces 14-3-3 binding. The expressed C-terminal tail is primarily localized in the nucleus, supporting the function of a putative nuclear localization signal that could be involved in the previously described nuclear localization of PTHR. The observed interaction between PTHR and the 14-3-3 protein implies that 14-3-3 could contribute to regulation of PTHR signaling.  相似文献   

4.
Proliferation in cardiac fibroblasts (CFs) can be induced by a wide variety of growth factors that recruit multiple signal transduction pathways, including mitogen-activated protein kinase, phosphatidylinositol 3-kinase and protein kinase C. As a family of dimeric phophoserine-binding proteins, 14-3-3s are associated with a multitude of proteins that regulate signal transduction, apoptosis and checkpoint control pathways. However, it remains unknown whether the 14-3-3 proteins play an active role in cardiac proliferation and alter their expression patterns in response to growth factors in CFs. R18 peptide, an isoform-independent 14-3-3 inhibitor, was used to disrupt 14-3-3 function by adenovirus-mediated transfer of R18-EYFP (AdR18). Our results demonstrate that the 14-3-3 isoforms gamma, zeta and epsilon were highly expressed in CFs and the expression of 14-3-3 epsilon was elevated following serum stimulation. Inhibition of 14-3-3 proteins by AdR18 potentiated mitogen-induced DNA synthesis in CFs. This potentiation was presumably due to the increased inactivated glycogen synthase kinase-3 beta by Ser9 phosphorylation and nuclear factor of activated T-cell nuclear accumulation. However, AdR18 had no effect on extracellular signal-regulated kinase phosphorylation and reduced p70 S6 kinase (p70S6K) phosphorylation upon mitogenic stimulation. Furthermore, though R18 can block 14-3-3 binding abilities, it did not affect the serum-induced upregulation of 14-3-3 epsilon protein. Collectively, these findings reveal that the expression of 14-3-3 epsilon can be upregulated by serum in CFs and 14-3-3s may exert an inhibitory effect on serum-induced proliferation.  相似文献   

5.
6.
7.
14-3-3 proteins regulate the cell division cycle and play a pivotal role in blocking cell cycle advancement after activation of the DNA replication and DNA damage checkpoints. Here we describe a global proteomics analysis to identify proteins that bind to 14-3-3s during interphase and mitosis. 14-3-3-binding proteins were purified from extracts of interphase and mitotic HeLa cells using specific peptide elution from 14-3-3 zeta affinity columns. Proteins that specifically bound and eluted from the affinity columns were identified by microcapillary high pressure liquid chromatography tandem mass spectrometry analysis. Several known and novel 14-3-3-interacting proteins were identified in this screen. Identified proteins are involved in cell cycle regulation, signaling, metabolism, protein synthesis, nucleic acid binding, chromatin structure, protein folding, proteolysis, nucleolar function, and nuclear transport as well as several other cellular processes. In some cases 14-3-3 binding was cell cycle-dependent, whereas in other cases the binding was shown to be cell cycle-independent. This study adds to the growing list of human 14-3-3-binding proteins and implicates a role for 14-3-3 proteins in a plethora of essential biological processes.  相似文献   

8.
In the simple metazoan Hydra a clear link between food supply and cell survival has been established. Whilst in plants 14-3-3 proteins are found to be involved in signalling cascades that regulate metabolism, in animals they have been shown to participate in cell survival pathways. In order to explore the possibility that 14-3-3 proteins in Hydra could be involved in regulating metabolism under different conditions of food supply, we have cloned two isoforms of 14-3-3 proteins. We show here that 14-3-3 proteins bind to phosphorylated targets in Hydra and form homo- and heterodimers in vitro. 14-3-3 proteins are localised in the cytoplasm of all cells and also in the nuclei of some epithelial cells. This nuclear localisation becomes more prominent during starvation. Moreover, 14-3-3 protein is present in large amounts in food granules and from this we conclude that it performs functions which are associated with metabolism and food storage in Hydra.  相似文献   

