首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Abstract: We have investigated the effects of (a) the cholinesterase inhibitor physostigmine and (b) drugs that are known to change intracellular cyclic GMP levels on the autoinhibition of acetylcholine release from rat hippocampal slices. Autoinhibition was triggered by submaximal electrical stimulation in both the absence and presence of physostigmine. The results obtained indicate that an unusual increase in the extracellular acetylcholine content, such as that induced by cholinesterase inhibition, is not essential for autoinhibition triggering. Dibutyryl cyclic GMP reduced significantly the stimulation-evoked acetylcholine release in the presence, but not in the absence, of atropine. Neither sodium nitroprusside nor glyceryl trinitrate exerted a dibutyryl cyclic GMP-like effect. N G-Nitro-L-arginine did not lessen the autoinhibition. These results indicate that an increase in the intracellular cyclic GMP level reduces acetylcholine release, and that the muscarinic receptor stimulation-nitric oxide synthesis-(soluble) guanylyl cyclase activation pathway is not involved in the cholinergic autoinhibition process.  相似文献   

2.
S Ohsako  T Deguchi 《FEBS letters》1983,152(1):62-66
In cultured bovine chromaffin cells, acetylcholine as well as muscarine stimulated the 32Pi incorporation into phosphatidic acid, induced the efflux of 45Ca2+ from prelabelled cells, and, in parallel, elevated intracellular cyclic GMP content. Phosphatidic acid added to the medium also stimulated the efflux of 45Ca2+ and the synthesis of cyclic GMP in the cells in the same fashion as muscarinic agents, whereas it did not induce the secretion of catecholamines indicating that the effect of phosphatidic acid is specific to muscarinic action. The result supports the hypothesis that phosphatidic acid produced during phosphatidylinositol turnover is linked to the regulation mechanism of Ca2+ mobilization and cyclic GMP synthesis by muscarinic stimulation.  相似文献   

3.
Cyclic GMP and activators (acetylcholine, E. coli heat-stable toxin) of guanylate cyclase were capable of completely replacing the helper cell or interleukin 2 requirement for gamma-interferon (IFN gamma) production by Lyt-1-,2+ cells from C57BL/6 mouse spleen cells. The cyclic GMP help was independent of DNA synthesis or proliferation in the IFN gamma-producing cells, because cyclic GMP reversed mitomycin C blockage of IFN gamma production but did not reverse the inhibition of DNA synthesis. Thus, the findings presented here are unrelated to the question of the second messenger role of cyclic GMP in the activation of lymphocytes for DNA synthesis and cellular proliferation. The cyclic GMP help for IFN gamma production was antagonized by cyclic AMP and inducers (isoproterenol) of adenylate cyclase.  相似文献   

4.
In the presence of functional adrenergic and cholinergic blockade, electrical field stimulation relaxes corpus cavernosum smooth muscle by unknown mechanisms. We report here that electrical field stimulation of isolated strips of rabbit corpus cavernosum promotes the endogenous formation and release of nitric oxide (NO), nitrite, and cyclic GMP. Corporal smooth muscle relaxation in response to electrical field stimulation, in the presence of guanethidine and atropine, was abolished by tetrodotoxin and potassium-induced depolarization, and was markedly inhibited by NG-nitro-L-arginine, NG-amino-L-arginine, oxyhemoglobin, and methylene blue, but was unaffected by indomethacin. The inhibitory effects of NG-substituted analogs of L-arginine were nearly completely reversed by addition of excess L-arginine but not D-arginine. Corporal smooth muscle relaxation elicited by electrical field stimulation was accompanied by rapid and marked increases in tissue levels of nitrite and cyclic GMP, and all responses were nearly abolished by NG-nitro-L-arginine. These observations indicate that penile erection may be mediated by NO generated in response to nonadrenergic-noncholinergic neurotransmission.  相似文献   

