首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Smooth muscle cells were isolated from the circular muscle layer of guinea pig stomach and permeabilized by brief exposure to saponin. Both permeabilized and intact muscle cells contracted in response to cholecystokinin octapeptide (CCK-8) and acetylcholine, but only permeabilized muscle cells contracted in response to inositol 1,4,5-trisphosphate (InsP3). The contractile response to InsP3 was prompt (peak less than 5 s), concentration-dependent (EC50-0.3 microM), and insensitive to antimycin or oligomycin. Contraction induced by either InsP3 or CCK-8 was accompanied by a concentration-dependent increase in free Ca2+ that was directly correlated with the magnitude of contraction. Both InsP3 and CCK-8 caused rapid net efflux of Ca2+ from cells preloaded with 45Ca2+. Contraction, increase in free Ca2+ concentration, and net 45Ca2+ efflux elicited by a combination of maximal concentrations of InsP3 and CCK-8 were not significantly different from those elicited by maximal concentrations of either agent alone. Repeated stimulation of single muscle cells with either InsP3 or CCK-8 in Ca2+-free medium caused eventual loss of the contractile response to all agents. The response to all agents was restored upon re-exposure of the cell to a cytosol-like concentration of Ca2+, implying equal access of InsP3 and receptor-linked agonists to the same intracellular Ca2+ store. The results demonstrate that InsP3 mimics the effects of receptor-linked agonists on contraction and mobilization of intracellular Ca2+ in permeabilized smooth muscle cells that retain the functional properties of intact smooth muscle cells and support a role for InsP3 as membrane-derived messenger responsible for mobilization of intracellular Ca2+ in smooth muscle cells.  相似文献   

2.
The thiol reagent, thimerosal, has been shown to cause an increase in intracellular Ca2+ concentration ([Ca2+]i) in several cell types, and to cause Ca2+ spikes in unfertilized hamster eggs. Using single cell video-imaging we have shown that thimerosal evokes repetitive Ca2+ spikes in intact Fura-2-loaded HeLa cells that were similar in shape to those stimulated by histamine. Both thimerosal- and histamine-stimulated Ca2+ spikes occurred in the absence of extracellular (Ca2+ o), suggesting that they result from mobilization of Ca2+ from intracellular stores. Whereas histamine stimulated formation of inositol phosphates, thimerosal, at concentrations that caused sustained Ca2+ spiking, inhibited basal and histamine-stimulated formation of inositol phosphates. Thimerosal-evoked Ca2+ spikes are therefore not due to the stimulated production of inositol 1,4,5-trisphosphate (InsP3). The effects of thimerosal on Ca2+ spiking were probably due to alkylation of thiol groups on intracellular proteins because the spiking was reversed by the thiol-reducing compound dithiothreitol, and the latency between addition of thimerosal and a rise in [Ca2+]i was greatly shortened in cells where the intracellular reduced glutathione concentration had been decreased by preincubation with DL-buthionine (S,R)-sulfoximine. In permeabilized cells, thimerosal caused a concentration-dependent inhibition of Ca2+ accumulation, which was entirely due to inhibition of Ca2+ uptake into stores because thimerosal did not affect unidirectional 45Ca2+ efflux from stores preloaded with 45Ca2+. Thimerosal also caused a concentration-dependent sensitization of InsP3-induced Ca2+ mobilization: half-maximal mobilization of Ca2+ stores occurred with 161 +/- 20 nM InsP3 in control cells and with 62 +/- 5 nM InsP3 after treatment with 10 microM thimerosal. We conclude that thimerosal can mimic the effects of histamine on intracellular Ca2+ spiking without stimulating the formation of InsP3 and, in light of our results with permeabilized cells, suggest that thimerosal stimulates spiking by sensitizing cells to basal InsP3 levels.  相似文献   

