首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The role of the non-conserved amino acid residue at position 104 of the class A beta-lactamases, which comprises a highly conserved sequence of amino acids at the active sites of these enzymes, in both the hydrolysis of beta-lactam substrates and inactivation by mechanism-based inhibitors was investigated. Site-directed mutagenesis was performed on the penPC gene encoding the Bacillus cereus 569/H beta-lactamase I to replace Asp104 with the corresponding Staphylococcus aureus PC1 residue Ala104. Kinetic data obtained with the purified Asp104Ala B. cereus 569/H beta-lactamase I was compared to that obtained from the wild-type B. cereus and S. aureus enzymes. Replacement of amino acid residue 104 had little effect on the Michaelis parameters for the hydrolysis of both S- and A-type penicillins. Relative to wild-type enzyme, the Asp104Ala beta-lactamase I had 2-fold higher Km values for benzylpenicillin and methicillin, but negligible difference in Km for ampicillin and oxacillin. However, kcat values were also slightly increased resulting in little change in catalytic efficiency, kcat/Km. In contrast, the Asp104Ala beta-lactamase I became more like the S. aureus enzyme in its response to the mechanism-based inhibitors clavulanic acid and 6-beta-(trifluoromethane sulfonyl)amido-penicillanic acid sulfone with respect to both response to the inhibitors and subsequent enzymatic properties. Based on the known three-dimensional structures of the Bacillus licheniformis 749/C, Escherichia coli TEM and S. aureus PC1 beta-lactamases, a model for the role of the non-conserved residue at position 104 in the process of inactivation by mechanism-based inhibitors is proposed.  相似文献   

2.
1. The amino acid composition of the beta-lactamase from E. coli (R-1818) was determined. 2. The R-1818 beta-lactamase is inhibited by formaldehyde, hydroxylamine, sodium azide, iodoacetamide, iodine and sodium chloride. 3. The K(m) values for benzylpenicillin, ampicillin and oxacillin have been determined by using the R-factor enzyme from different host species. The same values were obtained, irrespective of the host bacterium. 4. The molecular weight of the enzyme was found to be 44600, and was the same for all host species. 5. The relationship of R-1818 and R-GN238 beta-lactamases is discussed.  相似文献   

3.
Bacterial resistance to beta-lactam/beta-lactamase inhibitor combinations by single amino acid mutations in class A beta-lactamases threatens our most potent clinical antibiotics. In TEM-1 and SHV-1, the common class A beta-lactamases, alterations at Ser-130 confer resistance to inactivation by the beta-lactamase inhibitors, clavulanic acid, and tazobactam. By using site-saturation mutagenesis, we sought to determine the amino acid substitutions at Ser-130 in SHV-1 beta-lactamase that result in resistance to these inhibitors. Antibiotic susceptibility testing revealed that ampicillin and ampicillin/clavulanic acid resistance was observed only for the S130G beta-lactamase expressed in Escherichia coli. Kinetic analysis of the S130G beta-lactamase demonstrated a significant elevation in apparent Km and a reduction in kcat/Km for ampicillin. Marked increases in the dissociation constant for the preacylation complex, KI, of clavulanic acid (SHV-1, 0.14 microm; S130G, 46.5 microm) and tazobactam (SHV-1, 0.07 microm; S130G, 4.2 microm) were observed. In contrast, the k(inact)s of S130G and SHV-1 differed by only 17% for clavulanic acid and 40% for tazobactam. Progressive inactivation studies showed that the inhibitor to enzyme ratios required to inactivate SHV-1 and S130G were similar. Our observations demonstrate that enzymatic activity is preserved despite amino acid substitutions that significantly alter the apparent affinity of the active site for beta-lactams and beta-lactamase inhibitors. These results underscore the mechanistic versatility of class A beta-lactamases and have implications for the design of novel beta-lactamase inhibitors.  相似文献   

4.
Lysobacter enzymogenes produces an inducible beta-lactamase and induction with 100 micrograms ampicillin ml-1 resulted in an increase of more than 100-fold in enzyme activity. Various other beta-lactam antibiotics also served as effective inducers. The enzyme was obtained from cells by osmotic shocking to release periplasmic components and it was purified primarily by ion-exchange chromatography and PAGE. The beta-lactamase consists of one polypeptide with a molecular mass of about 28 kDa and an isoelectric point greater than 9.6. It is strongly inhibited by p-chloromercuribenzoate and clavulanic acid but not by EDTA. The enzyme readily hydrolyses several penicillins and cephalosporins, but not oxacillin or cloxacillin. The enzyme therefore belongs to group 2b of the bacterial beta-lactamases.  相似文献   