5.
Lidocaine, a use-dependent Na(+) channel blocker, paradoxically evokes neural activation in the slowly adapting stretch receptor organ of crayfish at 5-10 mmol/l concentration. For elucidating the underlying mechanisms of this paradoxical effect, a series of conventional electrophysiological experiments were performed in the stretch receptor neurons of crayfish. In the presence of tetrodotoxin, lidocaine did not evoke impulse activity, however, a slowly developing and dose-dependent depolarization occurred in both the rapidly and slowly adapting stretch receptors. Similar effects were observed by perfusion of equivalent concentrations of benzocaine but not of procaine or prilocaine. Lidocaine did not evoke neural activity in the rapidly adapting neuron which fires action potential(s) in response to rapid changes in membrane potential. Slowly developing mode of the depolarization indicated the reason why only depolarization but not action potential responses were observed in the rapidly adapting neuron. The depolarizing effect of lidocaine was independent from any ionic channel or exchanger system. However, lidocaine and benzocaine but not procaine and prilocaine evoked a dose-dependent alteration in the input resistance of the neuron. It was proposed that the principal mechanism of the effect could stem from a change in the physical properties of the neuronal membrane.  相似文献   

6.
We have used pheochromocytoma cells, clone PC12, as a model system for studying the effects of adenosine on neurosecretion. Exposure of the cells to adenosine or 2-chloroadenosine caused immediate activation of adenylate cyclase, increases in cellular cyclic AMP content, and inhibition of SAM-dependent phospholipid N-methylation and protein carboxymethylation. However, the effects on methylation were only observed with concentrations of adenosine 100 times greater than those that elevated cyclic AMP. Exposure of the cells to adenosine and 2-chloroadenosine did not alter the release of [3H]norepinephrine [(3H]NE) in the absence of depolarization. However, depolarization-dependent release of [3H]NE was markedly elevated by short (1-20 min) pretreatments with adenosine or 2-chloroadenosine. The enhancement of release was observed irrespective of the nature of the depolarizing stimulus (elevated K+, carbamylcholine, or veratridine). Release of [3H]acetylcholine in response to elevated K+ also was increased by adenosine pretreatment. These effects of adenosine and 2-chloroadenosine on neurotransmitter release closely paralleled elevation of cellular cyclic AMP but not inhibition of methylation. Taken together, the results show that adenosine, probably acting through adenosine receptors coupled to stimulation of adenylate cyclase, is able to modulate the neurosecretory process in PC12 cells. Furthermore, the enhancement of release occurred even though the extent of depolarization (measured as 86Rb+ flux through the acetylcholine receptor channel) and the amount of 45Ca2+ which entered upon depolarization were unchanged. Therefore, the enhancement of release produced by elevated cyclic AMP appeared to reflect increased efficiency of the stimulus-secretion coupling process.  相似文献   

