首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies suggest that the actions of insulin on glucose metabolism may be mediated through activation of a membrane-bound serine protease with properties similar to a kallikrein-like enzyme. Also, bradykinin, a vasoactive product of kallikrein's action upon kininogen substrates, increases glucose uptake when infused into the human forearm. To determine whether a kallikrein or a kinin directly affects cellular glucose metabolism or participates in mediating insulin's actions, we studied their effects on isolated rat soleus muscle. Although trypsin (1.34 microM) increased incorporation of glucose into muscle glycogen to the same extent as insulin (200 mu units/ml), a purified rat tissue (urinary) kallikrein (0.4-1.34 microM) produced no such effect. Furthermore, the tissue kallikrein inhibitor, aprotinin, or a polyclonal kallikrein antiserum did not inhibit the action of insulin on incorporation of glucose into muscle glycogen. Treatment of the muscle preparation with bradykinin (1nM - 10 microM) did not result in any change in basal or insulin-stimulated (20 - 2000 mu units/ml) entry of glucose into glycogen or the glycolytic pathway. Bradykinin (1nM - 10 microM) also did not influence basal or insulin-stimulated (1000 mu units/ml) initial rates of glucose transport. These studies suggest that the previously observed in vivo effects of bradykinin on peripheral glucose uptake are probably mediated by changes in tissue perfusion rather than direct kinin effects on skeletal muscle, and that the putative membrane serine protease involved in the insulin-effector system is not tissue kallikrein.  相似文献   

2.
Muscle contractile activity is followed by an increase in the sensitivity of glucose transport to insulin. There is evidence suggesting that activation of p38 MAP kinase (p38) is involved in the stimulation of glucose transport by insulin and contractions. Exercise results in an increase in p38 phosphorylation that lasts for hours. In this context, we tested the hypothesis that activation of p38 results in an increase in insulin sensitivity. Muscles were exposed to anisomycin for 30 min to activate p38. Anisomycin increased p38 phosphorylation approximately 2.5-fold and glucose transport activity 2- to 3-fold. Three hours after anisomycin treatment, by which time the acute effect on glucose transport had partially worn off, sensitivity of muscle glucose transport to 60 microU/ml insulin was markedly increased. Both the activation of p38 and the increase in insulin sensitivity induced by anisomycin were completely prevented by pretreatment of muscles with the p38 inhibitor SB-202190. However, in contrast to the finding with anisomycin, inhibition of p38 activation did not prevent the contraction-induced increase in insulin sensitivity. Thus our results show that activation of p38 is followed by an increase in insulin sensitivity of muscle glucose transport. However, activation of p38 is not necessary for induction of an increase in muscle insulin sensitivity by contractions. This finding provides evidence that contractions have an additional effect that makes p38 activation unnecessary for enhancement of insulin sensitivity by contractile activity.  相似文献   

3.
Exercise increases permeability of muscle to glucose. Normally, the effects of exercise and a maximal insulin stimulus on glucose transport are additive. However, the combined effect on rat epitrochlearis muscle permeability to 3-O-methylglucose (3-MG) of a maximal insulin stimulus followed by in vitro contractile activity of 1.24 +/- 0.06 mumol.10 min-1.ml intracellular water-1 was no greater than that of either stimulus alone. We found that this absence of an additive effect was caused by prolonged exposure to an unphysiologically high insulin concentration (20,000 microU/ml for 60 min), which, in addition to stimulating glucose transport, appears to prevent further increases in permeability to glucose. When the treatments were reversed and muscles were first stimulated to contract and then incubated with 20,000 microU/ml insulin, 3-MG uptake (mumol.10 min-1.ml intracellular water-1) increased from a control value of 0.26 +/- 0.03 to 1.80 +/- 0.15, compared with 1.04 +/- 0.06 for contractile activity alone, 1.21 +/- 0.08 for insulin, and 1.88 +/- 0.11 for exercise (swimming) plus insulin. Swimming plus in vitro contractile activity did not have a greater effect than contractile activity alone. Our results provide evidence that 1) the effect of exercise on muscle permeability to glucose is mediated solely by a process associated with contractile activity, and 2) it is advisable to avoid the use of unphysiologically high insulin concentrations in studies designed to elucidate in vivo actions of insulin.  相似文献   