3.
The inositol 1,4,5-trisphosphate receptor (InsP3R) is an intracellular Ca2+ release channel which upon activation initiates many cellular functions. Multiple InsP3R subtypes are expressed in most cell types but the physiological significance of this heterogeneity is poorly understood. This study has directly compared the functional properties of the three different InsP3R isoforms by analyzing their InsP3-induced Ca2+ release (IICR) properties in cell lines which predominantly express each isoform subtype. The InsP3-dependence of the amount or extent of IICR was InsP3R isoform-specific, with the type III isoform having the lowest affinity with respect to Ca2+ release. The transient kinetics of IICR, measured using stopped-flow spectrofluorimetry, however, were similar for all three InsP3R isoforms. At maximal InsP3 concentrations (20 microM) the rate constants where between 0.8 and 1.0 s(-1) for the fast phase and 0.25-0.45 s(-1) for the slow phase. The concentration of InsP3 required to induce half-maximal rates of Ca2+ release (EC50) were also similar for the three isoforms (0.2-0.4 microM for the fast phase and 0.75-0.95 microM for the slow phase). These results indicate the InsP3R channel does not significantly differ functionally in terms of Ca2+ release rates between isoforms. The temporal and spatial features of intracellular Ca2+ signals are thus probably achieved through InsP3R isoform-specific regulation or localization rather than their intrinsic Ca2+ efflux properties.  相似文献   

4.
The kinetics of Ca2+ release and contraction induced by photolytic release of inositol 1,4,5-trisphosphate (InsP3) were determined in permeabilized smooth muscle. The rate of Ca2+ release was half-maximal at 1 microM InsP3. The concentration-dependent delay of Ca2+ release at saturating InsP3 concentration was approximately 10 ms and within the uncertainty of the measurements. The relationship between the delay and InsP3 concentration showed no evidence of a high level (n = 4 or higher) of cooperativity but could not distinguish between no cooperativity (n = 1) or a low level (n = 2) of cooperativity. Submaximal [InsP3] caused only partial Ca2+ release from the InsP3-sensitive stores. InsP3-induced Ca2+ release was markedly potentiated by ATP or by adenosine 5'-(beta,gamma-methylene-triphosphate), but neither the rate nor the amplitude of release was significantly affected by procaine (2-5 mM). Heparin increased the delay between photolysis and Ca2+ release, indicating that the off rate of inert ligand(s) bound to InsP3 receptors may contribute to the physiological delay in Ca2+ release. There was a much longer (370 ms +/- 45 S.E.) delay between the rise of Ca2+ and force development, presumably reflecting events preceding and associated with myosin light chain phosphorylation.  相似文献   

5.
The rapid release of Ca2+ from intracellular stores stimulated with inositol 1,4,5-trisphosphate (InsP3) has required superfusion or stopped-flow techniques to resolve the kinetics of Ca2+ mobilization and made it difficult to determine whether the InsP3 receptor desensitizes during prolonged stimulation. Here we have overloaded the intracellular Ca2+ stores of permeabilized rat hepatocytes by incubating them with ATP and 45Ca2+ in the presence of pyrophosphate, which precipitates Ca2+ within the lumen of the stores. Subsequent ATP removal initiated slow 45Ca2+ efflux that followed zero-order kinetics, allowing us to examine the effects of InsP3 over a prolonged time course. InsP3 produced a concentration-dependent increase in the 45Ca2+ efflux rate that was sustained for several min. The rate rapidly returned to the unstimulated level after the addition of decavanadate, a competitive antagonist of InsP3 at its receptor. Prior incubation with a submaximal concentration of InsP3 (1 microM) did not affect the subsequent enhanced rate of 45Ca2+ efflux stimulated by a higher, but still submaximal, concentration of InsP3 (3 microM). We conclude that prolonged exposure to InsP3 does not desensitize the InsP3 receptor and that intrinsic receptor desensitization cannot provide an explanation for the quantal responses to InsP3 observed in several cell types.  相似文献   

6.
A family of inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) Ca2+ release channels plays a central role in Ca2+ signaling in most cells, but functional correlates of isoform diversity are unclear. Patch-clamp electrophysiology of endogenous type 1 (X-InsP3R-1) and recombinant rat type 3 InsP3R (r-InsP3R-3) channels in the outer membrane of isolated Xenopus oocyte nuclei indicated that enhanced affinity and reduced cooperativity of Ca2+ activation sites of the InsP3-liganded type 3 channel distinguished the two isoforms. Because Ca2+ activation of type 1 channel was the target of regulation by cytoplasmic ATP free acid concentration ([ATP](i)), here we studied the effects of [ATP]i on the dependence of r-InsP(3)R-3 gating on cytoplasmic free Ca2+ concentration ([Ca2+]i. As [ATP]i was increased from 0 to 0.5 mM, maximum r-InsP3R-3 channel open probability (Po) remained unchanged, whereas the half-maximal activating [Ca2+]i and activation Hill coefficient both decreased continuously, from 800 to 77 nM and from 1.6 to 1, respectively, and the half-maximal inhibitory [Ca2+]i was reduced from 115 to 39 microM. These effects were largely due to effects of ATP on the mean closed channel duration. Whereas the r-InsP3R-3 had a substantially higher Po than X-InsP3R-1 in activating [Ca2+]i (< 1 microM) and 0.5 mM ATP, the Ca2+ dependencies of channel gating of the two isoforms became remarkably similar in the absence of ATP. Our results suggest that ATP binding is responsible for conferring distinct gating properties on the two InsP3R channel isoforms. Possible molecular models to account for the distinct regulation by ATP of the Ca2+ activation properties of the two channel isoforms and the physiological implications of these results are discussed. Complex regulation by ATP of the types 1 and 3 InsP3R channel activities may enable cells to generate sophisticated patterns of Ca2+ signals with cytoplasmic ATP as one of the second messengers.  相似文献   