7.
An assay method based on the ability of high concentrations of Mg2+ to stimulate phosphorylation of histone in the presence of low concentrations of ATP was developed for the measurement of cyclic GMP-dependent protein kinase activity ratios (activity -cyclic GMP/activity + cyclic GMP). In tissues which contain only trace amounts of cyclic GMP-dependent protein kinase, the basal activity ratios were high due to interference from a cyclic nucleotide-independent protein kinase. In order to study the regulation of the cardica cyclic GMP-dependent protein kinase, factors affecting the equilibrium between the active and inactive forms of the enzyme were determined. Since the rate of dissociation of cyclic GMP from its binding site(s) was relatively slow at 0–4°C at pH 7.0, the amount of time required to process tissue samples was the major limiting factor for preserving the equilibrium between active and inactive forms of the enzyme. Dilution of heart tissue extracts at 0–4°C did not significantly alter the activity ratio of the enzyme under conditions of basal or elevated cyclic GMP levels. Experiments using charcoal or exogenous cyclic GMP-dependent protein kinase in the homogenizing medium demonstrated that the release of sequestered cyclic GMP was not responsible for the elevation of the cyclic GMP-dependent protein kinase activity ratios by agents like acetylcholine. Therefore, the assay reflected in part, at least, the retention of kinase-bound cyclic GMP in the tissue extracts. The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, the cyclic GMP-dependent protein kinase activity ratios, and force of contraction were studied in the perfused rat heart. Both agents produced rapid, dose-dependent increases in cardiac cyclic GMP. Optimal concentrations of acetylcholine produced a 2–3-fold increase in the levels of cyclic GMP and an increase in the cyclic GMP-dependent protein kinase activity ratio. No significant effect of acetylcholine on cyclic nucleotide-independent protein kinase activity was observed. Associated witth the acetylcholine-induced protein kinase, factors affecting the equilibrium between the active and inactive forms of the enzyme were determined. Since the rate of dissociation of cyclic GMP from its binding site(s) was relatively slow at 0–4°C at pH 7.0, the amount of time required to process tissue samples was the major limiting factor for preserving the equilibrium between active and inactive forms of the enzyme. Dilution of heart tissue extracts at 0–4°C did not significantly alter the activity ratio of the enzyme under conditions of basal elevated cyclic GMP levels. Experiments using charcoal or exogenous cyclic GMP-dependent protein kinase in the homogenizing medium demonstrated that the release of sequestered cyclic GMP was not responsible for the elevation of the cyclic GMP-dependent protein kinase activity ratios by agents like acetylcholine. Therefore, the assay reflected in part, at least, the retention of kinase-bound cyclic GMP in the tissue extracts. The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, the cyclic GMP-dependent protein kinase activity ratios, and force of contraction were studied in the perfused rat heart. Both agents produced rapid, dose-dependent increases in cardiac cyclic GMP. Optimal concentrations of acetylcholine produced a 2–3-fold increase in the levels of cyclic GMP and an increase in the cyclic GMP-dependent protein kinase activity ratio. No significant effect of acetylcholine on cyclic nucleotide-independent protein kinase activity was observed. Associated with the acetylcholine-induced increase in cyclic GMP and the cyclic GMP-dependent protein kinase activity ratio was a reduction in the force of contraction. In contrast, nitroprusside produced little or no increase in the cyclic GMP-dependent protein kinase activity ratio despite increasing the level of cyclic GMP 8–10-fold. Nitroprusside also had no effect on contractile force. In combination, nitroprusside and acetylcholine produced additive effects on cyclic GMP levels, but protein kinase activation and force of contraction were similar to those seen with acetylcholine alone. The results suggest that the cyclic GMP produced by acetylcholine in the rat heart is coupled to activation of the cyclic GMP-dependent protein kinase, while that produced by nitroprusside is not.  相似文献   

8.
The effects of 6-keto-PGE1 on aggregatory responses to arachidonic acid (AA), adenosine diphosphate (ADP) and collagen were studied in human platelet-rich plasma (PRP). In addition, experiments were carried out to determine if these effects correlate with changes in platelet cyclic AMP and cyclic GMP levels. 6-Keto-PGE1 incubated in PRP produced dose-related increases in platelet cyclic AMP levels whereas platelet cyclic GMP levels were unchanged. Control aggregations induced by AA and ADP did not alter cyclic AMP and cyclic GMP levels whereas control aggregations induced by collagen elevated cyclic GMP levels while cyclic AMP levels were unchanged. 6-Keto-PGE1 produced a dose-dependent inhibition of platelet aggregation induced by AA, ADP and collagen and this inhibition correlated with a dose-related increase in cyclic AMP levels. Since 6-keto-PGE1 does not consistently alter cyclic GMP levels in human PRP, the present data support previous studies suggesting that 6-keto-PGE1 produces inhibition of platelet aggregation through the stimulation of cyclic AMP accumulation.  相似文献   

9.
The effects of adrenergic and cholinergic agents, present singly or in combination, on the levels of cyclic AMP and cyclic GMP in slices of rat lung were studied. It was found that isoproterenol increased pulmonary cyclic AMP levels about 3-fold, and this increase was abolished by propranolol, but not by phenoxybenzamine. Acetylcholine increased the cyclic GMP levels also about 3-fold (thus raising its tissue content above that of cyclic AMP), and this increment was largely reduced by atropine, but not by hexamethonium. While without effects on the cyclic GMP levels when present alone, isoproterenol antagonized acetylcholine in increasing cyclic GMP levels. Acetylcholine, while lacking effects on the basal levels of cyclic AMP, on the other hand, depressed the augmented levels caused by isoproterenol.The data presented indicate that cyclic GMP may mediate the cholinergic action in lung and that the pulmonary cyclic GMP levels are also closely regulated by β-adrenergic receptor activation.  相似文献   

