首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytosolic and vacuolar pH changes caused by illumination or a changed composition of the gas phase were monitored in leaves of the NAD malic-enzyme-type C4 plant Amaranthus caudatus L. and the C3 plant Vicia faba L. by recording changes in the fluorescence of pH-indicating dyes which had been fed to the leaves. Light-dependent cytosolic alkalization and vacuolar acidification were maximal in the mesophyll cells under high-fluence-rate illumination and in the absence of CO2. Under the same conditions, measurements of light scattering and electrochromic absorption changes at 518 nm revealed maximum thylakoid energization. The results show an intimate relationship between the energization of the photosynthetic apparatus by light, an increase in cytosolic pH and a decrease in vacuolar pH. This was true for both the C4 and the C3 plant, although kinetics, extent and even direction of cytosolic pH changes differed considerably in these plants, reflecting the differences in photosynthetic carbon metabolism. Darkening produced rapid acidification in Vicia, but not in Amaranthus. Continued alkalization in Amaranthus is interpreted to be the result of the decarboxylation of a C4 intermediate and the release of liberated CO2. In the presence of CO2, energy consumption by carbon reduction decreased thylakoid energization, cytosolic alkalization and vacuolar acidification. Under low-fluence-rate illumination, thylakoid energization and light-dependent cytosolic and vacuolar pH changes were decreased in CO2-free air compared with thylakoid energization and pH changes in 1% oxygen/99% nitrogen not only in the C3 plant, but also in Amaranthus. Since oxygenation of ribulose bisphosphate initiates energy-consuming photorespiratory reactions in 21% oxygen, but not in 1% oxygen, this shows that photorespiratory reactions are active not only in the C3 but also in the C4 plant in the absence of external CO2. Photorespiratory conditions appeared to decrease energization not only in the chloroplasts, but also in the cytosol. This is indicated by decreased transfer of protons from the cytosol into the vacuole, a process which is energy-dependent.Abbreviations CDCF 5-(and 6-)carboxy-2,7-dichlorofluorescein - P700 electron-donor pigment in the reaction center of photosystem I - RuBP ribulose-1,5-bisphosphate This work was supported, within the framework of the Sonderforschungsbereiche 176 and 251 of the University of Würzburg, by the Gottfried-Wilhelm-Leibniz Program of the Deutsche Forschungsgemeinschaft. A.S.R. was the recipient of a fellowship from the Alexander-von-Humboldt-Foundation. We are grateful to Mr. Carsten Werner and Mrs. Spidola Neimanis for cooperation.  相似文献   

2.
Carbon assimilation of spinach (Spinacia oleracea L.) leaves was measured in the presence of 2000l· l–1CO2 and 2% O2 in the gas phase to suppress photorespiratory reactions and to reduce stomatal diffusion resistance. Simultaneously, membrane parameters such as modulated chlorophyll fluorescence, oxidation of P700 in the reaction centre of photosystem I, and apparent changes in absorbance at 535 nm were recorded. After light-regulated enzymes were activated at a high irradiance, illumination was changed. About 3 min later (to maintain the previous activation state of enzymes), leaves were shock-frozen and freeze-dried. Chloroplasts were isolated nonaqueously and analysed for ATP, ADP, inorganic phosphate, NADPH and NADP. Observations made under the chosen conditions differed in some important aspects from those commonly observed when leaves are illuminated in air. (i) Not only assimilation, but also the phosphorylation potential [ATP]/([ADP]·[Pi]) increased hyperbolically with irradiance towards saturation. In contrast, the ratio of NADPH to NADP did not change much as irradiances increased from low to high photon flux densities. When ATP, the phosphorylation potential and the assimilatory force, FA (the product of phosphorylation potential and NADPH/NADP ratio), were plotted against assimilation, ATP increased relatively less than assimilation, whereas the phosphorylation potential increased somewhat more steeply than assimilation did. A linear relationship existed between assimilation and FA at lower irradiances. The assimilatory force FA increased more than assimilation did when irradiances were very high. Differences from previous observations, where FA was under some conditions higher at low than at high rates of carbon assimilation, are explained by differences in flux resistances caused not only by stomatal diffusion resistance but also by differences in the activity of light-regulated enzymes, (ii) The relationship between P700 oxidation and a fast absorption change with a maximum close to 520 nm on one hand and carbon assimilation on the other hand was largely linear under the specific conditions of the experiments. A similar linear relationship existed also between the quantum efficiency of electron flow through photosystem II and the quantum efficiency of photosystem I electron transport. (iii) Whereas the increase in non-photochemical fluorescence quenching, qN, was similar to the increase in assimilation, the relationship between light scattering and assimilation was distinctly sigmoidal. Light scattering appeared to be a better indicator of control of photosystem II activity under excessive irradiation than qN. (iv) The results are discussed in relation to the relative significance of chloroplast levels of ATP and NADPH and of the assimilatory force FA in driving carbon assimilation. From the observations, the proton/electron (H+/e) ratio of linear electron transport is suggested to be 3 and the H+/ATP ratio to be 4 in leaves. An H+/e ratio of 3 implies the existence of an obligatory Q-cycle in leaves.Abbreviations FA assimilatory force - Fo fluorescence after long dark adaptation - Fm maximum fluorescence level - Fs steady-state fluorescence - PGA 3-phosphoglycerate - PFD photon flux density - P700 (P700+) electron-donor pigment in the reaction center of PSI (its oxidized form) - QA primary quinone acceptor of PSII - qP photochemical quenching - qN non-photochemical quenching - PSII relative quantum efficiency of energy conversation at the level of photosystem II - PSI relative quantum efficiency of photosystem II This research was supported by the Sonderforschungsbereich 251 of the University of Würzburg and the Stiftung Volkswagenwerk. U.G. is a member of the Graduate College of the Julius-von-Sachs Institut für Biowissenschaften, University of Würzburg, being on leave from Tartu University, Tartu, Estonia. The authors are grateful to Prof. A. Laisk, Chair of Plant Physiology, Tartu University, for stimulating discussions.  相似文献   