7.
Inositol 1,4,5-trisphosphate (InsP3) is an intracellular messenger generated from the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C in response to Ca(2+)-mobilizing stimuli. InsP3 interacts with a specific receptor responsible for the release of sequestered Ca2+ from an intracellular store. The purpose of the present study was to evaluate the relative affinities of the naturally occurring D-isomer of InsP3 and that of its L-stereoisomer for the InsP3 receptor and the InsP3 metabolizing enzymes from bovine adrenal cortex. The InsP3 receptor recognized D- and L-isomers with respective affinities of 4.8 nM and 7.3 microM. This high degree of selectivity was also reflected in the capacity of both isomers to mobilize Ca2+ from the microsomal preparation. The partially purified InsP3 kinase preparation was also able to discriminate between the two stereoisomers. The activity of the kinase was half-maximally inhibited in the presence of 11 microM L-InsP3, a value much higher than the Km of the kinase for D-InsP3 (0.4 microM). Both stereoisomers exhibited equipotent affinities (around 17 microM) for the particulate preparation of InsP3 phosphatase. The enzyme, however, appeared to hydrolyze L-InsP3 at a much slower rate. These results demonstrated that the different recognition sites for InsP3 were expressing distinct levels of stereoselectivity. This property, which is an important aspect of ligand-receptor interaction, could be exploited for the design of new selective drugs interfering with InsP3 action and metabolism.  相似文献   

8.
In order to test the physiological significance of inositol 1,4,5-trisphosphate (InsP3) in pharmacomechanical coupling, we have utilized two near-physiological systems, in which relatively high molecular weight solutes can be applied intracellularly and receptor coupling is retained: beta-escin permeabilization and reversible permeabilization. We showed that in smooth muscle permeabilized with beta-escin, one of the saponin esters, alpha 1-adrenergic (phenylephrine) and muscarinic (carbachol) agonists, as well as caffeine and InsP3, cause contractions mediated by Ca2+ release. These contractions were calmodulin-dependent and blocked by depletion of Ca2+ stored in the sarcoplasmic reticulum. Intracellular heparin (Mr = about 5000), a blocker of InsP3 binding to its receptor and a specific inhibitor of InsP3-induced Ca2+ release in smooth muscles, inhibited the responses to the agonists and to InsP3, but not those to caffeine, nor did it block the enhanced contractile response to cytoplasmic Ca2+ induced by agonists and by GTP gamma S. Neomycin blocked Ca2+ release induced by carbachol, but not by caffeine. In reversibly permeabilized ileum smooth muscle cells, loaded with Fura-2 acid and heparin, the intracellular heparin inhibited Ca2+ release and contractions induced by carbachol in Ca2+-free, high K+ solution. Heparin did not inhibit the high K+ contractions (with 1.2 mM Ca2+) and had no significant inhibitory effects on carbachol-induced responses in the presence of extracellular Ca2+. These results, obtained under near-physiological conditions, support the conclusion that InsP3 is the major physiological messenger of the Ca2+ release component of pharmacomechanical coupling, but not of the components mediated by Ca2+ influx or by potentiation of the contractile response to Ca2+.  相似文献   

