首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized the induction kinetics of approximately 1,700 proteins during entry into and survival in carbon-starved stationary phase by Mycobacterium smegmatis. Strikingly, among the patterns of expression observed were a group of proteins that were expressed in exponential-phase cultures and severely repressed in 48-h stationary-phase cultures (Spr or stationary-phase-repressed proteins) but were synthesized again at high levels in > or =128-day stationary-phase cultures (Spr(128) proteins). A number of Spr(128) proteins were identified, and they included the heat shock protein DnaK, the tricarboxylic acid cycle enzyme succinyl coenzyme A synthase, a FixA-like flavoprotein, a single-stranded DNA binding protein, and elongation factor Tu (EF-Tu). The identification of EF-Tu as an Spr(128) protein is significant, as ribosomal components are known to be expressed in a growth rate-dependent way. We interpreted these data in terms of a model whereby stationary-phase mycobacteria comprise populations of cells that differ in both their growth status and gene expression patterns. To investigate this further, we constructed gene fusions between the rpsL gene promoter (which heads the Mycobacterium smegmatis operon encoding the tuf gene encoding EF-Tu) or the rrnA promoter gene and an unstable variant of green fluorescent protein. While the majority of cells in old stationary-phase cultures had low levels of fluorescence and so rpsL expression, a small but consistently observed population of approximately 1 in 1,000 cells was highly fluorescent. This indicates that a small fraction of the cells was expressing rpsL at high levels, and we argue that this represents the growing subpopulation of cells in stationary-phase cultures.  相似文献   

2.
As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell-specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells.  相似文献   

3.
IMR90 human fibroblasts were labelled by incubation of cells for 48 h in medium containing 10% serum and [3H]leucine. The labelled protein was degraded at a rate of 1%/h during a subsequent incubation in medium with 10% serum. Incubation in medium without serum caused a transient enhancement of the degradation of endogenous protein, which was also found in cells labelled in medium without serum. The degradation of micro-injected haemoglobin was enhanced by serum deprivation in a non-transient manner. These results suggest that enhanced degradation in serum-free medium occurs only for a subpopulation of cell proteins and that it appears transient because the major part of the pool of susceptible endogenous proteins is being degraded during the first 20-30 h in serum-free unlabelled medium. Protein turnover in various cell compartments was measured by a double-labelling technique. Most of the enhanced degradation in serum-deprived cultures (73-83%) was due to breakdown of cytosolic proteins. The enhanced degradation of cytosolic proteins seemed to affect several proteins irrespective of their molecular mass or metabolic stability.  相似文献   

4.
Under conditions of starvation for fixed nitrogen, cells of the filamentous cyanobacterium Anabaena variabilis Kütz, degrade much of their protein prior to heterocyst differentiation. Cells starved for a source of fixed nitrogen initially degraded about 2% of their protein per hour; by 24 h after nitrogen stepdown about 40% of the protein was degraded. Most of the acid-soluble radiolabeled material was excreted into the medium. Proteolysis was completely inhibited by chloramphenicol, by cyanide, or in the dark, hut was only partially inhibited in the presence of dichlorophenyl dimethylurea. Methionine sulfoximine (MSX) (an inhibitor of glutamine synthetase) in the presence of ammonia caused heterocysts to form. MSX treated cells degraded protein; however, the amount of protein degraded was much less than in cells starved for ammonia. Glutamine, which can serve as a nitrogen source for this strain, did not prevent starvation-induced proteolysis and did not prevent the differentiation of heterocysts.  相似文献   

5.
Rat embryo fibroblasts, prelabeled with [14C]leucine, showed an enhanced degradation of cell protein as well as increased peptide release when placed in a serum-deficient medium. NH4Cl inhibited only the induced proteolysis, but had no effect on basal protein turnover. Electron microscopy studies showed that enhanced proteolysis was associated with an increase in autophagic vacuoles containing amorphous and membranous debris, and that NH4Cl markedly increased the number of these intracellular vacuoles. Upon release from NH4Cl inhibition, these cells showed a compensatory enhanced release of 14C into the medium and a decrease in the number of intracellular degradative vacuoles. We conclude that enhanced proteolysis reflects an activation of the autophagic-lysosomal system in these cells and that NH4Cl inhibits the final hydrolysis and release steps in this mechanism.  相似文献   