3.
Summary Detailed growth analysis in conjunction with information on leaf display and nitrogen uptake was used to interpret competition between Abutilon theophrasti, a C3 annual, and Amaranthus retroflexus, a C4 annual, under ambient (350 l l-1) and two levels of elevated (500 and 700 l l-1) CO2. Plants were grown both individually and in competition with each other. Competition caused a reduction in growth in both species, but for different reasons. In Abutilon, decreases in leaf area ratio (LAR) were responsible, whereas decreased unit leaf rate (ULR) was involved in the case of Amaranthus. Mean canopy height was lower in Amaranthus than Abutilon which may explain the low ULR of Amaranthus in competition. The decrease in LAR of Abutilon was associated with an increase in root/shoot ratio implying that Abutilon was limited by competition for below ground resources. The root/shoot ratio of Amaranthus actually decreased with competition, and Amaranthus had a much higher rate of nitrogen uptake per unit of root than did Abutilon. These latter results suggest that Amaranthus was better able to compete for below ground resources than Abutilon. Although the growth of both species was reduced by competition, generally speaking, the growth of Amaranthus was reduced to a greater extent than that of Abutilon. Regression analysis suggests that the success of Abutilon in competition was due to its larger starting capital (seed size) which gave it an early advantage over Amaranthus. Elevated CO2 had a positive effect upon biomass in Amaranthus, and to a lesser extent, Abutilon. These effects were limited to the early part of the experiment in the case of the individually grown plants, however. Only Amaranthus exhibited a significant increase in relative growth rate (RGR). In spite of the transitory effect of CO2 upon size in individually grown plants, level of CO2 did effect final biomass of competitively grown plants. Abutilon grown in competition with Amaranthus had a greater final biomass than Amaranthus at ambient CO2 levels, but this difference disappeared to a large extent at elevated CO2. The high RGR of Amaranthus at elevated CO2 levels allowed it to overcome the difference in initial size between the two species.This study was supported by a grant from the US Department of Energy  相似文献   

4.
Summary Diurnal changes in chlorophylla fluorescence were determined in four species, differing in life form, in Portugal during the summer of 1989. These includedOpuntia ficus-indica, a CAM plant, andHelianthus annuus, Ficus carica andArbutus unedo, three C3 species. Steady state fluorescence yield,F S, and maximum fluorescence yield,F M′, were determined at different times of the day. Using the model of Genty et al. (1989), the photon use efficiency of photosystem II electron transport,φ e, was calculated from (F M′−F S)/F M′. Diurnal changes in relative rate of non-cyclic electron transport through photosystem II,J e, were derived by multiplyingφ e by the incident photon flux density (PFD). WhenJ e, determined for each species for various points in time throughout the day, was plotted against corresponding values of PFD, the light response curves obtained showed thatJ e was linearly dependent on PFD in low light and approached saturation in high light. The highest values ofJ e were observed inHelianthus annuus, followed byOpuntia ficus-indica, Ficus carica andArbutus unedo. The proportion of the xanthophyll zeaxanthin to total carotenoids, determined around noon, was inversely related to maximum rates ofJ e.  相似文献   