4.
Glucose transport activity was found to increase over 5 h in rat epitrochlearis muscle in response to a moderate concentration (50-100 microunits/ml) of insulin. This process was examined using 3-methylglucose. The increase in permeability to 3-methylglucose was 2- to 4-fold greater after 5 h than after 1 h in muscles incubated with 50 microunits/ml of insulin and 1 or 8 mM glucose. The increase in permeability to 3-methylglucose during the period between 1 and 5 h of exposure to 50 microunits/ml of insulin and 1 mM glucose was due to an increase in the apparent Vmax of sugar transport. There were two components to this activation of glucose transport. One, which was not influenced by inhibition of protein synthesis, resulted in activation of sugar transport to the same extent by 50 microunits/ml as by 20,000 microunits/ml of insulin; however, this activation took approximately 20 times longer with 50 microunits/ml insulin. The other, which was blocked by cycloheximide, resulted in a further activation of sugar transport to a level higher than that attained in response to 20,000 microunits/ml of insulin. Glucose had no effect on activation of sugar transport during the first hour, but a high concentration (20-36 mM) of glucose prevented the further activation of glucose transport during prolonged treatment with 50 microunits/ml of insulin. It appears from these results that prolonged exposure to a moderate concentration of insulin has previously unrecognized effects that include: a progressive activation of glucose transport over a long time that eventually results in as great a response as a "supramaximal" insulin concentration, and in the presence of low glucose concentration, further activation of glucose transport by an additional, protein synthesis-dependent mechanism. The results also show that a high concentration of glucose can, under some conditions, inhibit stimulation of its own transport.  相似文献   

5.
The suitability of rat vas deferens for investigating sugar transport in smooth muscle was determined in vitro, with the nonmetabolized glucose analog 3-O-methyl-D-glucose as test sugar. Vas deferens smooth muscle contains a facilitated diffusion system for monosaccharides, as shown by saturation of the transport sites and by competition between 3-O-methyl-D-glucose and D-glucose. The activity of the facilitated diffusion system could be enhanced by hyperosmolarity and by contractile activity, but frequency dependency could not be established. A high concentration of insulin (100 mU/mL) was required to stimulate sugar transport. As smooth muscle is not a primary tissue for the storage of energy reserves, it does not require large numbers of insulin receptors.  相似文献   

6.
7.
Muscle contractile activity is associated with an acceleration of glucose transport into muscle. It has been reported that the acceleration of glucose uptake by contractile activity in perfused rat muscles requires the presence of insulin in the perfusate. This claim was investigated using the perfused rat hindlimb preparation in the present study. Rats were made diabetic by injection of 125 mg/kg of streptozotocin and either studied 72 h later or maintained on insulin for 2 wk and then studied 3 days after cessation of insulin therapy. Only rats with plasma insulin levels too low to measure were used. The hindlimbs were washed out with 630 ml of medium over 75 min using a single flow-through washout before muscle stimulation. Despite the absence of insulin in the perfusion medium, stimulation of muscle contraction resulted in large increases in glucose uptake in both the diabetic and control rats. These findings do not support the claim that the stimulatory effect of muscle contraction on glucose uptake by perfused rat muscles requires the presence of insulin.  相似文献   

8.
Serum proteins [molecular weight (MW) > 10,000] are essential for increased insulin-stimulated glucose transport after in vitro muscle contractions. We investigated the role of the kallikrein-kininogen system, including bradykinin, which is derived from kallikrein (MW > 10,000)-catalyzed degradation of serum protein kininogen (MW > 10,000), on this contraction effect. In vitro electrical stimulation of rat epitrochlearis muscles was performed in 1) rat serum +/- kallikrein inhibitors; 2) human plasma (normal or kallikrein-deficient); 3) rat serum +/- bradykinin receptor-2 inhibitors; or 4) serum-free buffer +/- bradykinin. 3-O-methylglucose transport (3-MGT) was measured 3.5 h later. Serum +/- kallikrein inhibitors tended (P = 0.08) to diminish postcontraction insulin-stimulated 3-MGT. Contractions in normal plasma enhanced insulin-stimulated 3-MGT vs. controls, but contractions in kallikrein-deficient plasma did not. Supplementing rat serum with bradykinin receptor antagonist HOE-140 during contraction did not alter insulin-stimulated 3-MGT. Muscles stimulated to contract in serum-free buffer plus bradykinin did not have enhanced insulin-stimulated 3-MGT. Bradykinin was insufficient for postcontraction-enhanced insulin sensitivity. However, results with kallikrein inhibitors and kallikrein-deficient plasma suggest kallikrein plays a role in this improved insulin action.  相似文献   