6.
Homologous cytosol was introduced into 3T3-L1 cells by two different methods. Erythrocytes loaded with radiolabelled cytosolic proteins extracted from 3T3-L1 cells were fused with the aid of Sendai virus to 3T3-L1 cells, which were then seeded to confluent and non-confluent cultures. Cytosolic proteins were also introduced into cells by the technique of scrape-loading. In confluent cells, injected cytosolic proteins were recovered largely (54-93%) in a sedimentable (6 X 10(6) gav.-min) fraction from recipient cells irrespective of the method of introduction or of radiolabelling of the injected proteins [( 125I]iodination, reductive methylation with NaB3H4 and backbone labelling with L-[4,5-3H]leucine). The degradation of microinjected cytosolic proteins was in all cases inhibited by the lysosomotropic agent NH4Cl to a greater extent (32-75%) than that observed for endogenous cytosolic (less than or equal to 19%) proteins (labelled with L-[4,5-3H]leucine). In growing cells both endogenous total cell proteins and microinjected proteins were degraded at a slower rate than in confluent cell monolayers. The inhibition by NH4Cl of the degradation of both the endogenous and microinjected proteins is decreased compared with the inhibition observed in confluent monolayers. The results are discussed in terms of the cytoplasmic capacity to segregate microinjected homologous proteins before protein degradation can take place.  相似文献   

7.
Homozygous deletion or mutation in the survival motor neuron (SMN)1 gene causes proximal spinal muscular atrophy (SMA), whereas SMN2 acts as a modifying gene that can influence the severity of SMA. It has been suggested that restoration of the SMN protein level in neuronal cells may prevent cell loss and may be helpful for treatment of SMA. Recent studies indicate that the ubiquitin/proteasome pathway is a major system for proteolysis of intracellular proteins. In this study, we investigate whether SMN protein is degraded via the ubiquitin/proteasome pathway. Primary fibroblasts were established from the skin biopsies of SMA patients and the effect of a proteasome inhibitor MG132 and lysosome inhibitor NH(4)Cl on SMN protein level was examined. We found that MG132, but not NH(4)Cl, significantly increased the amount and nuclear accumulation of SMN protein in SMA patient's fibroblasts. Immunoprecipitation/western blot analysis indicated that SMN protein was ubiquitinated in cells. In vitro protein ubiquitination assay also demonstrated that SMN protein could be conjugated with ubiquitin. Taken together, we have provided clear evidences that degradation of SMN protein is mediated via the ubiquitin/proteasome pathway and suggest that proteasome inhibitors may up-regulate SMN protein level and may be useful for the treatment of SMA.  相似文献   

8.
Bacterial cells degrade intracellular proteins at elevated rates during starvation and can selectively degrade proteins by energy-dependent processes. Sporulating bacteria can degrade protein with apparent first-order rate constants of over 0.20 h-1. We have shown, with an optimized [14C]leucine-labeling and chasing procedure, in a chemically defined sporulation medium, that intracellular protein degradation in sporulating cells of Bacillus subtilis 168 (trpC2) is apparently energy dependent. Sodium arsenate, sodium azide, carbonyl cyanide m-chlorophenylhydrozone, and N,N'-dicyclohexylcarbodiimide, at levels which did not induce appreciable lysis (less than or equal to 10%) over 10-h periods of sporulation, inhibited intracellular proteolysis by 13 to 93%. Exponentially growing cells acquired arsenate resistance. In contrast to earlier reports, we found that chloramphenicol (100 micrograms/ml) strongly inhibited proteolysis (68%) even when added 6 h into the sporulation process. Restricting the calcium ion concentration (less than 2 microM) in the medium had no effect on rates or extent of vegetative growth, strongly inhibited sporulation (98%), and inhibited rates of proteolysis by 60% or more. Inhibitors of energy metabolism, at the same levels which inhibited proteolysis, did not affect the rate or degree of uptake of Ca2+ by cells, which suggested that the Ca2+ and metabolic energy requirements of proteolysis were independent. Restricting the Ca2+ concentration in the medium reduced by threefold the specific activity in cells of the major intracellular serine proteinase after 12 h of sporulation. Finally, cells of a mutant of B. subtilis bearing an insertionally inactivated gene for the Ca2(+)-dependent intracellular proteinase-1 degraded protein in chemically defined sporulation medium at a rate indistinguishable from that of the wild-type cells for periods of 8 h.  相似文献   