5.
Glycerol induced a limitation on photosynthetic carbon assimilation by phosphate when supplied to leaves of barley (Hordeum vulgare L.) and spinach (Spinacia oleracea L.). This limitation by phosphate was evidenced by (i) reversibility of the inhibition of photosynthesis by glycerol by feeding orthophosphate (ii) a decrease in light-saturated rates of photosynthesis and saturation at a lower irradiance, (iii) the promotion of oscillations in photosynthetic CO2 assimilation and in chlorophyll fluorescence, (iv) decreases in the pools of hexose monophosphates and triose phosphates and increases in the ratio of glycerate-3-phosphate to triose phosphate, (v) decreased photochemical quenching of chlorophyll fluorescence, and increased non-photochemical quenching, specifically of the component which relaxed rapidly, indicating that thylakoid energisation had increased. In barley there was a massive accumulation of glycerol-3-phosphate and an increase in the period of the oscillations, but in spinach the accumulation of glycerol-3-phosphate was comparatively slight. The mechanism(s) by which glycerol feeding affects photosynthetic carbon assimilation are discussed in the light of these results.Abbreviations Chl chlorophyll - C i intercellular concentration of CO2 - P phosphate - PGA glycerate-3-phosphate - Pi orthophosphate - triose-P sum of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate  相似文献   

6.
Light-induced changes in the fluorescence of the pH-indicating dyes pyranine or 5-(and 6-)carboxy-2, 7-dichlorofluorescein (CDCF) which had been fed to leaves were examined to monitor cellular pH changes. After short-term feeding of pyranine (pK 7.3) to leaves of Amaranthus caudatus L., a NAD-malic-enzyme-type C4 plant, vascular bundles and surrounding cells became fluorescent. Fluorescence emission from mesophyll cells required longer feeding times. In CO2-free air, pyranine fluorescence increased much more on illumination after mesophyll cells had become fluorescent than when only the vascular bundles and the bundle sheath of Amaranthus leaves had been stained. After short feeding times and in the absence of actinic illumination, CO2 decreased pyranine fluorescence very slowly in Amaranthus and rapidly in C3 leaves. After prolonged feeding times, the extent of the light-dependent increase in pyranine fluorescence was several times greater in different C4 plants than in C3 species. The kinetics of the fluorescence changes were also remarkably different in C3 and C4 plants. Carbon dioxide (500 l · l–1) suppressed the light-induced increase in pyranine fluorescence more in C4 than in C3 leaves. Light-dependent changes in light scattering, which are indicative of chloroplast energization, and in 410-nm transmission, which indicate chloroplast movement, differed kinetically from those of the changes in pyranine fluorescence. Available evidence indicated that light-dependent changes in pyranine fluorescence did not originate from the apoplast of leaf cells. Microscopic observation led to the conclusion that, after prolonged feeding times or prolonged incubation, changes in pyranine fluorescence emitted from C4 leaves reflect pH changes mainly in the cytosol of mesophyll cells. A transient acidification reaction indicated by quenching of pyranine fluorescence in the dark-light transient and not observed in C3 species is attributed to the carboxylation of phosphoenolpyruvate. After short feeding times and in the absence of actinic illumination, CO2 (250 l l–1) decreased pyranine fluorescence very slowly in Amaranthus and more rapidly in C3 leaves. After prolonged feeding times, both the rate and the extent of CO2-dependent quenching of pyranine fluorescence increased, but the increase was insufficient to indicate the presence of highly active carbonic anhydrase in the compartment from which pyranine fluorescence was emitted. In contrast to pyranine, CDCF (pK 4.8) did not increase but rather decreased its fluorescence on illumination of an Amaranthus leaf, indicating acidification of an acidic compartment, most probably the vacuole of green leaf cells. The pattern of the acidification reaction was similar in C4 and C3 leaves. The remarkably large extent of the light-dependent increase in pyranine fluorescence from leaves of C4 species and its slow kinetics are proposed to be caused by an alkalization of the cytosol which in the absence of CO2 is larger in the mesophyll than in the bundle sheath. It gives rise to deprotonation of dye originally located in the mesophyll and, in addition, of dye which diffuses from the bundle sheath into the mesophyll following a pH gradient. Implications of slow diffusional transport of pyranine and CO2 between mesophyll and bundle-sheath cells and the fast metabolite transport required in C4 photosynthesis are discussed.Abbreviations CDCF 5-(and 6-)carboxy-2,7-dichlorofluorescein - DHAP dihydroxyacetone phosphate - PGA 3-phosphoglycerate This work was supported by the Sonderforschungsbereiche 176 and 251 of the University of Würzburg and by the Gottfried-Wilhelm-Leibniz Program of the Deutsche Forschungsgemeinschaft. A.S.R. was the recipient of a fellowship of the Alexander-von-Humboldt Foundation. We are grateful to Mrs. S. Neimanis for cooperation.  相似文献   