10.
The present studies were performed to determine the role of cyclic GMP in regulating agonist mediated calcium entry in the pancreatic acinar cell. In guinea pig-dispersed pancreatic acini the findings demonstrated that carbachol stimulated a transient 20-40-fold rise in cellular cyclic GMP followed by a sustained 3-4-fold rise in cellular cyclic GMP. The guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), caused a dose-dependent inhibition of carbachol-stimulated increases in cellular cyclic GMP both during the initial transient large increase in cyclic GMP and the sustained increase in cyclic GMP. LY83583 also inhibited cellular Ca2+ influx during carbachol stimulation and reloading of the agonist-sensitive pool of Ca2+ at the termination of carbachol stimulation with atropine. The effect of the inhibition on reloading of the agonist-sensitive pool was secondary to its effects on the plasma membrane C2+ entry. The addition of dibutyryl cyclic GMP to LY83583-treated acini restored Ca2+ influx across the plasma membrane. Nitroprusside increased both cellular cyclic GMP and the rate of Ca2+ influx. During periods when plasma membrane Ca2+ entry was activated, cellular cyclic GMP levels were increased. These results suggest that agonist-induced increases in cellular cyclic GMP are necessary and sufficient to mediate the effects of the agonist on the plasma membrane Ca2+ entry mechanism.  相似文献   

11.
Electrical stimulation of either the parasympathetic or the sympathetic nerve supply to the parotid and submaxillary glands increases the intracellular level of cyclic GMP and the rate of DNA synthesis and cell division while only sympathetic stimulation raises cyclic AMP levels. The periods of electrical stimulation inducing hyperplasia also raise the cyclic GMP concentration but there is no similar correlation with changes in cyclic AMP levels. However, the extent of hyperplasia induced by parasympathetic and sympathetic stimulation is not directly related to the size of the increase in cyclic GMP concentration that these treatments produce. Changes in cyclic AMP levels are reflected in altered in vitro adenylate cyclase activity. This activity is raised after 2 min sympathetic stimulation and markedly decreased with 30 min sympathetic or parasympathetic stimulation. Guanylate cyclase activity shows no such changes with nerve stimulation.  相似文献   

12.
Low (5 × 10−9 M to 10−7 M) acetylcholine concentrations cause a calcium-independent stimulation of the initiation of DNA synthesis and proliferation of lymphoblasts which are part of rat thymocyte populations suspended in vitro. A much higher (5 × 10−5 M) acetylcholine concentration also stimulates lymphoblast DNA synthesis and proliferation, but this action is calcium-dependent. This proliferogenic response to acetylcholine is however not clearly mediated by either cyclic GMP or cyclic AMP.  相似文献   

13.
Depolarization of pancreatic beta-cells is critical for stimulation of insulin secretion by acetylcholine but remains unexplained. Using voltage-clamped beta-cells, we identified a small inward current produced by acetylcholine, which was suppressed by atropine or external Na(+) omission, but was not mimicked by nicotine, and was insensitive to nicotinic antagonists, tetrodotoxin, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DiDS), thapsigargin pretreatment, and external Ca(2+) and K(+) removal. This suggests that muscarinic receptor stimulation activates voltage-insensitive Na(+) channels distinct from store-operated channels. No outward Na(+) current was produced by acetylcholine when the electrochemical Na(+) gradient was reversed, indicating that the channels are inward rectifiers. No outward K(+) current occurred either, and the reversal potential of the current activated by acetylcholine in the presence of Na(+) and K(+) was close to that expected for a Na(+)-selective membrane, suggesting that the channels opened by acetylcholine are specific for Na(+). Overnight pretreatment with pertussis toxin or the addition of guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) or guanosine-5'-O-(2-thiodiphosphate) (GDP-beta-S) instead of GTP to the pipette solution did not alter this current, excluding involvement of G proteins. Injection of a current of a similar amplitude to that induced by acetylcholine elicited electrical activity in beta-cells perifused with a subthreshold glucose concentration. These results demonstrate that muscarinic receptor activation in pancreatic beta-cells triggers, by a G protein-independent mechanism, a selective Na(+) current that explains the plasma membrane depolarization.  相似文献   