9.
Rat embryo fibroblasts grown in Eagle's minimal essential medium with 10% serum were labeled with L-[14C]leucine. After a 24 h cold chase, rates of proteolysis were evaluated by measuring the appearance of trichloroacetic acid-soluble 14C in the media. Cells remaining in minimal essential medium with 10% serum (basal) showed a proteolysis rate of 1% per h, whereas cells placed in minimal essential medium alone (serum-deficient) showed a stimulation of proteolysis to 3–4% per h. This enhanced proteolysis was transitory, occuring only for the first 4–8 h after cells were placed in the serum-deficient media. Vinblastine 10−5 M inhibited the enhanced proteolysis 40% but had no effect on basal proteolysis. Control experiments showed no detectable hydrolysis of extracellular proteins, nor did vinblastine affect the rate of protein synthesis. These data suggest that basal and enhanced proteolysis have at least partially distinct mechanisms in the cell and that only enhanced proteolysis involves microtubules.  相似文献   

10.
Three proteins, including the beta-keto acyl synthase and the acyl carrier protein, involved in the synthesis of the polyketide antibiotic tetracenomycin C by Streptomyces glaucescens GLA.0 were produced in Escherichia coli by using the T7 RNA polymerase-dependent pT7-7 expression vector. Changing the N-terminal codon usage of two of the genes greatly increased the level of protein produced without affecting mRNA levels, suggesting improvements in translational efficiency. Western immunoblot analysis of cytoplasmic and membrane fractions of S. glaucescens with antibodies raised to synthetic oligopeptides corresponding to the two presumed components of the beta-keto acyl synthase indicated that both proteins were membrane bound; one appears to be proteolytically cleaved before or during association with the membrane. The beta-keto acyl synthase could be detected in stationary-phase cultures but not in rapidly growing cultures, correlating with the time of appearance of tetracenomycin C in the medium.  相似文献   

11.
The effect of the lysosomotropic agent NH4Cl and the proteinase inhibitors leupeptin, Z-Phe-Ala-CHN2 (benzyloxycarbonylphenylalanylalanyldiazomethane) and pepstatin on the degradation of intracellular proteins in Swiss 3T3 mouse and normal human fibroblasts in both the exponential and stationary (confluent) growth phases in nutritionally complete conditions was investigated. Inhibitory effects of all four agents on degradation in both growth states were detected. The increase in proteolysis normally occurring as cells approach confluence could be completely blocked by NH4Cl, by Z-Phe-Ala-CHN2, or by pepstatin in the presence of leupeptin. These results suggest that the lysosomal system is responsible for the regulation of proteolysis at confluence and further confirm its role in 'basal' proteolysis in growing cells.  相似文献   