7.
P700 is rapidly, but only transiently photooxidized upon illuminating dark-adapted leaves. Initial oxidation is followed by a reductive phase even under far-red illumination which excites predominantly photosystem (PS) I. In this phase, oxidized P700 is reduced by electrons coming from PSII. Charge separation in the reaction center of PSI is prevented by the unavailability of electron acceptors on the reducing side of PSI. It is subsequently made possible by the opening of an electron gate which is situated between PSI and the electron acceptor phosphoglycerate. Electron acceptors immediately available for reduction while the gate is closed corresponded to 10 nmol · (mg chlorophyll)–1 electrons in geranium leaves, 16 nmol · (mg chlorophyll)–1 in sunflower and 22 nmol · (mg chlorophyll)–1 in oleander. Reduction of NADP during the initial phase of P700 oxidation showed that the electron gate was not represented by ferredoxin-NADP reductase. Availability of ATP indicated that electron flow was not hindered by deactivation of the thylakoid ATP synthetase. It is concluded that NADP-dependent glyceraldehydephosphate dehydrogenase is completely deactivated in the dark and activated in the light. The rate of activation depends on the length of the preceding dark period. As chloroplasts contain both NAD- and NADP-dependent glyceraldehydephosphate dehydrogenases, deactivation of the NADP-dependent enzyme disconnects chloroplast NAD and NADP systems and prevents phosphoglycerate reduction in the dark at the expense of NADPH and ATP which are generated by glucose-6-phosphate oxidation and glycolytic starch breakdown, respectively.Abbreviations Chl chlorophyll - P700 electron donor pigment in the reaction center of photosystem I Cooperation of the Institute of Botany of the University of Würzburg with the Institute of Astrophysics and Atmospheric Physics of the Estonian Academy of Sciences in Tartu was supported by the Deutsche Forschungsgemeinschaft and the Estonian Academy of Sciences. This work was performed within the Sonderforschungsbereich 251 of the University of Würzburg.  相似文献   

8.
Oscillations in the rate of photosynthesis of sunflower (Helianthus annuus L.) leaves were induced by subjecting leaves, whose photosynthetic apparatus had been activated, to a sudden transition from darkness or low light to high-intensity illumination, or by transfering them in the light from air to an atmosphere containing saturating CO2. It was found that at the first maximum, light-and CO2-saturated photosynthesis can be much faster than steady-state photosynthesis. Both QA in the reaction center of PS II and P700 in the reaction center of PS I of the chloroplast electron-transport chain were more oxidized during the maxima of photosynthesis than during the minima. Maxima of P700 oxidation slightly preceded maxima in photosynthesis. During a transition from low to high irradiance, the assimilatory force FA, which was calculated from ratios of dihydroxyacetone phosphate to phosphoglycerate under the assumption that the reactions catalyzed by NADP-dependent glyceraldehydephosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase are close to equilibrium, oscillated in parallel with photosynthesis. However, only one of its components, the calculated phosphorylation potential (ATP)/(ADP)(Pi), paralleled photosynthesis, whereas calculated NADPH/NADP ratios exhibited antiparallel behaviour. When photosynthetic oscillations were initiated by a transition from low to high CO2, the assimilatory force FA declined, was very low at the first minimum of photosynthesis and increased as photosynthesis rose to its second maximum. The observations indicate that the minima in photosynthesis are caused by lack of ATP. This leads to overreduction of the electron-transport chain which is indicated by the reduction of P700. During photosynthetic oscillations the chloroplast thylakoid system is unable to adjust the supply of ATP and NADPH rapidly to demand at the stoichiometric relationship required by the carbonreduction cycle.Abbreviations PGA 3-phosphoglycerate - DHAP dihydroxyacetone phosphate - P700 electron-donor pigment in the reaction enter of PS I - QA quinone acceptor in the reaction center of PS II This work received support from the Estonian Academy of Sciences, the Bavarian Ministry of Science and Art and the Sonderforschungsbereich 251 of the University of Würzburg. We are grateful for criticism by D.A. Walker, Robert Hill Institute, University of Sheffield, U.K. and by Mark Stitt, Institute of Botany, University of Heidelberg, FRG.  相似文献   

9.
The rate of CO2 fixation (Fc) and 680 nm chlorophyll fluorescence emission (F680) were measured simultaneously during induction of photosynthesis in Zea mays L. leaves under varying experimental conditions in order to assess the validity of fluorescence as an indicator of in vivo photosynthetic carbon assimilation. Z. mays leaves showed typical Kautsky fluorescence induction curves consisting of a fast rise in emission (O to P) followed by a slow quenching via a major transient (S-M) to a steady-state (T). After an initial lag, net CO2 assimilation commenced at a point corresponding to the onset of the S-M transient on the F680 induction curve. Subsequently, Fc and F680 always arrived at a steady-state simultaneously. Decreasing the dark-adaption period increased the rate of induction of both parameters. Alteration of leaf temperature produced anti-parallel changes in induction characteristics of Fc and F680. Reducing the CO2 level to below that required for saturation of photosynthesis also produced anti-parallel changes during induction, however, at CO2 concentrations tenfold greater than the atmospheric level the rate of F680 quenching from P to T was appreciably reduced without a similar change in the induction of Fc. Removal of CO2 at steady-state produced only a small increase in F680 and a correspondingly small decrease in F680 occurred when CO2 was re-introduced. The complex relationship between chlorophyll fluorescence and carbon assimilation in vivo is discussed and the applicability of fluorescence as an indicator of carbon assimilation is considered.Abbreviations Fc rate of CO2 fixation - F680 fluorescence emission at 680 nm  相似文献   

