首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD4(+)CD25(+) regulatory T cells (CD25(+) Tregs) play a key role in immune regulation. Since hepatitis C virus (HCV) persists with increased circulating CD4(+)CD25(+) T cells and virus-specific effector T-cell dysfunction, we asked if CD4(+)CD25(+) T cells in HCV-infected individuals are similar to natural Tregs in uninfected individuals and if they include HCV-specific Tregs using the specific Treg marker FoxP3 at the single-cell level. We report that HCV-infected patients display increased circulating FoxP3(+) Tregs that are phenotypically and functionally indistinguishable from FoxP3(+) Tregs in uninfected subjects. Furthermore, HCV-specific FoxP3(+) Tregs were detected in HCV-seropositive persons with antigen-specific expansion, major histocompatibility complex class II/peptide tetramer binding affinity, and preferential suppression of HCV-specific CD8 T cells. Transforming growth factor beta contributed to antigen-specific Treg expansion in vitro, suggesting that it may contribute to antigen-specific Treg expansion in vivo. Interestingly, FoxP3 expression was also detected in influenza virus-specific CD4 T cells. In conclusion, functionally active and virus-specific FoxP3(+) Tregs are induced in HCV infection, thus providing targeted immune regulation in vivo. Detection of FoxP3 expression in non-HCV-specific CD4 T cells suggests that immune regulation through antigen-specific Treg induction extends beyond HCV.  相似文献   

2.
Low Ag dose promotes induction and persistence of regulatory T cells (Tregs) in mice, yet few studies have addressed the role of Ag dose in the induction of adaptive CD4(+)FOXP3(+) Tregs in humans. To this end, we examined the level of FOXP3 expression in human CD4(+)CD25(-) T cells upon activation with autologous APCs and varying doses of peptide. Ag-specific T cells expressing FOXP3 were identified by flow cytometry using MHC class II tetramer (Tmr). We found an inverse relationship between Ag dose and the frequency of FOXP3(+) cells for both foreign Ag-specific and self Ag-specific T cells. Through studies of FOXP3 locus demethylation and helios expression, we determined that variation in the frequency of Tmr(+)FOXP3(+) T cells was not due to expansion of natural Tregs, but instead, we found that induction, proliferation, and persistence of FOXP3(+) cells was similar in high- and low-dose cultures, whereas proliferation of FOXP3(-) T cells was favored in high Ag dose cultures. The frequency of FOXP3(+) cells positively correlated with suppressive function, indicative of adaptive Treg generation. The frequency of FOXP3(+) cells was maintained with IL-2, but not upon restimulation with Ag. Together, these data suggest that low Ag dose favors the transient generation of human Ag-specific adaptive Tregs over the proliferation of Ag-specific FOXP3(-) effector T cells. These adaptive Tregs could function to reduce ongoing inflammatory responses and promote low-dose tolerance in humans, especially when Ag exposure and tolerance is transient.  相似文献   

3.
4.
Circulating human CD4(+)CD25(++)CD127(-)FOXP3(+) T cells with a persistent demethylated regulatory T cell (Treg)-specific demethylated region Foxp3 gene are considered natural Tregs (nTregs). We have shown that it is possible to identify functional Ag-reactive nTregs cells for a range of different common viral and vaccination Ags. The frequency of these Ag-reactive nTregs within the nTreg population is strikingly similar to the frequency of Ag-reactive T effector cells within the CD4(+) T cell population. The Ag-reactive nTregs could be recognized with great specificity by induction of CD154 expression. These CD154(+) Ag-reactive nTregs showed a memory phenotype and shared all phenotypical and functional characteristics of nTregs. The isolated CD154(+) nTregs could be most efficiently expanded by specific antigenic stimulation, while their Ag-reactive suppressive activity was maintained. After an in vivo booster Ag challenge, the ratio of Ag-reactive T cells to Ag-reactive Tregs increased substantially, which could be attributed to the rise in effector T cells but not Tregs. In conclusion, the nTreg population mirrors the effector T cell population in the frequency of Ag-reactive T cells. Isolation and expansion of functional Ag-reactive nTregs is possible and of potential benefit for specific therapeutic goals.  相似文献   