9.
D-myo-Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) regulates intracellular Ca2+ by mobilizing Ca2+ from a non-mitochondrial store. We have investigated the effects of Ca2+ on the binding of [32P]Ins (1,4,5)P3 to permeabilized rat hepatocytes and a liver plasma membrane-enriched fraction. Increasing the free Ca2+ concentration in the medium from 0.1 nM to 0.7 microM increased the capacity of a high affinity binding component (KD = 2-3 nM) in permeabilized cells by a factor of 10. If the membrane fraction was preincubated at 37 degrees C before binding was measured at 4 degrees C, all of the Ins(1,4,5)P3 receptors were transformed to a low affinity state (KD = 65 +/- 12 nM, Bmax = 3.1 +/- 0.1 fmol/mg, n = 4). When 0.7 microM of Ca2+ was added, the receptors were totally transformed to a high affinity state (KD = 2.8 +/- 0.4 nM, Bmax = 2.7 +/- 0.4 fmol/mg, n = 4). The EC50 of the Ca2(+)-induced interconversion of the Ins(1,4,5)P3 receptor was 140 nM. This Ca2(+)-induced transformation of the Ins(1,4,5)P3 receptor from a low affinity to a high affinity state was associated with an inhibition of the Ins(1,4,5)P3-induced Ca2+ release in permeabilized hepatocytes. These data suggest that the Ins(1,4,5)P3-dependent hormones, by increasing the intracellular Ca2+ concentration, induce a reversible transformation of the receptor from its low affinity state, coupled to the Ca2+ release, to a desensitized high affinity state. Transformation of the receptor may play a role in the oscillatory release of Ca2+ observed in single isolated hepatocytes.  相似文献   

10.
Isolated rat enterocytes were permeabilized by saponin treatment. 45Ca2+ was accumulated by these cells when provided with ATP in a medium containing Ca2+ ligands. The use of oxalate, vanadate and mitochondrial inhibitors indicated that both non-mitochondrial and mitochondrial pools are involved. Kinetic analysis of non-mitochondrial Ca2+ uptake revealed a Km of 0.1 microM Ca2+ and a Vmax of 0.4 nmol Ca2+/mg protein X min for this Ca2+-pumping ATPase activity. Mitochondria started to take up Ca2+ between 0.2 and 0.3 microM free Ca2+ reaching maximal rates around 2 microM. At 1 microM free Ca2+ mitochondria accumulated 20 times more Ca2+ than the non-mitochondrial pool. Inositol 1,4,5-trisphosphate released 40% of the Ca2+ content of the non-mitochondrial pool. Half-maximal release was observed at 0.5 and 1.5 microM IP3 in duodenal and ileal cells respectively. These findings support the possibility that the phosphatidyl inositide metabolism plays a role in regulation of electrolyte transport in enterocytes.  相似文献   

11.
1. The Ca2+/calmodulin (CaM) independent activity of inositol 1,4,5-trisphosphate (InsP3) 3-kinase in macrophages could be separated from the dependent activity by serial column chromatography, gel filtration, Orange A and DEAE-5PW. 2. An InsP3 analog which has an aminobenzoyl group on the 2nd carbon of the inositol ring inhibited the conversion of [3H]InsP3 to [3H]InsP4 (inositol 1,3,4,5-tetrakisphosphate) in a dose-dependent manner. The concentration required for half-maximal inhibition (IC50) with the Ca2+/CaM independent enzyme activity was also dependent on the free Ca2+ concentration, as with the dependent activity. 3. These results suggest that a conformational change in the enzyme occurs in response to a change in free Ca2+ concentration, and thus the potency to recognize the InsP3 analog would change, even when the Ca2+/CaM independent enzyme activity was used.  相似文献   

12.
The binding of inositol 1,4,5-trisphosphate (InsP3) to a specific receptor induces the release of Ca2+ from an intracellular store. In the liver, the KD of a low affinity state of the receptor (RL) found at low Ca2+ concentration ([Ca2+]) is in close agreement with the EC50 of the InsP3-induced Ca2+ release. We have developed an experimental procedure for measuring the rate of dissociation of this low affinity [32P]InsP3-receptor complex in less than 1 s. When the receptor was in the RL state, two kinetic components, RL1 and RL2, were identified with respective rate constants (k(off)) of 1-2 s-1 and 0.03-0.06 s-1. Increasing the [Ca2+] up to 1 microM transformed the receptor into the high affinity state (RH) and decreased the dissociation rate constant to 2 x 10(-2) min-1. We also investigated the time course of the transformation of the receptor from the high affinity (RH) to the low affinity state (RL) after decreasing the [Ca2+] to less than 10 nM. This reversion was dramatically dependent on temperature: at 4 degrees C, the receptor was locked in the RH state, whereas at 37 degrees C the receptor reverted to the RL state with a half-time of less than 1 s. The reversion from the RH state to the RL one is associated to a recovery of InsP3-induced 45Ca2+ release on permeabilized hepatocytes. The rapid and reversible transformation of the InsP3 receptor from an active to an inactive state may be a key event in the Ca2+ release process in intact cells.  相似文献   