14.
Electrical field stimulation induced a relaxation response in female rabbit urethral smooth muscle strips precontracted with phenylephrine. The relaxation response was inhibited by tetrodotoxin, but not by atropine, propranolol, or hexamethonium. The relaxation response thus results from stimulation of inhibitory non-adrenergic, non-cholinergic nerves. The electrically induced relaxation response was inhibited by an inhibitor of nitric oxide biosynthesis, NG-nitro-L-arginine. This inhibition was overcome by addition of a precursor of nitric oxide, L-arginine. An inhibitor of soluble guanylate cyclase, methylene blue, reduced the relaxation response, and a selective cyclic GMP phosphodiesterase inhibitor, M & B 22948, potentiated the relaxation response. These data indicate that agents which affect the biosynthesis of nitric oxide are associated with the urethral relaxation response evoked by electrical field stimulation, and that cyclic GMP may mediate the relaxation response.  相似文献   

15.
《Insect Biochemistry》1979,9(3):265-272
In this study the ability of the intact nerve cord of Manduca sexta to synthesize 5-hydroxytryptamine (serotonin) and acetylcholine from labelled precursors is shown. The endogenous levels of amino acids in haemolymph and nervous tissue and the levels of dopamine, norepinephrine, 5-hydroxytryptophan and 5-hydroxytryptamine are presented.The accumulation of cyclic AMP and cyclic GMP in nerve cords from Manduca sexta was investigated after in vitro incubation in solutions containing putative neurotransmitters. Basal cyclic AMP levels were in agreement with results of other workers using insect systems. Serotonin elevated cyclic AMP levels. Acetylcholine and the amino acids aspartate, glutamate, glycine and γ-aminobutyrate, elevated cyclic GMP levels. These results support roles for serotonin and acetylcholine in neuronal function mediated by cyclic AMP and cyclic GMP, respectively.  相似文献   

16.
The effect of theophylline and isoproterenol on bovine tracheal smooth muscle tension and cyclic AMP levels was investigated. Concentrations of isoproterenol (4 × 10?6 M) and theophylline (10 mM) that relaxed carbachol-contracted tracheal muscle by 85–95% did not significantly elevate control levels of cyclic AMP. In the absence of carbachol, several-fold increases in cyclic AMP were caused by isoproterenol although no elevations by theophylline were measurable. However, when isoproterenol and theophylline were administered together, theophylline potentiated the rise in cyclic AMP caused by isoproterenol. Phosphodiesterase studies in tracheal muscle showed the presence of a high and a low Km enzyme which were inhibited by theophylline. Cyclic GMP levels were elevated in muscles contracted by carbachol as well as in carbachol-contracted muscles that had been relaxed by theophylline. In non-tension studies, in which the tracheal muscle was not under isometric tension, carbachol or theophylline alone increased cyclic GMP and together they synergistically elevated cyclic GMP. Atropine blocked the elevation caused by carbachol but not that caused by theophylline. In contrast to theophylline, isoproterenol did not elevate cyclic GMP, and in carbachol-contracted muscles that had been relaxed by isoproterenol, cyclic GMP levels were no different from control. Also, in non-tension studies, isoproterenol decreased basal cyclic GMP and antagonized the increase in cyclic GMP due to carbachol.The results indicate that whole-tissue levels of cyclic AMP and cyclic GMP do not correlate with the state of tracheal smooth muscle tension. Cyclic GMP levels do not clearly correlate with either contraction or relaxation. The inhibition by carbachol of increases in cyclic AMP due to isoproterenol and the inhibition by isoproterenol of increases in cyclic GMP due to carbachol provide evidence for a reciprocal cholinergic-adrenergic antagonism of cyclic AMP and cyclic GMP levels. The antagonism did not appear to be due to either cyclic nucleotide affecting the elevation of the other since the levels of both cyclic nucleotides were depressed.  相似文献   