5.
Naturally occurring CD4(+)CD25(+)FOXP3(+) regulatory T cells suppress the activity of pathogenic T cells and prevent development of autoimmune responses. There is growing evidence that TLRs are involved in modulating regulatory T cell (Treg) functions both directly and indirectly. Specifically, TLR2 stimulation has been shown to reduce the suppressive function of Tregs by mechanisms that are incompletely understood. The developmental pathways of Tregs and Th17 cells are considered divergent and mutually inhibitory, and IL-17 secretion has been reported to be associated with reduced Treg function. We hypothesized that TLR2 stimulation may reduce the suppressive function of Tregs by regulating the balance between Treg and Th17 phenotype and function. We examined the effect of different TLR2 ligands on the suppressive functions of Tregs and found that activation of TLR1/2 heterodimers reduces the suppressive activity of CD4(+)CD25(hi)FOXP3(low)CD45RA(+) (naive) and CD4(+)CD25(hi)FOXP3(hi)CD45RA(-) (memory or effector) Treg subpopulations on CD4(+)CD25(-)FOXP3(-)CD45RA(+) responder T cell proliferation while at the same time enhancing the secretion of IL-6 and IL-17, increasing RORC, and decreasing FOXP3 expression. Neutralization of IL-6 or IL-17 abrogated Pam3Cys-mediated reduction of Treg suppressive function. We also found that, in agreement with recent observations in mouse T cells, TLR2 stimulation can promote Th17 differentiation of human T helper precursors. We conclude that TLR2 stimulation, in combination with TCR activation and costimulation, promotes the differentiation of distinct subsets of human naive and memory/effector Tregs into a Th17-like phenotype and their expansion. Such TLR-induced mechanism of regulation of Treg function could enhance microbial clearance and increase the risk of autoimmune reactions.  相似文献   

6.
Regulatory CD4(+)CD25(+) T cells (Tregs) are defective numerically and functionally in autoimmune hepatitis (AIH). We have investigated and compared the mechanism of action of Tregs in healthy subjects and in AIH patients using Transwell experiments, where Tregs are cultured either in direct contact with or separated from their targets by a semipermeable membrane. We also studied Treg FOXP3 expression and effect on apoptosis. Direct contact is necessary for Tregs to suppress proliferation and IFN-gamma production by CD4(+)CD25(-) and CD8(+) T cells in patients and controls. Moreover, in both, direct contact of Tregs with their targets leads to increased secretion of regulatory cytokines IL-4, IL-10, and TGF-beta, suggesting a mechanism of linked immunosuppression. Tregs/CD4(+)CD25(-) T cell cocultures lead to similar changes in IFN-gamma and IL-10 secretion in patients and controls, whereas increased TGF-beta secretion is significantly lower in patients. In contrast, in patients, Tregs/CD8(+) T cell cocultures lead to a higher increase of IL-4 secretion. In AIH, Treg FOXP3 expression is lower than in normal subjects. Both in patients and controls, FOXP3 expression is present also in CD4(+)CD25(-) T cells, although at a low level and not associated to suppressive function. Both in patients and controls, addition of Tregs does not influence target cell apoptosis, but in AIH, spontaneous apoptosis of CD4(+)CD25(-) T cells is reduced. In conclusion, Tregs act through a direct contact with their targets by modifying the cytokine profile and not inducing apoptosis. Deficient CD4(+)CD25(-) T cell spontaneous apoptosis may contribute to the development of autoimmunity.  相似文献   

7.
Chronic hepatitis C virus (HCV) infection is associated with impaired proliferative, cytokine, and cytotoxic effector functions of HCV-specific CD8(+) T cells that probably contribute significantly to viral persistence. Here, we investigated the potential role of T cells with a CD4(+)CD25(+) regulatory phenotype in suppressing virus-specific CD8(+) T-cell proliferation during chronic HCV infection. In vitro depletion studies and coculture experiments revealed that peptide specific proliferation as well as gamma interferon production of HCV-specific CD8(+) T cells were inhibited by CD4(+)CD25(+) T cells. This inhibition was dose dependent, required direct cell-cell contact, and was independent of interleukin-10 and transforming growth factor beta. Interestingly, the T-cell-mediated suppression in chronically HCV-infected patients was not restricted to HCV-specific CD8(+) T cells but also to influenza virus-specific CD8(+) T cells. Importantly, CD4(+)CD25(+) T cells from persons recovered from HCV infection and from healthy blood donors exhibited significantly less suppressor activity. Thus, the inhibition of virus-specific CD8(+) T-cell proliferation was enhanced in chronically HCV-infected patients. This was associated with a higher frequency of circulating CD4(+)CD25(+) cells observed in this patient group. Taken together, our results suggest that chronic HCV infection leads to the expansion of CD4(+)CD25(+) T cells that are able to suppress CD8(+) T-cell responses to different viral antigens. Our results further suggest that CD4(+)CD25(+) T cells may contribute to viral persistence in chronically HCV-infected patients and may be a target for immunotherapy of chronic hepatitis C.  相似文献   