10.
Summary Pure and mixed cultures of the dicotyledons Atriplex hortensis L. (C3 plant) and Amaranthus retroflexus L. (C4 plant) were maintained under open air conditions in standard soil at low and high nitrogen supply levels.A comparison of shoot dry weight and shoot length in the various series shows that the growth of the aboveground parts of both species was severely reduced under low N conditions. In both pure and mixed cultures the differences resulting from low N vs. high N conditions was less pronounced with Atriplex (C3 plant) than with Amaranthus (C4 plant). The root dry weight of the two species was not reduced so much under low N conditions as was the shoot dry weight. The low N plants were found to contain a larger proportion of their biomass in the roots than did the high N plants. In general the root proportion of Atriplex was greater than that of Amaranthus. The contents of organic nitrogen and nitrate and the nitrate reductase activity (NRA) per g dry weight of both species decreased continually throughout the experiments. With the exception of young plants, the low N plants always had tower contents of organic nitrogen and nitrate and nitrate reductase activities than did the high N plants. The highest values of NRA were measured in the leaf laminae. The eaves also exhibited the highest concentrations of organic nitrogen. The highest nitrate concentrations, however, were observed in the shoot axis, and in most cases the lowest nitrate values were found in the laminae. At the end of ne growing season this pattern was found to have been reversed with Atriplex, but not with Amaranthus. Thus Atriplex was able to maintain a higher NRA in the laminae than Amaranthus under low N conditions.The transpiration per leaf area of the C4 plant Amaranthus during the course of a day was substantially lower than that of the C3 plant Atriplex. There were no significant differences in transpiration between the low N and high N series of Amaranthus. The low N plants of Atriplex, however, clearly showed in most cases higher transpiration rates than the corresponding high N plants. These different transpiration rates of the high N and the low N Atriplex plants were also reflected in a distinct 13C discrimination.The sum of these results points to the conclusion that the C3 plant Atriplex hortensis can maintain a better internal inorganic nitrogen supply than the C4 plant Amaranthus retroflexus under low N conditions and an ample water supply, due to the larger root proportion and the more pronounced and flexible transpiration of the C3 plant.Dedicated to Prof. Dr. Karl Mägdefrau, Deisenhofen, on the ocasion of his 80th birthday  相似文献   

11.
Photosystem II chlorophyll fluorescence and leaf net gas exchanges (CO2 and H2O) were measured simultaneously on bean leaves (Phaseolus vulgaris L.) submitted either to different ambient CO2 concentrations or to a drought stress. When leaves are under photorespiratory conditions, a simple fluorescence parameter F/ Fm (B. Genty et al. 1989, Biochem. Biophys. Acta 990, 87–92; F = difference between maximum, Fm, and steady-state fluorescence emissions) allows the calculation of the total rate of photosynthetic electron-transport and the rate of electron transport to O2. These rates are in agreement with the measurements of leaf O2 absorption using 18O2 and the kinetic properties of ribulose-1,5bisphosphate carboxylase/oxygenase. The fluorescence parameter, F/Fm, showed that the allocation of photosynthetic electrons to O2 was increased during the desiccation of a leaf. Decreasing leaf net CO2 uptake, either by decreasing the ambient CO2 concentration or by dehydrating a leaf, had the same effect on the partitioning of photosynthetic electrons between CO2 and O2 reduction. It is concluded that the decline of net CO2 uptake of a leaf under drought stress is only due, at least for a mild reversible stress (causing at most a leaf water deficit of 35%), to stomatal closure which leads to a decrease in leaf internal CO2 concentration. Since, during the dehydration of a leaf, the calculated internal CO2 concentration remained constant or even increased we conclude that this calculation is misleading under such conditions.Abbreviations Ca, Ci ambient, leaf internal CO2 concentrations - Fm, Fo, Fs maximum, minimal, steady-state fluorescence emission - Fv variable fluorescence emission - PPFD photosynthetic photon flux density - qp, qN photochemical, non-photochemical fluorescence quenching - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