9.
The ubiquitously expressed c-Abl tyrosine kinase localizes to the cytoplasm and nucleus. Nuclear c-Abl is activated by diverse genotoxic agents and induces apoptosis; however, the mechanisms that are responsible for nuclear targeting of c-Abl remain unclear. Here, we show that cytoplasmic c-Abl is targeted to the nucleus in the DNA damage response. The results show that c-Abl is sequestered into the cytoplasm by binding to 14-3-3 proteins. Phosphorylation of c-Abl on Thr 735 functions as a site for direct binding to 14-3-3 proteins. We also show that, in response to DNA damage, activation of the c-Jun N-terminal kinase (Jnk) induces phosphorylation of 14-3-3 proteins and their release from c-Abl. Together with these results, expression of an unphosphorylated 14-3-3 mutant attenuates DNA-damage-induced nuclear import of c-Abl and apoptosis. These findings indicate that 14-3-3 proteins are pivotal regulators of intracellular c-Abl localization and of the apoptotic response to genotoxic stress.  相似文献   

10.
Expression and post-translational modification of barley 14-3-3 isoforms, 14-3-3A, 14-3-3B and 14-3-3C, were investigated using isoform-specific antibodies. Although all three isoforms were shown to be present in the cytosolic, the nuclear and the microsomal cell fractions, differences in post-translational modification were identified for the different cell fractions. Germination-related modifications of 14-3-3 proteins were observed in the cytosol and the microsomal fraction, but not in the nucleus. In vitro proteolytic cleavage of 14-3-3 proteins using trypsin suggests that for 14-3-3A this change was caused by proteolytic cleavage of the unconserved C-terminal region.  相似文献   

11.
Maintenance of telomeres is implicated in chromosome stabilization and cell immortalization. Telomerase, which catalyzes de novo synthesis of telomeres, is activated in germ cells and most cancers. Telomerase activity is regulated by gene expression for its catalytic subunit, TERT, whereas several lines of evidence have suggested a post-translational regulation of telomerase activity. Here we identify the 14-3-3 signaling proteins as human TERT (hTERT)-binding partners. A dominant-negative 14-3-3 redistributed hTERT, which was normally predominant in the nucleus, into the cytoplasm. Consistent with this observation, hTERT-3A, a mutant that could not bind 14-3-3, was localized into the cytoplasm. Leptomycin B, an inhibitor of CRM1/exportin 1-mediated nuclear export, or disruption of a nuclear export signal (NES)-like motif located just upstream of the 14-3-3 binding site in hTERT impaired the cytoplasmic localization of hTERT. Compared with wild-type hTERT, hTERT-3A increased its association with CRM1. 14-3-3 binding was not required for telomerase activity either in vitro or in cell extracts. These observations suggest that 14-3-3 enhances nuclear localization of TERT by inhibiting the CRM1 binding to the TERT NES-like motif.  相似文献   

12.
13.
14-3-3 proteins: regulation of signal-induced events   总被引:9,自引:1,他引:8  
The field of signal transduction has experienced a significant paradigm shift as a result of an increased understanding of the roles of 14-3-3 proteins. There are many cases where signal-induced phosphorylation itself may cause a change in protein function. This simple modification is, in fact, the primary basis of signal transduction events in many systems. There are a large and growing number of cases, however, where simple phosphorylation is not enough to effect a change in protein function. In these cases, the 14-3-3 proteins can be required to complete the change in function. Therefore signal transduction can be either the relatively simple process where phosphorylation alters target activity, or it can be a more complex, multistep process with the 14-3-3 proteins playing the major role of bringing the signal transduction event to completion. This makes 14-3-3-modulated signal transduction a more complicated process with additional avenues for regulation and variety. Adding further complexity to the process is the fact that 14-3-3 proteins are present as multigene families in most organisms (Aitken et al. Trends Biochem Sci 17: 498–501, 1992; Ferl Annu Rev Plant Physiol Plant Molecular Biology 47: 49–73, 1996), with each member of the family being differentially expressed in various tissues and with potentially differential affinity for various target proteins. This review focuses on the 14-3-3 family of Arabidopsis as a model for further developing understanding of the roles of the 14-3-3 proteins as modulators of signal transduction events in plants. The primary approaches to these questions are not unlike the approaches that would be used in the functional dissection of any multigene family, but the interpretation of these data will have wide implications since the 14-3-3 s physically interact with other protein families.  相似文献   