9.
In order to elucidate the regulatory mechanism of blood glucose concentrations specific to chickens, carbohydrate metabolism in the liver, muscle and kidney and metabolite concentrations in the blood were investigated in chickens with acute and persistent hypoglycemia. Acute and persistent hypoglycemia were experimentally induced by a single injection of insulin (8 U/kg BW) or by continuous infusion of insulin (22.5 U/kg BW/day) for 4 days. Non-esterified fatty acid (NEFA) concentration in plasma and D-3-hydroxybutyrate (3HB) concentrations in liver and muscle increased in the acute hypoglycemia. Plasma NEFA concentration and 3HB concentration in the blood and liver were not changed at day 3 of persistent hypoglycemia, while 3HB concentration in the muscle was decreased. Phosphofructokinase (PFK) activity in the liver tended to increase but PFK and pyruvate kinase (PK) activities were unchanged in acute hypoglycemia. In persistent hypoglycemia, increase of hepatic PFK activity at day 1 in which it was reversed at day 3, and a small increase of muscle PK activity were observed, while PK and phosphoenolpyruvate carboxykinase (PEPCK) activities in the liver and kidney were not significantly changed. These results show that in the persistent hypoglycemic chickens, hepatic glycolysis transiently increases, which is followed by a small decrease, while glycolysis in muscles and gluconeogenesis in the liver and kidney are not significantly changed.  相似文献   

10.
Stimulation of glucose transport in skeletal muscle by hypoxia   总被引:5,自引:0,他引:5  
Hypoxia caused a progressive cytochalasin B-inhibitable increase in the rate of 3-O-methylglucose transport in rat epitrochlearis muscles to a level approximately six-fold above basal. Muscle ATP concentration was well maintained during hypoxia, and increased glucose transport activity was still present after 15 min of reoxygenation despite repletion of phosphocreatine. However, the increase in glucose transport activity completely reversed during a 180-min-long recovery in oxygenated medium. In perfused rat hindlimb muscles, hypoxia caused an increase in glucose transporters in the plasma membrane, suggesting that glucose transporter translocation plays a role in the stimulation of glucose transport by hypoxia. The maximal effects of hypoxia and insulin on glucose transport activity were additive, whereas the effects of exercise and hypoxia were not, providing evidence suggesting that hypoxia and exercise stimulate glucose transport by the same mechanism. Caffeine, at a concentration too low to cause muscle contraction or an increase in glucose transport by itself, markedly potentiated the effect of a submaximal hypoxic stimulus on sugar transport. Dantrolene significantly inhibited the hypoxia-induced increase in 3-O-methylglucose transport. These effects of caffeine and dantrolene suggest that Ca2+ plays a role in the stimulation of glucose transport by hypoxia.  相似文献   

11.
To examine the role of AMP-activated protein kinase (AMPK) in muscle glucose transport, we generated muscle-specific transgenic mice (TG) carrying cDNAs of inactive alpha2 (alpha2i TG) and alpha1 (alpha1i TG) catalytic subunits. Extensor digitorum longus (EDL) muscles from wild type and TG mice were isolated and subjected to a series of in vitro incubation experiments. In alpha2i TG mice basal alpha2 activity was barely detectable, whereas basal alpha1 activity was only partially reduced. Known AMPK stimuli including 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), rotenone (a Complex I inhibitor), dinitrophenol (a mitochondrial uncoupler), muscle contraction, and sorbitol (producing hyperosmolar shock) did not increase AMPK alpha2 activity in alpha2i TG mice, whereas alpha1 activation was attenuated by only 30-50%. Glucose transport was measured in vitro using isolated EDL muscles from alpha2i TG mice. AICAR- and rotenone-stimulated glucose transport was fully inhibited in alpha2i TG mice; however, the lack of AMPK alpha2 activity had no effect on contraction- or sorbitol-induced glucose transport. Similar to these observations in vitro, contraction-stimulated glucose transport, assessed in vivo by 2-deoxy-d-[(3)H]glucose incorporation into EDL, tibialis anterior, and gastrocnemius muscles, was normal in alpha2i TG mice. Thus, AMPK alpha2 activation is essential for some, but not all, insulin-independent glucose transport. Muscle contraction- and hyperosmolarity-induced glucose transport may be regulated by a redundant mechanism in which AMPK alpha2 is one of multiple signaling pathways.  相似文献   