13.
In cultured human 1321N1 astrocytoma cells, muscarinic receptor stimulation leads to phosphoinositide hydrolysis, formation of inositol phosphates, and mobilization of intracellular Ca2+. Treatment of these cells with 1 microM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) completely blocks the carbachol-stimulated formation of [3H]inositol mono-, bis-, and trisphosphate ( [3H]InsP, [3H]InsP2, and [3H]InsP3). The concentrations of PMA that give half-maximal and 100% inhibition of carbachol-induced [3H]InsP formation are 3 nM and 0.5 microM, respectively. Inactive phorbol esters (4 alpha-phorbol 12,13-didecanoate and 4 beta-phorbol), at 1 microM, do not inhibit carbachol-stimulated [3H]InsP formation. The KD of the muscarinic receptor for [3H]N-methyl scopolamine is unchanged by PMA treatment, while the IC50 for carbachol is modestly increased. PMA treatment also abolishes carbachol-induced 45Ca2+ efflux from 1321N1 cells. The concomitant loss of InsP3 formation and Ca2+ mobilization is strong evidence in support of a causal relationship between these two responses. In addition, our finding that PMA blocks hormone-stimulated phosphoinositide turnover suggests that there may be feedback regulation of phosphoinositide metabolism through the Ca2+- and phospholipid-dependent protein kinase.  相似文献   

14.
Inositol 1,4,5-trisphosphate receptors (InsP3R) play a key role in intracellular calcium (Ca2+) signaling. Three mammalian InsP3R isoforms--InsP3R type 1 (InsP3R1), InsP3R type 2 (InsP3R2), and InsP3R type 3 (InsP3R3) are expressed in mammals, but the functional differences between the three mammalian InsP3R isoforms are poorly understood. Here we compared single-channel behavior of the recombinant rat InsP3R1, InsP3R2, and InsP3R3 expressed in Sf9 cells, reconstituted into planar lipid bilayers and recorded with 50 mM Ba2+ as a current carrier. We found that: 1), for all three mammalian InsP3R isoforms the size of the unitary current is 1.9 pA and single-channel conductance is 74-80 pS; 2), in optimal recording conditions the maximal single-channel open probability for all three mammalian InsP3R isoforms is in the range 30-40%; 3), in optimal recording conditions the mean open dwell time for all three mammalian InsP3R isoforms is 7-8 ms, the mean closed dwell time is approximately 10 ms; 4), InsP3R2 has the highest apparent affinity for InsP(3) (0.10 microM), followed by InsP3R1 (0.27 microM), and then by InsP3R3 (0.40 microM); 5), InsP3R1 has a high-affinity (0.13 mM) ATP modulatory site, InsP3R2 gating is ATP independent, and InsP3R3 has a low-affinity (2 mM) ATP modulatory site; 6), ATP modulates InsP3R1 gating in a noncooperative manner (n(Hill) = 1.3); 7), ATP modulates InsP3R3 gating in a highly cooperative manner (n(Hill) = 4.1). Obtained results provide novel information about functional properties of mammalian InsP3R isoforms.  相似文献   

15.
2-Aminoethoxydiphenylborate (2-APB) inhibits the extent of inositol 1,4,5-trisphosphate (InsP(3))-induced Ca(2+) release from cerebellar microsomes with a potency that is dependent upon the InsP(3) concentration used. At high InsP(3) concentrations (10 microM), the concentration of 2-APB required to cause half-maximal InsP(3)-induced Ca(2+) release (IC(50)) was greater than 1 mM, while at 0.25 microM InsP(3) this reduced to 220 microM. The fact that the inhibition of the extent of InsP(3)-induced Ca(2+) release (IICR) by 2-APB was not restored to control levels by high concentrations of InsP(3), in addition to the fact 2-APB did not substantially inhibit [3H]InsP(3) binding to its receptor, indicates that the inhibition is not competitive in nature. Since the cooperativity of IICR as a function of InsP(3) was reduced in the presence of 2-APB (Hill coefficient changing from 1.9 in the absence of 2-APB to 1.4 in the presence of 1 mM 2-APB), this suggests that it is acting as an allosteric inhibitor. 2-APB also reduces the rate constants for IICR. In cerebellar microsomes this release process is biphasic in nature, with a fast and slow phase. 2-APB appears particularly to affect the fast-phase component. Although 2-APB does not inhibit the ryanodine receptor, it does inhibit the Ca(2+) ATPase activity as well store-operated Ca(2+) entry channels, which may limit its use as a specific membrane permeant InsP(3) receptor inhibitor.  相似文献   