12.
Summary Gas exchange and chlorophyll fluorescence techniques were used to evaluate the hypothesis that leaf movement in Vitis californica Benth. (California wild grape) allows a compromise between sunlight interception and stress damage in order to maximize photosynthetic carbon gain over the life of the leaf. Leaves that were restrained horizontally tolerated their increased radiation loads if critical temperatures were not exceeded. Reductions in photosynthetic capacity and the F V/F M fluorescence ratio only occurred in leaves that attained high temperatures. Leaf orientation and canopy position were important determinants of leaf temperature. These results indicate that excessive leaf temperature, not high PFD, can be a principle cause of reduced carbon gain and senescence in this species in the wild. Leaf movement appears to protect photosynthetic components in midsummer.  相似文献   

13.
Leaves of Pelargonium zonale L. and Spinacia oleracea L. were fumigated with high concentrations of SO2 for very short periods of time with the aim of first producing acute symptoms of damage and then observing repair. The response of different photosynthetic parameters to SO2 was monitored during and after fumigation. The following results were obtained: (1) Inhibition of CO2 assimilation in the light was accompanied by increased reduction of the quinone acceptor, QA, of photosystem II and by increased oxidation of the electrondonor pigment P700 of photosystem I. Increased control of photosystem II activity in the SO2-inhibited state was also indicated by increased light scattering and by increased non-photochemical quenching of chlorophyll fluorescence. Both are indicators of chloroplast energization. Apparently, SO2 did not decrease but rather increased energization of the chloroplast thylakoid system by light. (2) Accumulation of dihydroxyacetone phosphate, fructose-1,6-phosphate and ribulose-1,5-phosphate and a decrease of 3-phosphoglycerate and hexosephosphate indicated that SO2 inhibited enzymes of the Calvin cycle. (3) Stimulated postillumination CO2 evolution suggested that when photosynthesis declined respiration increased to provide energy for repair reactions. (4) Increased leaf absorbance at 505 nm indicated increased stimulation of zeaxanthin formation in thylakoid membranes under the influence of SO2. A similar increase in 505-nm absorbance could be induced by high concentrations of CO2. In darkened leaves, SO2 did not produce changes in 505-nm absorbance. (5) While zeaxanthin formation was stimulated, changes in the fluorescence of the pH-indicating dye pyranine, which had been fed to the leaves, indicated acidification of the cytoplasm of leaf cells by SO2. Maximum acid production by SO2 required light. In contrast, cytoplasmic acidification of leaf cells by CO2 was similar in the light and in the dark. (6) Since zeaxanthin formation is known to depend on the acidification of the thylakoid lumen, SO2-dependent zeaxanthin formation indicated SO2-dependent acidification of the thylakoid lumen as the indirect result of cytoplasmic acidification by SO2. (7) Inhibition of photosynthesis and other effects of SO2 were fully reversible in the light. Detoxification of SO2 and reactivation of the photosynthetic apparatus were slow or absent in the dark. Light had a dual effect on the action of SO2. Transiently, it first increased the extent of inhibition of assimilation, but, finally, it reversed inhibition. Sulfur dioxide was inhibitory as a consequence of the chemical reactivity of its hydration products rather than as a result of cellular acidification by the produced acid. The initial acidification was followed by an appreciable alkalisation demonstrating the action of the pH-stat mechanism. (8) The data are discussed in relation to SO2 toxicity under field conditions when plants are chronically exposed to polluted air.Abbreviations Chl chlorophyll - DHAP dihydroxyacetone phosphate - FBP fructose-1,6-bisphosphate - F6P fructoce-6-phosphate - F, Fm, Fm, Fo, Fo chlorophyll fluorescence levels - PGA 3-phosphoglycerate - P700 primary donor of photosystem I - QA primary quinone acceptor of photosystem II - qp photochemical quenching of chlorophyll fluorescence - NPQ non-photochemical quenching of chlorophyll fluorescence - RuBP ribulose-1,5-bisphosphate Dedicated to Professor O.L. Lange on the occasion of his 65th birthdayOn leave from the Centre for Multidisciplinary Sciences, University of Belgrade, YugoslaviaThis work was supported by the Deutsche Forschungsgemeinschaft within the Sonderforschungsbereich 251 of the University of Würzburg. S. V.-J. acknowledges support by the Leibniz program of the Deutsche Forschungsgemeinschaft and by the Fonds for Science of the Republic of Serbia (contract no. 8604). We are grateful to Drs. Z.-H. Yin, U. Takahama and K.-J. Dietz (Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg, FRG) for cooperation and helpful discussions.  相似文献   

14.
J. D. Tenhunen 《Oecologia》1982,53(3):310-316
Summary The gas exchange of leaves of Amaranthus retroflexus (C4) measured under fluctuating environmental conditions in an experimental garden in Würzburg was compared with that of Glycine max and Chenopodium album (C3). Consistent with previous observations, Amaranthus had higher leaf diffusion resistance than the C3 species and low internal air space carbon dioxide concentration. Due to high photosynthetic capacity, Amaranthus fixed as much carbon during the light as the C3 species, even at low temperatures and low light intensities. Low rates of dark respiration of leaves potentially enhances the ability of Amaranthus to grow rapidly after establishment in a disturbed habitat. The data suggest that some populations of Amaranthus retroflexus are adapted to cool climate conditions but are also able to exploit high temperature situations.  相似文献   