8.
Hepatitis C virus (HCV) is remarkable at disrupting human immunity to establish chronic infection. Upregulation of inhibitory signaling pathways (such as T cell Ig and mucin domain protein-3 [Tim-3]) and accumulation of regulatory T cells (Tregs) play pivotal roles in suppressing antiviral effector T cell (Teff) responses that are essential for viral clearance. Although the Tim-3 pathway has been shown to negatively regulate Teffs, its role in regulating Foxp3(+) Tregs is poorly explored. In this study, we investigated whether and how the Tim-3 pathway alters Foxp3(+) Treg development and function in patients with chronic HCV infection. We found that Tim-3 was upregulated, not only on IL-2-producing CD4(+)CD25(+)Foxp3(-) Teffs, but also on CD4(+)CD25(+)Foxp3(+) Tregs, which accumulate in the peripheral blood of chronically HCV-infected individuals when compared with healthy subjects. Tim-3 expression on Foxp3(+) Tregs positively correlated with expression of the proliferation marker Ki67 on Tregs, but it was inversely associated with proliferation of IL-2-producing Teffs. Moreover, Foxp3(+) Tregs were found to be more resistant to, and Foxp3(-) Teffs more sensitive to, TCR activation-induced cell apoptosis, which was reversible by blocking Tim-3 signaling. Consistent with its role in T cell proliferation and apoptosis, blockade of Tim-3 on CD4(+)CD25(+) T cells promoted expansion of Teffs more substantially than Tregs through improving STAT-5 signaling, thus correcting the imbalance of Foxp3(+) Tregs/Foxp3(-) Teffs that was induced by HCV infection. Taken together, the Tim-3 pathway appears to control Treg and Teff balance through altering cell proliferation and apoptosis during HCV infection.  相似文献   

9.
Regulatory T cells (Tregs) are thought to affect the severity of various infectious and autoimmune diseases. The incidence of autoimmune disease is higher in fertile women than in men. Thus, we investigated whether Treg numbers were modulated during the menstrual cycle by sex hormones. In fertile nonpregnant women, we detected an expansion of CD4(+)CD25(+)FOXP3(+) Tregs in the late follicular phase of the menstrual cycle. This increase was tightly correlated with serum levels of estradiol and was followed by a dramatic decrease in Treg numbers at the luteal phase. Women who have had recurrent spontaneous abortions (RSA) showed similarly low numbers of Tregs at both the follicular and luteal phases, comparable to numbers we observed in postmenopausal women. In addition to decreased numbers, Tregs from women with RSA were also functionally deficient, as higher numbers were required to exert a similar magnitude of suppression to CD4(+)CD25(+)FOXP3(+) cells from fertile women. Consequently, reproductive failure might result from the inability of Tregs in women with RSA to expand during the preimplantatory phase combined with their lower functional capacity. Additionally, the modulation of Treg numbers we observed in fertile women suggests that the stage of the menstrual cycle should be taken into account when Treg numbers are investigated clinically.  相似文献   

10.
Hookworm infection is considered one of the most important poverty-promoting neglected tropical diseases, infecting 576 to 740 million people worldwide, especially in the tropics and subtropics. These blood-feeding nematodes have a remarkable ability to downmodulate the host immune response, protecting themselves from elimination and minimizing severe host pathology. While several mechanisms may be involved in the immunomodulation by parasitic infection, experimental evidences have pointed toward the possible involvement of regulatory T cells (Tregs) in downregulating effector T-cell responses upon chronic infection. However, the role of Tregs cells in human hookworm infection is still poorly understood and has not been addressed yet. In the current study we observed an augmentation of circulating CD4(+)CD25(+)FOXP3(+) regulatory T cells in hookworm-infected individuals compared with healthy non-infected donors. We have also demonstrated that infected individuals present higher levels of circulating Treg cells expressing CTLA-4, GITR, IL-10, TGF-β and IL-17. Moreover, we showed that hookworm crude antigen stimulation reduces the number of CD4(+)CD25(+)FOXP3(+) T regulatory cells co-expressing IL-17 in infected individuals. Finally, PBMCs from infected individuals pulsed with excreted/secreted products or hookworm crude antigens presented an impaired cellular proliferation, which was partially augmented by the depletion of Treg cells. Our results suggest that Treg cells may play an important role in hookworm-induced immunosuppression, contributing to the longevity of hookworm survival in infected people.  相似文献   