12.
Intracellular proteolysis was measured in primary cultures of newborn rat skeletal (gastrocnemius) and cardiac muscle cells by release to the medium of trichloroacetic acid-soluble label from cells grown in the presence of 14C-labeled phenylalanine. Exposure of the cultured cells to 10?7M dexamethasone for 5 days starting at day 0 of culture resulted in an enhancement of proteolysis in skeletal muscle but not in cardiac muscle cells. Dexamethasone did not affect cell viability measured by release of label from cells preloaded with Na2 51CrO4, release of creatine phosphokinase, and release of lactic dehydrogenase into the culture medium. Incorporation of 3H-thymidine into the cells increased during the first 3 to 4 days of culture and subsequently decreased, indicating that cell proliferation ceases at that time. When the exposure to dexamethasone was started on day 4 of culture, i.e., at a postmitotic stage, and continued for 4 days, proteolysis was again found to increase in skeletal but not cardiac cells, thereby suggesting that the response to the hormone is independent of the proliferative state of the culture. Ammonium chloride at a concentration of 10 mM produced a 50% reduction of the basal proteolysis in cultures of skeletal muscle cells and did not affect proteolysis in cardiac muscle cells. Exposure to ammonium chloride did not prevent the dexamethasone-induced increase of proteolysis in skeletal muscle cells. Serum-deprivation induced enhanced proteolysis which was not affected by NH4Cl in both cell types. It is concluded that the differential responses of the two cultures to dexamethasone reflects the sparing of heart proteins and concomitant wasting of skeletal muscle proteins by glucocorticoid hormones in vivo, and that the enhancement of proteolysis by the glucocorticoid hormone or by serum-deprivation is not sensitive to the lysosomotropic agent NH4Cl. Thus, while a lysosomal-autophagic enzyme system is responsible for almost half of the basal proteolysis, the accelerated proteolysis occurs via ammonium chloride-insensitive enzymes.  相似文献   

13.
We report that degradation of proteins microinjected into human fibroblasts is accompanied by release into the culture medium of peptide fragments and intact proteins as well as single amino acids. For the nine proteins and polypeptides microinjected, acid-precipitable radioactivity, i.e. peptide fragments and/or intact proteins, ranged from 10 to 67% of the total released radioactivity. Peptide fragments and/or intact protein accounted for 60% of the radioactivity released into the medium by cells microinjected with ribonuclease A. Two major radiolabeled peptide fragments were found, and one was of an appropriate size to function as an antigen in antigen-presenting cells. The peptides released from microinjected ribonuclease A were derived from lysosomal pathways of proteolysis based on several lines of evidence. Previous studies have shown that microinjected ribonuclease A is degraded to single amino acids entirely within lysosomes (McElligott, M. A., Miao, P., and Dice, J. F. (1985) J. Biol. Chem. 260, 11986-11993). We show that release of free amino acids and peptide fragments and/or intact protein was equivalently stimulated by serum deprivation and equivalently inhibited by NH4Cl. We also show that lysosomal degradation of endocytosed [3H]ribonuclease A was accompanied by the release of two peptide fragments similar in size and charge to those from microinjected [3H]ribonuclease A. These findings demonstrate that degradation within lysosomes occurs in a manner that spares specific peptides; they also suggest a previously unsuspected pathway by which cells can secrete cytosol-derived polypeptides.  相似文献   

14.
Proteins in yeast growing in a medium with glucose or ethanol as carbon source were pulse-labelled by a 20-min incubation with14C-leucine. The proteins in cells labelled and growing in a glucose medium were stable; when this population was transferred to the ethanol medium, the proteins were degraded at a rate of 1.1 %/h. The population labelled and growing in an ethanol medium displayed a fraction of short-lived proteins (about 4 %), decaying with a half-life of 0.5 h. The size of the short-lived protein fraction increased slightly after shifts to a glucose as well as to a starvation medium. The residual long-lived proteins underwent a turnover of 1.3 –1.4 %/h in the ethanol or the starvation medium and of 0.3 %/h in the glucose medium, respectively. Proteins labelled in the presence of canavanine or ethionine were degraded at only a slightly greater rate than the normal proteins. Participant of the UNESCO Postgraduate Course “On Modern Problems in Biology”.  相似文献   