5.
Sequence of the Citrobacter freundii OS60 chromosomal ampC beta-lactamase gene   总被引:12,自引:0,他引:12  
The Citrobacter freundii OS60 ampC beta-lactamase gene was sequenced and found to encode a 380-amino-acid-long precursor with a 19-residue signal peptide. The mature protein has a predicted molecular mass of 39781 Da. The first 60 residues of the purified enzyme, as determined by sequential Edman degradation, are identical to the amino acid sequence inferred from the gene sequence. Also, the amino acid composition determined for the purified beta-lactamase and that given by the gene sequence are in good agreement. 77% of the amino acid positions hold identical residues in the C. freundii and Escherichia coli K12 chromosomal AmpC beta-lactamases. This clearly puts the C. freundii enzyme into the class C of beta-lactamases. Of the 68 amino-terminal residues determined for the Enterobacter cloacae P99 beta-lactamase, 44 are identical to the corresponding residues of the C. freundii enzyme. All three enzymes, as well as that of Pseudomonas aeruginosa 18S/H are highly similar around the active-site serine at position 64 of the mature protein.  相似文献   

6.
54 beta-lactamase producing E. coli were tested to observe their eventual capacity to transfer beta-lactamase production by conjugation to a receiving E. coli K12 C600 Na-. About 16% (9/54) of these strains transferred beta-lactamase producing capacity. MICs of five beta-lactam antibiotics (Ampicillin, Cephaloridine, Cephalexine, Cefuroxime, Cefotaxime) were performed against E. coli donors and E. coli K12 C600 transconjugates. It was observed a remarkable increase only of Ampicillin MICs against all transconjugates++. Beta-lactamases produced by donors and transconjugants were isolated and purified by sonication and high speed centrifugation. Sensitivity of the six antibiotics to these purified beta-lactamases was assessed by a spectrophotometric method that utilizes the velocity of cytochrome c reduction. beta-lactamases produced by transconjugants have identical substrate profile that beta-lactamases produced by donors.  相似文献   

7.
beta-lactamase production was evaluated by chromogenic cephalosporin 87/312 in 116 E. coli isolated from clinical sources. Such test revealed beta-lactamase production in 54 strains out of 116 (46%): MICs of eight beta-lactam antibiotics (Ampicillin, Piperacillin, Cefazoline, Cephaloridine, Cephalexine, Cefuroxime, Cefotaxime, Cefotaxime) were determined using a miniaturized dilution broth method. Cefotaxime and Ceftriaxome and Ceftriaxone showed the highest antibacterial activity. All beta-lactamases produced by E. coli strains under examination were isolated and purified by ultrasonic disruption and high speed centrifugation. Sensitivity of the eight antibiotics to purified beta-lactamases was assessed by a spectrophotometric method that utilizes the velocity of cytochrome c reduction. The sensitivity to beta-lactamases was reflected in the in vitro activity of the antibiotics as assessed by the determination of the MICs.  相似文献   

8.
beta-lactamase from Streptomyces cacaoi. Purification and properties   总被引:6,自引:0,他引:6  
A beta-lactamase was purified to an apparently homogeneous state from Streptomyces cacaoi. The molecular weight calculated from the mobility in sodium dodecyl sulfate polyacrylamide gel electrophoresis was 34,000. pI was 4.7 and the optimal pH was 6.5. The optimum temperature was found to be between 40 degrees C and 45 degrees C, but the enzyme lost activity above 50 degrees C. N-Bromosuccinimide was the strongest inhibitor among the reagents tested, followed by iodine. p-Chloromercuribenzoate showed a weak inhibitory effect. Diisopropylfluorophosphate and sodium chloride did not show any inhibitory effect on the enzyme. The beta-lactamase catalyzed the hydrolysis of methicillin and cloxacillin at two-thirds to one-third the rate of benzylpenicillin. On the other hand, the enzyme hydrolyzed cephalosporins and 7-methoxycephalosporin only slowly. With benzylpenicillin as a substrate, the Km increased sharply with decreasing pH and the pK alpha estimated from the Km versus pH curve was 6.5 to 7.0. In contrast, with cloxacillin as a substrate, the Km showed a minimum at pH 7.5. The Vmax changed with pH in a bell-shaped curve in the case of benzylpenicillin, but the Vmax for cloxacillin changed only within a small range. In addition, the ratio of the hydrolysis rate of benzylpenicillin and cloxacillin at 30 degrees C and 20 degrees C (V30 degrees/V20 degrees) was found to be 1.23 and 1.55, respectively. These results indicate that the S. cacaoi beta-lactamase behaves differently toward benzylpenicillin and cloxacillin, although both are penicillins. S. cacaoi seems to release beta-lactamase into the culture medium soon after its biosynthesis without retaining it in the membrane and the soluble fraction. The possible relationships between beta-lactamases from Streptomyces and those from pathogenic bacteria are discussed.  相似文献   