11.
Myelodysplastic syndromes are premalignant diseases characterized by cytopenias, myeloid dysplasia, immune dysregulation with association to autoimmunity, and variable risk for acute myeloid leukemia transformation. Studies of FOXP3(+) regulatory T cells (Tregs) indicate that the number and/or activation state may influence cancer progression in these patients. Focusing on patients with a lower risk for leukemia transformation, 18 (34.6%) of 52 patients studied displayed an altered Treg compartment compared with age-matched controls. Delineation of unique Treg subsets revealed that an increase in the absolute number of CD4(+)FOXP3(+)CD25(+)CD127(low)CD45RA(-)CD27(-) Tregs (effector memory Tregs [Treg(EM)]) was significantly associated with anemia (p = 0.046), reduced hemoglobin (p = 0.038), and blast counts ≥5% (p = 0.006). In healthy donors, this Treg(EM) population constitutes only 2% of all Tregs (one to six Tregs per microliter) in peripheral blood but, when isolated, exhibit greater suppressive activity in vitro. With a median follow-up of 3.1 y (range 2.7-4.9 y) from sample acquisition, increased numbers of Treg(EM) cells proved to have independent prognostic importance in survival estimates, suggesting that enumeration of this Treg subset may be a more reliable indicator of immunological escape than FOXP3(+) T cells as a whole. Based on multivariate analyses, Treg(EM) impacted survival independently from myeloblast characteristics, cytopenias, karyotype, and comorbidities. Based on these findings, Treg(EM) cell expansion may be synonymous with human Treg activation and indicate microenvironmental changes conducive to transformation in myelodysplastic syndromes.  相似文献   

12.
Following infection with the hepatitis C virus (HCV), in most cases immunity fails to eradicate the virus, resulting in slowly progressing immunopathology in the HCV-infected liver. We are the first to examine intrahepatic T cells and CD4(+) CD25(+) FoxP3(+) regulatory T cells (Treg) in patients chronically infected with HCV (chronic HCV patients) during and after antiviral therapy by collecting multiple aspiration biopsy samples from the liver at different time points. We found that intrahepatic Treg frequencies were increased upon alpha interferon and ribavirin administration in about 50% of chronic HCV patients, suggesting stronger regulation of intrahepatic immunity by Treg during antiviral therapy. After cessation of antiviral therapy, the frequency of intrahepatic Treg remained above baseline in the large majority of livers of individuals who successfully cleared the virus. The phenotype of those Treg that were retained in the liver months after therapy-induced clearance of HCV RNA indicated a reduced contribution of effector memory cells. Our findings, gathered by multiple samplings of the liver, indicate that successful antiviral therapy of chronic HCV patients does not lead to normalization of the local immune response to a resting state comparable to that for healthy livers. The continuous presence of high numbers of Treg, with a phenotype reflecting a relatively weak suppressive activity, suggests ongoing residual regulation of immunopathology. These findings provide important insight into the dynamics of the immune response to HCV, as well as the effect of therapy on intrahepatic immunity.  相似文献   

13.
14.
Regulatory T cells (Tregs) constitute an attractive therapeutic target given their essential role in controlling autoimmunity. However, recent animal studies provide evidence for functional heterogeneity and lineage plasticity within the Treg compartment. To understand better the plasticity of human Tregs in the context of type 1 diabetes, we characterized an IFN-γ-competent subset of human CD4(+)CD127(lo/-)CD25(+) Tregs. We measured the frequency of Tregs in the peripheral blood of patients with type 1 diabetes by epigenetic analysis of the Treg-specific demethylated region (TSDR) and the frequency of the IFN-γ(+) subset by flow cytometry. Purified IFN-γ(+) Tregs were assessed for suppressive function, degree of TSDR demethylation, and expression of Treg lineage markers FOXP3 and Helios. The frequency of Tregs in peripheral blood was comparable but the FOXP3(+)IFN-γ(+) fraction was significantly increased in patients with type 1 diabetes compared to healthy controls. Purified IFN-γ(+) Tregs expressed FOXP3 and possessed suppressive activity but lacked Helios expression and were predominately methylated at the TSDR, characteristics of an adaptive Treg. Naive Tregs were capable of upregulating expression of Th1-associated T-bet, CXCR3, and IFN-γ in response to IL-12. Notably, naive, thymic-derived natural Tregs also demonstrated the capacity for Th1 differentiation without concomitant loss of Helios expression or TSDR demethylation.  相似文献   