15.
1. Degradation rate constants for individual biotin-labelled proteins were measured in Swiss 3T3-L1 adipocytes that had been incubated with inhibitors of autophagy or of lysosomal proteolysis. 2. Inhibitory effects produced by 10 mM-3-methyladenine and a combination of 5 mM-NH4Cl and leupeptin (50 micrograms/ml) were approximately equal. The inclusion of NH4Cl did not significantly enhance the responses to 3-methyladenine, suggesting that autophagy was already maximally inhibited. 3. The extent of inhibition by 3-methyladenine or by the NH4Cl/leupeptin mixture was similar for the cytosolic enzyme acetyl-CoA carboxylase and for the three mitochondrial carboxylases. This inhibition averaged 50%. The breakdown rate of a more-stable 38 kDa biotin-containing mitochondrial protein was more responsive to the inhibitory agents. These results are best explained by mitochondrial proteolysis occurring via a combination of the degradation of whole mitochondria within autophagic vacuoles, supplemented by the selective intramitochondrial breakdown of more labile proteins. 4. A number of intermediate products in the degradation of biotin-containing proteins were detected. Differences in the patterns of radioactivity between these peptides after incubation of cells in the presence of inhibitors of the breakdown process provided evidence that some peptides were produced before autophagy, others as a result of intralysosomal inhibition, while at least one was associated with intramitochondrial proteolysis.  相似文献   

16.
To elucidate the involvement of proteolysis in the regulation of stationary-phase adaptation, the clpA, clpX, and clpP protease mutants of Escherichia coli were subjected to proteome analysis during growth and during carbon starvation. For most of the growth-phase-regulated proteins detected on our gels, the clpA, clpX, or clpP mutant failed to mount the growth-phase regulation found in the wild type. For example, in the clpP and clpA mutant cultures, the Dps protein, the WrbA protein, and the periplasmic lysine-arginine-ornithine binding protein ArgT did not display the induction typical for late-stationary-phase wild-type cells. On the other hand, in the protease mutants, a number of proteins accumulated to a higher degree than in the wild type, especially in late stationary phase. The proteins affected in this manner include the LeuA, TrxB, GdhA, GlnA, and MetK proteins and alkyl hydroperoxide reductase (AhpC). These proteins may be directly degraded by ClpAP or ClpXP, respectively, or their expression could be modulated by a protease-dependent mechanism. From our data we conclude that the levels of most major growth-phase-regulated proteins in E. coli are at some point controlled by the activity of at least one of the ClpP, ClpA, and ClpX proteins. Cultures of the strains lacking functional ClpP or ClpX also displayed a more rapid loss of viability during extended stationary phase than the wild type. Therefore, regulation by proteolysis seems to be more important, especially in resting cells, than previously suspected.  相似文献   

17.
The effect of the epidermal mitogen, 8-bromo-cAMP, on keratinocyte differentiation was studied. A 3 X 10(-4) M dose of 8-bromo-cAMP was added to primary neonatal mouse epidermal keratinocyte cultures that slowly proliferate, stratify and differentiate over 2-3 weeks time. [3H]Thymidine autoradiography coupled with an NH4Cl plus reducing agent technic which separates basal and differentiating keratinocytes was used to determine the target cell for the 8-bromo-cAMP mitogenic effect. A histologic stain and a four buffer protein extraction protocol, in conjunction with PAGE and fluorographic technics, were used to assess the differentiation of the cultures. The data indicated that 8-bromo-cAMP primarily stimulated the proliferation of the basal cell monolayer. Simultaneous with the mitogenic effect was an increase in the production of keratohyalin granule, keratin and cell envelope proteins, which are specific markers of epidermal differentiation. The results indicate that keratinocytes stimulated by the epidermal mitogen 8-bromo-cAMP simultaneously express differentiation-related processes.  相似文献   