16.
In the accompanying article, we compared main functional properties of the three mammalian inositol 1,4,5-trisphosphate receptors (InsP3R) isoforms. In this article we focused on modulation of mammalian InsP3R isoforms by cytosolic Ca2+. We found that: 1), when recorded in the presence of 2 microM InsP3 and 0.5 mM ATP all three mammalian InsP3R isoforms display bell-shaped Ca2+ dependence in physiological range of Ca2+ concentrations (pCa 8-5); 2), in the same experimental conditions InsP3R3 is most sensitive to modulation by Ca2+ (peak at 107 nM Ca2+), followed by InsP3R2 (peak at 154 nM Ca2+), and then by InsP3R1 (peak at 257 nM Ca2+); 3), increase in ATP concentration to 5 mM had no significant effect of Ca2+ dependence of InsP3R1 and InsP3R2; 4), increase in ATP concentration to 5 mM converted Ca2+ dependence of InsP3R3 from "narrow" shape to "square" shape; 5), ATP-induced change in the shape of InsP3R3 Ca2+ dependence was mainly due to an >200-fold reduction in the apparent affinity of the Ca2+-inhibitory site; 6), the apparent Ca2+ affinity of the Ca2+ sensor region (Cas) determined in biochemical experiments is equal to 0.23 microM Ca2+ for RT1-Cas, 0.16 microM Ca2+ for RT2-Cas, and 0.10 microM Ca2+ for RT3-Cas; and 7), Ca2+ sensitivity of InsP3R1 and InsP3R3 isoforms recorded in the presence of 2 microM InsP3 and 0.5 mM ATP or 2 microM InsP3 and 5 mM ATP can be exchanged by swapping their Cas regions. Obtained results provide novel information about functional properties of mammalian InsP3R isoforms and support the importance of the Ca2+ sensor region (Cas) in determining the sensitivity of InsP3R isoforms to modulation by Ca2+.  相似文献   

17.
The subsecond mobilization of intracellular Ca2+ by IP3 was measured with rapid mixing techniques to determine how cells achieve rapid rises in cytosolic [Ca2+] during receptor-triggered calcium spiking. In permeabilized rat basophilic leukemia cells at 11 degrees C, more than 80% of the 0.7 fmol of Ca2+/cell sequestered by the ATP-driven pump could be released by IP3. Half of the stored Ca2+ was released within 200 ms after addition of saturating (1 microM) IP3. The flux rate was half-maximal at 120 nM IP3. Ca2+ release from fully loaded stores was highly cooperative; the Hill coefficient over the 2-40 nM range was greater than 3. The delay time of channel opening was inversely proportional to [IP3], increasing from 150 ms at 100 nM IP3 to 1 s at 15 nM, indicating that the rate-limiting step in channel opening is IP3 binding. Multiple binding steps are required to account for the observed delay and nonexponential character of channel opening. A simple model is proposed in which the binding of four IP3 molecules to identical and independent sites leads to channel opening. The model agrees well with the data for KD = 18 nM, kon = 1.2 X 10(8) M-1 s-1, and koff = 2.2 s-1. The approximately 1-s exchange time of bound IP3 indicates that the channel gating sites are distinct from binding sites having approximately 100-s exchange times that were previously found with radiolabeled IP3. The approximately 1-1s response time of [Ca2+] to a rapid increase in IP3 level can account for observed rise times of calcium spikes.  相似文献   