15.
Studying the activity of homogeneous regulatory T cell (Treg) populations will advance our understanding of their mechanisms of action and their role in human disease. Although isolating human Tregs exhibiting low expression of CD127 markedly increases purity, the resulting Treg populations are still heterogeneous. To examine the complexity of the Tregs defined by the CD127 phenotype in comparison with the previously described CD4(+)CD25(hi) subpopulations, we subdivided the CD25(hi) population of memory Tregs into subsets based on expression of CD127 and HLA-DR. These subsets exhibited differences in suppressive capacity, ability to secrete IL-10 and IL-17, Foxp3 gene methylation, cellular senescence, and frequency in neonatal and adult blood. The mature, short telomere, effector CD127(lo)HLA-DR(+) cells most strongly suppressed effector T cells within 48 h, whereas the less mature CD127(lo)HLA-DR(-) cells required 96 h to reach full suppressive capacity. In contrast, whereas the CD127(+)HLA-DR(-) cells also suppressed proliferation of effector cells, they could alternate between suppression or secretion of IL-17 depending upon the stimulation signals. When isolated from patients with multiple sclerosis, both the nonmature and the effector subsets of memory CD127(lo) Tregs exhibited kinetically distinct defects in suppression that were evident with CD2 costimulation. These data demonstrate that natural and not induced Tregs are less suppressive in patients with multiple sclerosis.  相似文献   

16.
Bacterial superantigens are potent T cell activators. In humans they cause toxic shock and scarlet fever, and they are implicated in Kawasaki's disease, autoimmunity, atopy, and sepsis. Their function remains unknown, but it may be to impair host immune responses increasing bacterial carriage and transmission. Regulatory (CD25(+)FOXP3(+)) T cells (Tregs) play a role in controlling inflammatory responses to infection. Approximately 2% of circulating T cells are naturally occurring Tregs (nTregs). Conventional Ag stimulation of naive FOXP3(-) T cells induces Ag-specific Tregs. Polyclonal T cell activation has been shown to produce non-Ag-specific Tregs. Because superantigens are unique among microbial virulence factors in their ability to trigger polyclonal T cell activation, we wanted to determine whether superantigen stimulation of T cells could induce non-Ag-specific Tregs. We assessed the effect of superantigen stimulation of human T cells on activation, regulatory markers, and cytokine production by flow cytometry and T cell suppression assays. Stimulation of PBMCs with staphylococcal exotoxin A and streptococcal pyrogenic exotoxins A and K/L resulted in dose-dependent FOXP3 expression. Characterization of this response for streptococcal pyrogenic exotoxin K/L confirmed its Vβ specificity, that CD25(+)FOXP3(+) cells arose from CD25(-) T cells and required APCs. These cells had increased CTLA-4 and CD127 expression, typical of the recently described activated converted Treg-like cells, and exhibited functional suppressor activity comparable to nTregs. Superantigen-stimulated CD25(+)FOXP3(+) T cells expressed IL-10 at lower superantigen concentrations than was required to trigger IFN-γ production. This study provides a mechanism for bacterial evasion of the immune response through the superantigen induction of Tregs.  相似文献   

17.
Numerous reports have demonstrated that CD4(+)CD25(+) regulatory T cells (Tregs) from individuals with a range of human autoimmune diseases, including type 1 diabetes, are deficient in their ability to control autologous proinflammatory responses when compared with nondiseased, control individuals. Treg dysfunction could be a primary, causal event or may result from perturbations in the immune system during disease development. Polymorphisms in genes associated with Treg function, such as IL2RA, confer a higher risk of autoimmune disease. Although this suggests a primary role for defective Tregs in autoimmunity, a link between IL2RA gene polymorphisms and Treg function has not been examined. We addressed this by examining the impact of an IL2RA haplotype associated with type 1 diabetes on Treg fitness and suppressive function. Studies were conducted using healthy human subjects to avoid any confounding effects of disease. We demonstrated that the presence of an autoimmune disease-associated IL2RA haplotype correlates with diminished IL-2 responsiveness in Ag-experienced CD4(+) T cells, as measured by phosphorylation of STAT5a, and is associated with lower levels of FOXP3 expression by Tregs and a reduction in their ability to suppress proliferation of autologous effector T cells. These data offer a rationale that contributes to the molecular and cellular mechanisms through which polymorphisms in the IL-2RA gene affect immune regulation, and consequently upon susceptibility to autoimmune and inflammatory diseases.  相似文献   