15.
Abstract

Ecological aspects of C3, C4 and CAM photosynthetic pathways. - Three different photosynthetic CO2 fixation pathways are known to occur in higher plants. However all three pathways ultimately depend on the Calvin-Benson cycle for carbon reduction. The oxygenase activity of RuBP carboxilase is responsible for photorespiratory CO2 release. Both C4 and CAM pathways behave as a CO2 concentrating mechanism which prevent photorespiration. The CO2-concentrating mechanism in C4 plants is based on intracellular symplastic transport of C4 dicarboxylic acids from mesophyll-cells to the adjacent bundle-sheath cells. On the contrary in CAM plants the CO2-concentrating mechanism is based on the intracellular transport of malic acid into and out of the vacuole.

The C4 photosynthetic pathway as compared to the C3 pathway permits higher rates of CO2 fixation in high light and high temperature environments at low costs in terms of water loss, given the stability of the photosynthetic apparatus under such conditions.

CAM is interpreted as an adaptation to arid environments because it enables carbon assimilation to take place at very low water costs during the night when the evaporative demand is low. Nevertheless many aquatic species of Isoetes and some relatives are CAM, suggesting the adaptive role of CAM to environments which become depleted in CO2.

The photosynthetic carbon fixation pathway certainly contributes to the ecological success of plants in different environments. However the distribution of plants may also reflect their biological history. On the other hand plants with different photosynthetic pathways coexist in many communities and tend to share resources in time. In any case some generalizations are possible: C4 plants enjoy an ecological advantage in hot, moist, high light regions while the majority of species in desert environments are C3; CAM plants are more frequent in semiarid regions with seasonal rainfall, coastal fog deserts, and in epiphytic habitats in tropical rain forests.  相似文献   

16.
In the article, we report that effects of nano-anatase on the spectral characteristics and content of light-harvesting complex II (LHCII) on the thylakoid membranes of spinach were investigated. The results showed that nano-anatase treatment could increase LHCII content on the thylakoid membranes of spinach and the trimer of LHCII; nano-anatase could enter the spinach chloroplasts and bind to PSII. Meanwhile, spectroscopy assays indicated that the absorption intensity of LHCII from nano-anatase-treated spinach was obviously increased in the red and the blue region, fluorescence quantum yield near 685 nm of LHCII was enhanced, the fluorescence excitation intensity near 440 and 480 nm of LHCII significantly rose and F 480/F 440 ratio was reduced. Oxygen evolution rate of PSII was greatly improved. Together, nano-anatase promoted energy transferring from chlorophyll (chl) b and carotenoid to chl a, and nano-anatase TiO2 was photosensitized by chl of LHCII, which led to enhance the efficiency of absorbing, transferring, and converting light energy.  相似文献   

17.
The maximum quantum yields (a,c) for CO2 uptake in low-oxygen atmospheres were determined for 11 species of C3 vascular plants of diverse taxa, habitat and life form using an Ulbricht-sphere leaf chamber. Comparisons were also made between tissues of varied age within species. The species examined were Psilotum nudum (L.) P. Beauv., Davallia bullata Wall. ex Hook., Cycas revoluta Thunb., Araucaria heterophylla (Salisb.) Franco, Picea abies (L.) Karst., Nerium oleander L., Ruellia humilis Nutt., Pilea microphylla (L.) Karst., Beaucarnea stricta Lem., Oplismenus hirtellus (L.) P. Beauv. and Poa annua L. Quantum yields were calculated from the initial slopes of the response of CO2 uptake to the quantity of photons absorbed in conditions of diffuse lighting. Regression analysis of variance of the initial slopes of the response of CO2 uptake to photon absorption failed to show any statistically significant differences between age classes within species or between the mature photosynthetic organs of different species. The constancy of a,c was apparent despite marked variation in the light-saturated rates of CO2 uptake within and between species. The mean a,c was 0.093±0.003 for 11 species. By contrast, surface absorptance varied markedly between species from 0.90 to 0.60, producing proportional variation in the quantum yield calculated on an incidentlight basis. The ratio of variable to maximum fluorescence emission at 695 nm for the same tissues also failed to show any statistically significant variation between species, with a mean of 0.838±0.008. Mean values of a,c reported here for C3 species, in the absence of photorespiration, are higher than reported in previous surveys of vascular plants, but consistent with recent estimates of the quantum yields of O2 evolution.Abbreviations and Symbols A rate of CO2 uptake per unit projected area (mol · m–2 · s–1) - Fm the maximum fluorescence emission at 695 nm in saturating excitation light when closure of PSII reaction centres is maximal (relative units) - Fo the ground fluorescence at 695 nm when all PSII reaction centres are assumed open (relative units) - Fv the difference between Fm and Fo - JQ rate of CO2 uptake by the sample (nmol · s–1) - JQ rate of photon absorption by the sample (nmol · s–1) - Q absorbed photon flux per unit of projected area (nmol · m–2 · s–1) - 1 the light absorptance of photosynthetic organs (dimensionless) - s1 and s'1 the total and projected surface areas of the photosynthetic organs examined (m2) - a,c and i,c the quantum yields for CO2 uptake on an absorbed- and incident-light basis, respectively (dimensionless) - a,o the quantum yield for O2 evolution on an absorbed-light basis (dimensionless) This work was supported by grant PI7179-BIO, FWF, Austria to H.B-N. and by a British Council travel award to S.P.L. This work was completed under the auspices of U.S. Department of Energy under Contract No. DE-AC02-76CH00016. We also thank Dr. K.J. Parkinson of PP Systems, Hitchin, UK for the loan of a prototype of a commercial integrating-sphere leaf chamber developed from our design.  相似文献   