18.
Iodinated colony-stimulating factor produced by L-cells (125I-CSF-1) binds specifically to murine peritoneal exudate macrophages. At 37 degrees C, the cell-bound 125I-CSF-1 was internalized and degraded very rapidly, with the appearance of radioactive iodotyrosine in the medium. At 0 degree C, the cell-bound 125I-CSF-1 was not internalized and degraded, nor did it dissociate from the membrane. The internalization and degradation at 37 degrees C could be blocked or reduced by the presence of phenylglyoxal, methylamine and NH4Cl. The chemical nature of the CSF-1 binding site is polypeptide as judged by its sensitivity to trypsin treatment. After the binding and degradation of unlabeled CSF-1, the exudate cells were no longer able to rebind freshly added 125I-CSF-1, indicating the removal of CSF-1 binding site. The binding capacity of these cells, however, could be restored by prolonged incubation at 37 degrees C but not at 0 degrees C in culture medium containing fetal calf serum.  相似文献   

19.
When cultured fibroblasts are deprived of serum, the degradation of long-lived proteins and RNA increases, the cells stop proliferating, and they decrease in size. To determine the role of the increased protein catabolism in these responses, we studied the effects of inhibitors of intralysosomal proteolysis in Balb/c 3T3 cells. When these cells were placed in serum-deficient medium (0.5% serum), the rate of degradation of long-lived proteins increased about twofold within 30 min. This increase was reduced by 50-70% with inhibitors of lysosomal thiol proteases (Ep475 and leupeptin) or agents that raise intralysosomal pH (chloroquine and NH4Cl). By contrast, these compounds had little or no effect on protein degradation in cells growing in 10% serum. Thus, in accord with prior studies, lysosomes appear to be the site of the increased proteolysis after serum deprivation. When 3T3 cells were deprived of serum for 24-48 hours, the rate of protein synthesis and the content of protein and RNA and cell volume decreased two- to fourfold. The protease inhibitor, Ep475, reduced this decrease in the rate of protein synthesis and the loss of cell protein and RNA. Cells deprived of serum and treated with Ep475 for 24-48 hours had about twice the rate of protein synthesis and two- to fourfold higher levels of protein and RNA than control cells deprived of serum. The Ep475-treated cells were also about 30% larger than the untreated cells. Thus, the protease-inhibitor prevented much of the atrophy induced by serum deprivation. The serum-deprived fibroblasts also stopped proliferating and accumulated in the G1 phase of the cell cycle. The cells treated with Ep475 accumulated in G1 in a manner identical to untreated serum-deprived cells. Other agents which inhibited protein breakdown in serum-deprived cells also did not prevent the arrest of cell proliferation. Thus the enhancement of proteolysis during serum deprivation appears necessary for the decrease in size and protein synthesis, but probably not for the cessation of cell proliferation. When cells deprived of serum in the presence or absence of Ep475 were stimulated to proliferate by the readdition of serum, the larger Ep475-treated cells began DNA synthesis 1-2 hours later than the smaller untreated cells. Thus, after treatment with Ep475, the rate of cell cycle transit following serum stimulation was not proportional to the cell's size, protein, or RNA content, or rate of protein synthesis.  相似文献   

20.
The pathogen Salmonella enterica is known to cause both food poisoning and typhoid fever. Because of the emergence of antibiotic-resistant isolates and the threat of bioterrorism (e.g. contamination of the food supply), there is a growing need to study this bacterium. In this investigation, comparative peptidomics was used to study S. enterica serovar Typhimurium cultured in either a rich medium or in an acidic, low magnesium, and minimal nutrient medium designed to roughly mimic the macrophage phagosomal environment (within which Salmonella are known to survive). Native peptides from cleared cell lysates were enriched by using isopropanol extraction and analyzed by using both LC-MS/MS and LC-FTICR-MS. We identified and quantified 5,163 peptides originating from 682 proteins, and the data clearly indicated that compared with Salmonella cultured in the rich medium, cells cultured in the phagosome-mimicking medium had dramatically higher abundances of a wide variety of protein degradation products, especially from ribosomal proteins. Salmonella from the same cultures were also analyzed using traditional, bottom-up proteomic methods, and when the peptidomics and proteomics data were analyzed together, two clusters of proteins targeted for proteolysis were tentatively identified. Possible roles of targeted proteolysis by phagocytosed Salmonella are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号