9.
1. A beta-lactamase has been purified from a strain of Enterobacter cloacae. 2. This enzyme is about eighty times as active against cephaloridine as against benzylpenicillin or ampicillin. 3. The enzyme has a net positive charge at pH8.0 and a molecular weight of about 14000. 4. An approximate amino acid composition of the enzyme is reported.  相似文献   

10.
The conserved Class A beta-lactamase active site residue Tyr-105 was substituted by saturation mutagenesis in TEM-1 beta-lactamase from Escherichia coli in order to clarify its role in enzyme activity and in substrate stabilization and discrimination. Minimum inhibitory concentrations were calculated for E. coli cells harboring each Y105X mutant in the presence of various penicillin and cephalosporin antibiotics. We found that only aromatic residues as well as asparagine replacements conferred high in vivo survival rates for all substrates tested. At position 105, the small residues alanine and glycine provide weak substrate discrimination as evidenced by the difference in benzylpenicillin hydrolysis relative to cephalothin, two typical penicillin and cephalosporin antibiotics. Kinetic analyses of mutants of interest revealed that the Y105X replacements have a greater effect on K(m) than k(cat), highlighting the importance of Tyr-105 in substrate recognition. Finally, by performing a short molecular dynamics study on a restricted set of Y105X mutants of TEM-1, we found that the strong aromatic bias observed at position 105 in Class A beta-lactamases is primarily defined by a structural requirement, selecting planar residues that form a stabilizing wall to the active site. The adopted conformation of residue 105 prevents detrimental steric interactions with the substrate molecule in the active site cavity and provides a rationalization for the strong aromatic bias found in nature at this position among Class A beta-lactamases.  相似文献   

11.
Chen CC  Herzberg O 《Biochemistry》2001,40(8):2351-2358
The serine-beta-lactamases hydrolyze beta-lactam antibiotics in a reaction that proceeds via an acyl-enzyme intermediate. The double mutation, E166D:N170Q, of the class A enzyme from Staphylococcus aureus results in a protein incapable of deacylation. The crystal structure of this beta-lactamase, determined at 2.3 A resolution, shows that except for the mutation sites, the structure is very similar to that of the native protein. The crystal structures of two acyl-enzyme adducts, one with benzylpenicillin and the other with cephaloridine, have been determined at 1.76 and 1.86 A resolution, respectively. Both acyl-enzymes show similar key features, with the carbonyl carbon atom of the cleaved beta-lactam bond covalently bound to the side chain of the active site Ser70, and the carbonyl oxygen atom in an oxyanion hole. The thiadolizine ring of the cleaved penicillin is located in a slightly different position than the dihydrothiazine ring of cephaloridine. Consequently, the carboxylate moieties attached to the rings form different sets of interactions. The carboxylate group of benzylpenicillin interacts with the side chain of Gln237. The carboxylate group of cephaloridine is located between Arg244 and Lys234 side chains and also interacts with Ser235 hydroxyl group. The interactions of the cephaloridine resemble those seen in the structure of the acyl-enzyme of beta-lactamase from Escherichia coli with benzylpenicillin. The side chains attached to the cleaved beta-lactam rings of benzylpenicillin and cephaloridine are located in a similar position, which is different than the position observed in the E. coli benzylpenicillin acyl-enzyme complex. The three modes of binding do not show a trend that explains the preference for benzylpenicillin over cephaloridine in the class A beta-lactamases. Rather, the conformational variation arises because cleavage of the beta-lactam bond provides additional flexibility not available when the fused rings are intact. The structural information suggests that specificity is determined prior to the cleavage of the beta-lactam ring, when the rigid fused rings of benzylpenicillin and cephaloridine each form different interactions with the active site.  相似文献   