14.
15.
14-3-3 proteins: eukaryotic regulatory proteins with many functions   总被引:12,自引:0,他引:12  
The enigmatically named 14-3-3 proteins have been the subject of considerable attention in recent years since they have been implicated in the regulation of diverse physiological processes, in eukaryotes ranging from slime moulds to higher plants. In plants they have roles in the regulation of the plasma membrane H+-ATPase and nitrate reductase, among others. Regulation of target proteins is achieved through binding of 14-3-3 to short, often phosphorylated motifs in the target, resulting either in its activation (e.g. H+-ATPase), inactivation (e.g. nitrate reductase) or translocation (although this function of 14-3-3 proteins has yet to be demonstrated in plants). The native 14-3-3 proteins are homo- or heterodimers and, as each monomer has a binding site, a dimer can potentially bind two targets, promoting their association. Alternatively, target proteins may have more than one 14-3-3-binding site. In this mini review, we present a synthesis of recent results from plant 14-3-3 research and, with reference to known 14-3-3-binding motifs, suggest further subjects for research.  相似文献   

16.
In fission yeast as well as in higher eukaryotic organisms, entry into mitosis is delayed in cells containing damaged or unreplicated DNA. This is accomplished in part by maintaining the Cdc25 phosphatase in a phosphorylated form that binds 14-3-3 proteins. In this study, we generated a mutant of fission yeast Cdc25 that is severely impaired in its ability to bind 14-3-3 proteins. Loss of both the DNA damage and replication checkpoints was observed in fission yeast cells expressing the 14-3-3 binding mutant. These findings indicate that 14-3-3 binding to Cdc25 is required for fission yeast cells to arrest their cell cycle in response to DNA damage and replication blocks. Furthermore, the 14-3-3 binding mutant localized almost exclusively to the nucleus, unlike wild-type Cdc25, which localized to both the cytoplasm and the nucleus. Nuclear accumulation of wild-type Cdc25 was observed when fission yeast cells were treated with leptomycin B, indicating that Cdc25 is actively exported from the nucleus. Nuclear exclusion of wild-type Cdc25 was observed upon overproduction of Rad 24, one of the two fission yeast 14-3-3 proteins, indicating that one function of Rad 24 is to keep Cdc25 out of the nucleus. In support of this conclusion, Rad 24 overproduction did not alter the nuclear location of the 14-3-3 binding mutant. These results indicate that 14-3-3 binding contributes to the nuclear exclusion of Cdc25 and that the nuclear exclusion of Cdc25 is required for a normal checkpoint response to both damaged and unreplicated DNA.  相似文献   

17.
18.
Myeloid leukemia factor 1 (MLF1) is associated with the development of leukemic diseases such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, information on the physiological function of MLF1 is limited and mostly derived from studies identifying MLF1 interaction partners like CSN3, MLF1IP, MADM, Manp and the 14-3-3 proteins. The 14-3-3-binding site surrounding S34 is one of the only known functional features of the MLF1 sequence, along with one nuclear export sequence (NES) and two nuclear localization sequences (NLS). It was recently shown that the subcellular localization of mouse MLF1 is dependent on 14-3-3 proteins. Based on these findings, we investigated whether the subcellular localization of human MLF1 was also directly 14-3-3-dependent. Live cell imaging with GFP-fused human MLF1 was used to study the effects of mutations and deletions on its subcellular localization. Surprisingly, we found that the subcellular localization of full-length human MLF1 is 14-3-3-independent, and is probably regulated by other as-yet-unknown proteins.  相似文献   

19.
20.
Surrogate and peripheral (bio)markers of neuronal injury may be of value in assessing effects of seizures on the brain or epilepsy development following trauma. The presence of 14-3-3 isoforms in cerebrospinal fluid (CSF) is a diagnostic indicator of Creutzfeldt-Jakob disease but these proteins may also be present following acute neurological insults. Here, we examined neuronal and 14-3-3 proteins in CSF from rats after seizures. Seizures induced by intra-amygdala microinjection of 0.1 microg kainic acid (KA) caused damage which was mainly restricted to the ipsilateral CA3 subfield of the hippocampus. 14-3-3zeta was detected at significant levels in CSF sampled 4 h after seizures compared with near absence in control CSF. Neuron-specific nuclear protein (NeuN) was also elevated in CSF in seizure rats. CSF 14-3-3zeta levels were significantly lower in rats treated with 0.01 microg KA. These data suggest the presence of 14-3-3zeta within CSF may be a biomarker of acute seizure damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号