18.
Peripheral CD103(+)Foxp3(+) regulatory T cells (Tregs) can develop both from conventional naive T cells upon cognate Ag delivery under tolerogenic conditions and from thymic-derived, expanded/differentiated natural Tregs. We here show that CD47 expression, a marker of self on hematopoietic cells, selectively regulated CD103(+)Foxp3(+) Treg homeostasis at the steady state. First, the proportion of effector/memory-like (CD44(high)CD62L(low)) CD103(+)Foxp3(+) Tregs rapidly augmented with age in CD47-deficient mice (CD47(-/-)) as compared with age-matched control littermates. Yet, the percentage of quiescent (CD44(low)CD62L(high)) CD103(-)Foxp3(+) Tregs remained stable. Second, the increased proliferation rate (BrdU incorporation) observed within the CD47(-/-)Foxp3(+) Treg subpopulation was restricted to those Tregs expressing CD103. Third, CD47(-/-) Tregs maintained a normal suppressive function in vitro and in vivo and their increased proportion in old mice led to a decline of Ag-specific T cell responses. Thus, sustained CD47 expression throughout life is critical to avoid an excessive expansion of CD103(+) Tregs that may overwhelmingly inhibit Ag-specific T cell responses.  相似文献   

19.
CD4+CD25+FOXP3+ T regulatory cells (Tregs) are pivotal for the induction and maintenance of peripheral tolerance in both mice and humans. Rapamycin has been shown to promote tolerance in experimental models and to favor CD4+CD25+ Treg-dependent suppression. We recently reported that rapamycin allows in vitro expansion of murine CD4+CD25+FoxP3+ Tregs, which preserve their suppressive function. In the current study, we show that activation of human CD4+ T cells from healthy subjects in the presence of rapamycin leads to growth of CD4+CD25+FOXP3+ Tregs and to selective depletion of CD4+CD25- T effector cells, which are highly sensitive to the antiproliferative effect of the compound. The rapamycin-expanded Tregs suppress proliferation of both syngeneic and allogeneic CD4+ and CD8+ T cells. Interestingly, rapamycin promotes expansion of functional CD4+CD25+FOXP3+ Tregs also in type 1 diabetic patients, in whom a defect in freshly isolated CD4+CD25+ Tregs has been reported. The capacity of rapamycin to allow growth of functional CD4+CD25+FOXP3+ Tregs, but also to deplete T effector cells, can be exploited for the design of novel and safe in vitro protocols for cellular immunotherapy in T cell-mediated diseases.  相似文献   

20.
Myeloid dendritic cells (mDCs) are the antigen-presenting cells best capable of promoting peripheral induction of regulatory T cells (Tregs), and are among the first targets of HIV. It is thus important to understand whether HIV alters their capacity to promote Treg conversion. Monocyte-derived DCs (moDCs) from uninfected donors induced a Treg phenotype (CD25(+)FOXP3(+)) in autologous conventional T cells. These converted FOXP3(+) cells suppressed the proliferation of responder T cells similarly to circulating Tregs. In contrast, the capacity of moDCs to induce CD25 or FOXP3 was severely impaired by their in vitro infection with CCR5-utilizing virus. MoDC exposure to inactivated HIV was sufficient to impair FOXP3 induction. This DC defect was not dependent on IL-10, TGF-β or other soluble factors, but was due to preferential killing of Tregs by HIV-exposed/infected moDCs, through a caspase-dependent pathway. Importantly, similar results were obtained with circulating primary myeloid DCs. Upon infection in vitro, these mDCs also killed Treg through mechanisms at least partially caspase-dependent, leading to a significantly lower proportion of induced Tregs. Taken together, our data suggest that Treg induction may be defective when DCs are exposed to high levels of virus, such as during the acute phase of infection or in AIDS patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号