17.
Brief, intracellularly injected pulses of cyclic GMP transiently depolarized toad retinal rod outer segments (ROS). The depolarization is antagonized by light, perhaps by the activation of phosphodiesterase (PDE), as shown in the biochemical studies of others. As measured by the antagonism of cyclic GMP pulses by light, PDE activity peaks after the peak of the receptor potential and has approximately the same recovery time as the membrane voltage after weak illumination, but recovers more slowly than the membrane potential after strong illumination, as sensitivity does in other preparations. A cyclic GMP pulse delivered just after the hyperpolarizing phase of the receptor potential tends to turn off the light response. The kinetics of recovery from this turnoff are similar to those of the initial phase of the receptor potential. This similarity suggests that the initial phase of the receptor potential is controlled by light-activated PDE. Both EGTA and saturating doses of cyclic GMP block the light response, but only cyclic GMP increases response latency, which suggests that if calcium is involved in transduction, it is controlled by the hydrolysis of cyclic GMP. After brief pulses of cyclic AMP, a new steady state of increased depolarization occasionally develops. The effects described above also occur under these conditions. The results are consistent with the hypothesis that light-activated hydrolysis of cGMP is an intermediary process in transduction.  相似文献   

18.
Incubated slices and freshly dissociated cells from 8-day-old rat cerebellum were used to try to identify the cells that participate in the large increases in cyclic GMP levels that follow activation of excitatory amino acid receptors in this tissue. In the slices, cyclic GMP responses to L-glutamate and related excitants were unaffected by tetrodotoxin and could be replicated by the guanylate cyclase activator nitroprusside. Nitroprusside and the receptor agonists appeared to activate the same pool of the enzyme. Prior destruction of neuroblasts, deep nuclei, or Golgi neurones did not cause loss of responses to L-glutamate. If granule cells were rendered necrotic, however, the cyclic GMP responses to all excitants tested were reduced by greater than or equal to 90%. Substantial losses of responses to veratridine and high K+ levels also occurred, but the nitroprusside-induced elevations were unaffected. In dissociated cell suspensions, the magnitude of responses to receptor agonists, but not those to nitroprusside, was markedly dependent on cell concentration. Responses to L-glutamate were the same in cell suspensions that were Purkinje cell depleted and Purkinje cell enriched. It is concluded that granule cells are primarily involved in the cyclic GMP responses to excitatory amino acids but that the cyclic GMP accumulations occur elsewhere, probably in glial cells.  相似文献   

19.
It has been suggested that increases in cyclic GMP levels are responsible for the negative inotropic effects of acetylcholine in the heart. This hypothesis was tested by monitoring the effects of acetylcholine and sodium nitroprusside on tension and cyclic nucleotide levels in strips of cat atrial appendage. Sodium nitroprusside markedly increased atrial cyclic GMP levels but did not decrease the twitch tension developed by the atrial strips. Low concentrations of acetylcholine, on the other hand, decreased twitch tension without increasing myocardial cyclic GMP levels. No significant change in cyclic AMP levels was observed in any of these experiments. These results are not consistent with the proposed role for cyclic GMP as the mediator of the negative inotropic effects of acetylcholine.  相似文献   

20.
Abstract: The effects of temperature on muscarinic acetylcholine receptor activation, desensitization, and resensitization were studied with the use of intact mouse neuroblastoma cells (clone N1E-115), which have muscarinic receptors that mediate cyclic GMP synthesis. Below 15-20°C, activation or desensitization of muscarinic receptors by carbamylcholine and recovery from desensitization (caused by carbamylcholine at 37°C) did not occur. Above these temperatures, the apparent rates of receptor-mediated cyclic GMP synthesis, desensitization, and recovery of sensitivity increased as the incubation temperature was increased. Arrhenius plots of the data yielded activation energies of 25, 14, and 23 kcal.mol−1 for activation, desensitization, and resensitization, respectively. These data suggest that a certain degree of membrane phospholipid fluidity is required for these processes to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号