18.
The action of inositol 1,4,5-trisphosphate (InsP3) in releasing intracellular Ca2+ is shown to be competitively and potently antagonized by the glycosaminoglycan, heparin. Using either permeabilized cells of the DDT1MF-2 smooth muscle cell line, or an isolated microsomal membrane fraction derived from intact cells, heparin (4-6 kDa) at 10 micrograms/ml was observed to completely block the action of InsP3 in releasing Ca2+ accumulated via the ATP-dependent Ca2+ pump. In permeabilized cells, heparin had no effect on Ca2+ pump activity or on passive Ca2+ fluxes contributing to equilibrium Ca2+ accumulation. Heparin up to 100 micrograms/ml had no effect on the GTP-activated Ca2+ translocation process previously characterized in this cell line. Half-maximal inhibition of Ca2+ release activated by 10 microM InsP3 occurred with heparin at approximately 0.6 and 0.2 microgram/ml in permeabilized cells and isolated microsomes, respectively. Using microsomes, InsP3 dose-response curves in the presence and absence of 0.2 microgram/ml heparin (approximately 40 nM) revealed a 10-fold increase in apparent Km for InsP3 (0.31 microM in the absence of heparin) with no change in Vmax, indicating a competitive action of heparin. The results revealed a very high apparent affinity of heparin for the InsP3 active site, with a calculated Ki value of 2.7 nM. Heparin was shown to rapidly (within 20 s) reverse prior full activation of InsP3-mediated Ca2+ release returning the Ca2+ equilibrium back to that observed without InsP3. This reversal occurs even after prolonged (6 min) InsP3 activation. These results indicate a specific, high affinity, and competitive antagonism of the InsP3 active site by heparin. The rapidly induced reversal of InsP3-activated Ca2+ release by heparin strongly suggests that InsP3 directly activates a channel which remains open only while InsP3 is associated and closes immediately upon InsP3 dissociation.  相似文献   

19.
G Thiel  E A MacRobbie    D E Hanke 《The EMBO journal》1990,9(6):1737-1741
Inositol 1,4,5-trisphosphate (InsP3) was introduced into the cytoplasm of characean algae in two different ways: (i) by iontophoretic injection into cytoplasm-enriched fragments from Chara and (ii) by adding InsP3 to the permeabilization medium of locally permeabilized cells of Nitella. In both systems this operation induced a depolarization of the membrane potential, ranging from a few mV to sequences of action potentials. The effect of InsP3 on locally permeabilized Nitella cells was abolished when InsP3 was added together with 30 mM EGTA. When inositol 1,4-bisphosphate or myo-inositol were substituted for InsP3 in this system, there was no change in the membrane potential. On the other hand, increasing the free Ca2+ concentration in the permeabilization medium induced, in a similar fashion to InsP3, action potentials. Similarities between InsP3 and Ca2+ action were also observed upon injection into Chara fragments. Both injections increased an inward current. In the first few seconds after injection the current/voltage characteristics of the InsP3-induced current resembled those of the Ca2(+)-sensitive current. Subsequently, differences between the InsP3- and Ca2(+)-induced phenomena became apparent in that the InsP3-induced current continued to increase while the Ca2(+)-induced current declined, returning to the resting level. Our results suggest that these plant cells contain an InsP3 sensitive system that, under experimental conditions, is able to affect membrane transport via an increase in cytoplasmic free Ca2+.  相似文献   

20.
The inositol 1,4,5-trisphosphate receptor (InsP3R) family of Ca2+ release channels is central to intracellular Ca2+ signaling in mammalian cells. The InsP3R channels release Ca2+ from intracellular compartments to generate localized Ca2+ transients that govern a myriad of cellular signaling phenomena (Berridge, 1993. Nature. 361:315-325; Joseph, 1996. Cell Signal. 8:1-7; Kume et al., 1997. Science. 278:1940-1943; Berridge, 1997. Nature. 368:759-760). express multiple InsP3R isoforms, but only the function of the single type 1 InsP3R channel is known. Here the single-channel function of single type 2 InsP3R channel is defined for the first time. The type 2 InsP3R forms channels with permeation properties similar to that of the type 1 receptor. The InsP3 regulation and Ca2+ regulation of type 1 and type 2 InsP3R channels are strikingly different. Both InsP3 and Ca2+ are more effective at activating single type 2 InsP3R, indicating that single type 2 channels mobilize substantially more Ca2+ than single type 1 channels in cells. Furthermore, high cytoplasmic Ca2+ concentrations inactivate type 1, but not type 2, InsP3R channels. This indicates that type 2 InsP3R channel is different from the type 1 channel in that its activity will not be inherently self-limiting, because Ca2+ passing through an active type 2 channel cannot feed back and turn the channel off. Thus the InsP3R identity will help define the spatial and temporal nature of local Ca2+ signaling events and may contribute to the segregation of parallel InsP3 signaling cascades in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号