18.
Species in the Laxa and Grandia groups of the genus Panicum are adapted to low, wet areas of tropical and subtropical America. Panicum milioides is a species with C3 photosynthesis and low apparent photorespiration and has been classified as a C3/C4 intermediate. Other species in the Laxa group are C3 with normal photorespiration. Panicum prionitis is a C4 species in the Grandia group. Since P. milioides has some leaf characteristics intermediate to C3 and C4 species, its photosynthetic response to irradiance and temperature was compared to the closely related C3 species, P. laxum and P. boliviense and to P. prionitis. The response of apparent photosynthesis to irradiance and temperature was similar to that of P. laxum and P. boliviense, with saturation at a photosynthetic photo flux density of about 1 mmol m-2 s-1 at 30°C and temperature optimum near 30°C. In contrast, P. prionitis showed no light saturation up to 2 mmol m-2 s-1 and an optimum temperature near 40°C. P. milioides exhibited low CO2 loss into CO2-free air in the light and this loss was nearly insensitive to temperature. Loss of CO2 in the light in the C3 species, P. laxum and P. boliviense, was several-fold higher than in P. milioides and increased 2- to 5-fold with increases in temperature from 10 to 40°C. The level of dark respiration and its response to temperature were similar in all four Panicum species examined. It is concluded that the low apparent photorespiration in P. milioides does not influence its response of apparent photosynthesis to irradiance and temperature in comparison to closely related C3 Panicum species.Abbreviations AP apparent photosynthesis - I CO2 compensation point - gl leaf conductance; gm, mesophyll conductance - PPFD photosynthetic photon flux density - PR apparent photorespiration rate - RuBPC sibulose bisphosphate carboxylase  相似文献   

19.
The activities of the carboxylating enzymes ribulose-1,5-biphosphate (RuBP) carboxylase and phosphoenolpyruvate (PEP) carboxylase in leaves of three-week old Zea mays plants grown under phytotron conditions were found to vary according to leaf position. In the lower leaves the activity of PEP carboxylase was lower than that of RuBP carboxylase, while the upper leaves exhibited high levels of PEP carboxylase. Carbon dioxide compensation points and net photosynthetic rates also differed in the lower and upper leaves. Differences in the fine structure of the lowermost and uppermost leaves are shown. The existence of both the C3 and C4 photosynthetic pathways in the same plant, in this and other species, is discussed.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-biphosphate  相似文献   

20.
The photosynthetic characteristics of four transgenic rice lines over-expressing rice NADP-malic enzyme (ME), and maize phosphoenolpyruvate carboxylase (PC), pyruvate,orthophosphate dikinase (PK), and PC+PK (CK) were investigated using outdoor-grown plants. Relative to untransformed wild-type (WT) rice, PC transgenic rice exhibited high PC activity (25-fold increase) and enhanced activity of carbonic anhydrase (more than two-fold increase), while the activity of ribulose-bisphosphate carboxylase/oxygenase (Rubisco) and its kinetic property were not significantly altered. The PC transgenic plants also showed a higher light intensity for saturation of photosynthesis, higher photosynthetic CO2 uptake rate and carboxylation efficiency, and slightly reduced CO2 compensation point. In addition, chlorophyll a fluorescence analysis indicates that PC transgenic plants are more tolerant to photo-oxidative stress, due to a higher capacity to quench excess light energy via photochemical and non-photochemical means. Furthermore, PC and CK transgenic rice produced 22–24% more grains than WT plants. Taken together, these results suggest that expression of maize C4 photosynthesis enzymes in rice, a C3 plant, can improve its photosynthetic capacity with enhanced tolerance to photo-oxidation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号