12.
Exercise-induced increase in muscle insulin sensitivity.   总被引:9,自引:0,他引:9  
Exercise/muscle contraction activates glucose transport. The increase in muscle glucose transport induced by exercise is independent of insulin. As the acute effect of exercise on glucose transport wears off, it is replaced by an increase in insulin sensitivity. An increase in insulin sensitivity results in a shift in the insulin dose-response curve to the left, with a decrease in the concentration of insulin needed to induce 50% of the maximal response. This phenomenon, which plays a major role in rapid muscle glycogen accumulation after exercise, is not mediated by amplification of the insulin signal. Development of the increase in insulin sensitivity after contractions does not require protein synthesis or activation of p38 MAPK. It does require the presence of a serum protein during the period of contractile activity. The effect of exercise on muscle insulin sensitivity is mimicked by hypoxia and by treatment of muscles with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside to activate AMP-activated protein kinase. The postexercise increase in sensitivity of muscle glucose transport to activation is not specific for insulin but also involves an increased susceptibility to activation by a submaximal contraction/hypoxia stimulus. The increase in insulin sensitivity is mediated by translocation of more GLUT4 glucose transporters to the cell surface in response to a submaximal insulin stimulus. Although the postexercise increase in muscle insulin sensitivity has been characterized in considerable detail, the basic mechanisms underlying this phenomenon remain a mystery.  相似文献   

13.
A role for elevated glycogen synthase kinase-3 (GSK-3) activity in the multifactorial etiology of insulin resistance is now emerging. However, the utility of specific GSK-3 inhibition in modulating insulin resistance of skeletal muscle glucose transport is not yet fully understood. Therefore, we assessed the effects of novel, selective organic inhibitors of GSK-3 (CT-98014 and CT-98023) on glucose transport in insulin-resistant muscles of Zucker diabetic fatty (ZDF) rats. Incubation of type IIb epitrochlearis and type I soleus muscles from ZDF rats with CT-98014 increased glycogen synthase activity (49 and 50%, respectively, P < 0.05) but did not alter basal glucose transport (2-deoxyglucose uptake). In contrast, CT-98014 significantly increased the stimulatory effects of both submaximal and maximal insulin concentrations in epitrochlearis (37 and 24%) and soleus (43 and 26%), and these effects were associated with increased cell-surface GLUT4 protein. Lithium enhanced glycogen synthase activity and both basal and insulin-stimulated glucose transport in muscles from ZDF rats. Acute oral administration (2 x 30 mg/kg) of CT-98023 to ZDF rats caused elevations in GSK-3 inhibitor concentrations in plasma and muscle. The glucose and insulin responses during a subsequent oral glucose tolerance test were reduced by 26 and 34%, respectively, in the GSK-3 inhibitor-treated animals. Thirty minutes after the final GSK-3 inhibitor treatment, insulin-stimulated glucose transport was significantly enhanced in epitrochlearis (57%) and soleus (43%). Two hours after the final treatment, insulin-mediated glucose transport was still significantly elevated (26%) only in the soleus. These results indicate that specific inhibition of GSK-3 enhances insulin action on glucose transport in skeletal muscle of the insulin-resistant ZDF rat. This unique approach may hold promise as a pharmacological treatment against insulin resistance of skeletal muscle glucose disposal.  相似文献   

14.
The penetration of a nonmetabolized glucose analogue, 3--O-methyl-D-glucose, across the plasma membranes of tissues from dystrophic mice and cardiomyopathic (dystrophic) hamsters has been compared with that of normal controls. Under basal conditions the penetration of test sugar was similar in lens and diaphragm of normal and dystrophic 129/ReJ mice. Stimulation of sugar transport by 2,4-dinitrophenol did occur in normal but not in dystrophic diaphragm. A submaximal concentration of insulin had a more variable effect in dystrophic than in normal muscle while a supramaximal concentration of the hormone increased the uptake of the glucose analogue to an equal extent in the two tissues. In the BIO 14.6 strain of cardiomyopathic hamsters, uncoupling of oxidative phosphorylation did not increase sugar transport in extensor digitorum longus muscles, while the normal effect was observed in dystrophic soleus and in both these muscles of the random bred controls. The absence of an effect by a condition simulating anoxia suggests that in dystrophy, certain muscles are unable to accelerate the entry of glucose when this is required.  相似文献   