12.
6-Acetylmethylenepenicillanic acid is a new kinetically irreversible inhibitor of various beta-lactamases. Interaction between 6-acetylmethylenepenicillanate and purified TEM-1 beta-lactamase during the inactivation process was investigated. 6-Acetylmethylenepenicillanate inhibited the enzyme in a second-order fashion with a rate constant of 0.61 microM-1 . S-1. The apparent inactivation constant decreased in the presence of increasing concentrations of the substrate benzylpenicillin. Native enzyme (pI 5.4) was converted into two inactive forms with pI 5.25 and 5.15, the latter form being transient and readily converted into the more stable form with pI 5.15. Even a 50-fold excess of inhibitor over enzyme did not produce any other inactivated species of the enzyme. All the results obtained suggest that 6-acetylmethylenepenicillanate is a potent irreversible and active-site-directed inhibitor of TEM-1 beta-lactamase.  相似文献   

13.
14.
Y Asano  Y Kato  A Yamada  K Kondo 《Biochemistry》1992,31(8):2316-2328
The gene for D-aminopeptidase (dap) has been isolated from the bacterium Ochrobactrum anthropi SCRC C1-38 [Asano, Y., Nakazawa, A., Kato, Y., & Kondo, K. (1989) J. Biol. Chem. 264, 14233-14239] and its nucleotide sequence determined. An expression plasmid pC138DP (4.5 kb) was constructed by placing the gene downstream of the lac promoter of pUC19. The amount of the enzyme in the cell-free extract of Escherichia coli JM109/pC138DP was elevated to 288,000 units/L of culture, which is about 3600-fold over that of O. anthropi SCRC C1-38. The enzyme comprised about 30% of the total extractable cellular protein. The gene consisted of an open reading frame of 1560 nucleotides which specifies a protein of Mr 57,257. The deduced amino acid sequence of the enzyme showed that it is related to carboxypeptidase DD, beta-lactamases, and penicillin-binding proteins. Seven mutants of the enzyme were generated by site-specific mutagenesis to explore the roles of the residues of interest, around the sequence Ser61-Xaa-Xaa-Lys64, where Xaa is any amino acid, since the identical sequences also appear in the penicillin-recognizing peptide hydrolases with Ser at the active sites. The mutant enzymes expressed in E. coli were purified to homogeneity and kinetically characterized. Replacements of the site at Ser61 and Lys64 yielded mutants showing significantly reduced Vmax values, while most of the Km values remained unchanged. Changes at Cys60, which is adjacent to the likely active center Ser61, to Ser and Gly resulted in the production of enzyme less sensitive to PCMB, with almost unaltered Vmax/Km values. The enzyme appears to be a serine peptidase rather than a thiol one. The inhibition by PCMB in the wild-type enzyme may have been caused by a formation of a mercaptide bond between Cys 60 and PCMB. Considering that D-aminopeptidase, carboxypeptidase DD (a penicillin-binding protein), and beta-lactamase have a common feature in recognizing peptides containing D-amino acid and that the former two catalyze transpeptidation reactions with substrates containing D-alanyl-D-alanine moieties, we propose that the enzyme is a new member of the "penicillin-recognizing enzymes". We showed that the enzyme is actually inhibited by beta-lactam compounds, such as 6-APA, 7-ACA, benzylpenicillin, and ampicillin, although they are not the substrate for the enzyme. The relationship between the primary structures and the reactions catalyzed by D-aminopeptidase and other serine hydrolases beta-lactamases and carboxypeptidase DD is discussed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Citrobacter freundii GN346 produces a class C beta-lactamase exhibiting the substrate profile of a typical cephalosporinase. The structural and promoter regions of the cephalosporinase gene, comprising 1408 nucleotides, were completely sequenced. The amino acid sequence of the mature enzyme, comprising 361 amino acids, and its molecular mass, 39,878 Da, were determined. The active site was confirmed to be Ser-64. The amino acid sequence of the enzyme differs from that of the cephalosporinase of C. freundii OS60 by nine residues. The nucleotide sequence of the promoter region suggests a possible attenuator structure. Lys-67, one of the most conserved residues found in class A and C beta-lactamases and penicillin-binding proteins, was converted into arginine, threonine or glutamic acid through site-directed mutagenesis. The Glu-67 enzyme had lost the catalytic activity and the Thr-67 enzyme only showed a trace of activity. The Arg-67 enzyme, which retained a significant amount of the activity, was purified. The Km values of the Arg-67 enzyme for cephalothin, cephaloridine and benzylpenicillin are 13-19 times those of the wild-type enzyme; the kcat values for the three substrates are 37%, 3%, and 36% those of the wild-type enzyme, respectively.  相似文献   

16.
The plasmid-encoded beta-lactamase genes of six strains of Staphylococcus aureus were cloned and shown to be expressed in Escherichia coli. The cloned genes were re-introduced into S. aureus via a shuttle vector, and expressed beta-lactamase. However, clones containing only the small amount of DNA found necessary for expression of ampicillin resistance in E. coli did not express beta-lactamase in S. aureus. Much larger pieces of DNA from the original plasmid were necessary to obtain expression in S. aureus. Some of the six strains of S. aureus synthesized beta-lactamase constitutively and some released only a small proportion of the enzyme into the medium. Both these characteristics were maintained in the clones so it is concluded that they are features either of the gene itself or of the surrounding DNA. The cloned genes were sequenced and the putative amino acid sequences of the beta-lactamases were compared. There are several differences between the sequences and in particular one change in the N-terminal region, at a position believed to be especially important for export of proteins from the cell, is thought to have a key effect on whether or not the enzyme is found in the medium.  相似文献   

17.
1. The beta-lactamases specified by Klebsiella aerogenes 418 and the R-factor R-7268 have been partially purified. 2. The molecular weights of the K. aerogenes strains 418 and 373, Aerobacter cloacae 53, R-7268 and R-TEM beta-lactamases were all about 20000; that of the enzymes from Escherichia coli strains 419 and 214T was about 31000. 3. These enzymes were also compared by means of their K(m) values for benzylpenicillin and ampicillin, and their behaviour on starch-gel electrophoresis. 4. The beta-lactamases specified by the two Klebsiella strains, the Aerobacter strain, and the R-factors R-TEM and R-7268 were found to comprise a broadly similar group. However, within this group, only two enzymes seemed to be identical, namely those specified by the two R-factors. The two E. coli strains produce identical beta-lactamases which are very different from the ;Klebsiella/Aerobacter-type' enzymes.  相似文献   

18.
Escherichia coli K-12 minicells were employed to examine polypeptides encoded by plasmids carrying wild-type and mutant Tn1 or Tn3 transposition elements. Tn1- and Tn3-containing minicells express high levels of four transposon-specified polypeptides. Three, of molecular weights 30,000, 28,000, and 25,000, are related immunologically to beta-lactamase, the enzyme responsible for ampicillin hydrolysis. A fourth polypeptide of molecular weight 19,000 is encoded by the Tn1 or Tn3 region which spans the BamHI cleavage site. Mutant transposons which no longer produce this polypeptide transpose at higher than wild-type frequencies to give aberrant transposition products (Gill et al., J. Bacteriol. 136: 742--756, 1978; Heffron et al., Proc. Natl. Acad. Sci U.S.A. 72:3632--3627, 1975). No expression could be detected from a region of the transposons extending from the inverted repeat sequence distal to the beta-lactamase gene to more than half the distance into the Tn1 or Tn3 sequence.  相似文献   

19.
Surveys of beta-lactamases in different parts of the world show an important increase in class C beta-lactamases, thus the study of these enzymes is becoming an important issue. We created an overproduction system for Mox-1, a plasmid class C beta-lactamase, by cloning the gene encoding this enzyme, and placing it under the control of a T7 promoter, using vector pET 28a. The enzyme, purified by ion exchange chromatography, was used to obtain the molecular mass (38246), the N-terminal sequence (GEASPVDPLRPVV), and pI (8.9), and to perform a detailed kinetic study. Cephalotin was used as reporter substrate in the case of poor substrates. The kinetic study showed that benzylpenicillin, cephalotin, cefcapene and moxalactam were good substrates for Mox-1 (k(cat)/K(m) values >2.5 x 10(6) M(-1) s(-1)). On the other hand, ceftazidime and cefepime were poor substrates for this enzyme (K(m) values >200 microM). Clavulanic acid had no inhibitory effect on Mox-1 (K(m)=30.2 mM), however aztreonam behaved as an inhibitor of Mox-1 (K(i)=2.85 microM).  相似文献   

20.
The pH-dependence of class B and class C beta-lactamases.   总被引:5,自引:4,他引:1       下载免费PDF全文
The classification by structure allots beta-lactamases to (at present) three classes, A, B and C. The pH-dependence of the kinetic parameters for class B and class C have been determined. They differ from each other and from class A beta-lactamases. The class B enzyme was beta-lactamase II from Bacillus cereus 569/H/9. The plots of kcat against pH for the hydrolysis of benzylpenicillin by Zn(II)-requiring beta-lactamase II and Co(II)-requiring beta-lactamase II were not symmetrical, but those of kcat/Km were. A similar feature was observed for the hydrolysis of both benzylpenicillin and cephalosporin C by a class C beta-lactamase from Pseudomonas aeruginosa. The results have been interpreted by a scheme in which two ionic forms of an intermediate can give product, but do so at differing rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号