15.
Exercise training induces an increase in GLUT-4 in muscle. We previously found that feeding rats a high-carbohydrate diet after exercise, with muscle glycogen supercompensation, results in a decrease in insulin responsiveness so severe that it masks the effect of a training-induced twofold increase in GLUT-4 on insulin-stimulated muscle glucose transport. One purpose of this study was to determine whether insulin signaling is impaired. Maximally insulin-stimulated phosphatidylinositol (PI) 3-kinase activity was not significantly reduced, whereas protein kinase B (PKB) phosphorylation was approximately 50% lower (P < 0.01) in muscles of chow-fed, than in those of fasted, exercise-trained rats. Our second purpose was to determine whether contraction-stimulated glucose transport is also impaired. The stimulation of glucose transport and the increase in cell surface GLUT-4 induced by contractions were both decreased by approximately 65% in glycogen-supercompensated muscles of trained rats. The contraction-stimulated increase in AMP kinase activity, which has been implicated in the activation of glucose transport by contractions, was approximately 80% lower in the muscles of the fed compared with the fasted rats 18 h after exercise. These results show that both the insulin- and contraction-stimulated pathways for muscle glucose transport activation are impaired in glycogen-supercompensated muscles and provide insight regarding possible mechanisms.  相似文献   

16.
This study was done to evaluate the effect of insulin on sugar transport into skeletal muscle after exercise. The permeability of rat epitrochlearis muscle to 3-O-methylglucose (3-MG) was measured after exposure to a range of insulin concentrations 30, 60, and 180 min after a bout of exercise. Thirty and 60 min after exercise, the effects of exercise and insulin on 3-MG transport were additive over a wide range of insulin concentrations, with no increase in sensitivity or responsiveness to insulin. After 180 min, when approximately 66% of the exercise-induced increase in sugar transport had worn off, both the responsiveness and sensitivity of the glucose transport process to insulin were increased. These findings appear compatible with the hypothesis that the actions of exercise and insulin result in activation and/or translocation into the plasma membrane of two separate pools of glucose transporters in mammalian skeletal muscle.  相似文献   

17.
We have investigated the role of phorbol esters on different biological effects induced by insulin in muscle, such as activation of system A transport activity, glucose utilization and insulin receptor function. System A transport activity was measured by monitoring the uptake of the system A-specific analogue alpha-(methyl)aminoisobutyric acid (MeAIB), by intact rat extensor digitorum longus muscle. The addition of 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.5 microM) for 60 or 180 min did not modify basal MeAIB uptake by muscle, suggesting that insulin signalling required to stimulate MeAIB transport does not involve protein kinase C activation. However, TPA added 30 min before insulin (100 nM) markedly inhibited insulin-stimulated MeAIB uptake. The addition of polymyxin B (0.1 mM) or H-7 (1 mM), protein kinase C inhibitors, alone or in combination with TPA leads to impairment of insulin-stimulated MeAIB uptake. This paradoxical pattern is incompatible with a unique action of Polymyxin B or H-7 on protein kinase C activity. Therefore these agents are not suitable tools with which to investigate whether a certain insulin effect is mediated by protein kinase C. TPA did not cause a generalized inhibition of insulin action. Thus both TPA and insulin increased 3-O-methylglucose uptake by muscle, and their effects were not additive. Furthermore, TPA did not modify insulin-stimulated lactate production by muscle. In keeping with this selective modification of insulin action, treatment of muscles with TPA did not modify insulin receptor binding or kinase activities. In conclusion, phorbol esters do not mimic insulin action on system A transport activity; however, they markedly inhibit insulin-stimulated amino acid transport, with no modification of insulin receptor function in rat skeletal muscle. It is suggested that protein kinase C activation causes a selective post-receptor modification on the biochemical pathway by which insulin activates system A amino acid transport in muscle.  相似文献   

18.
Angiotensin converting enzyme (ACE) inhibitors are a widely used intervention for blood pressure control, and are particularly beneficial in hypertensive type 2 diabetic subjects with insulin resistance. The hemodynamic effects of ACE inhibitors are associated with enhanced levels of the vasodilator bradykinin and decreased production of the vasoconstrictor and growth factor angiotensin II (ATII). In insulin-resistant conditions, ACE inhibitors can also enhance whole-body glucose disposal and glucose transport activity in skeletal muscle. This review will focus on the metabolic consequences of ACE inhibition in insulin resistance. At the cellular level, ACE inhibitors acutely enhance glucose uptake in insulin-resistant skeletal muscle via two mechanisms. One mechanism involves the action of bradykinin, acting through bradykinin B(2) receptors, to increase nitric oxide (NO) production and ultimately enhance glucose transport. A second mechanism involves diminution of the inhibitory effects of ATII, acting through AT(1) receptors, on the skeletal muscle glucose transport system. The acute actions of ACE inhibitors on skeletal muscle glucose transport are associated with upregulation of insulin signaling, including enhanced IRS-1 tyrosine phosphorylation and phosphatidylinositol-3-kinase activity, and ultimately with increased cell-surface GLUT-4 glucose transporter protein. Chronic administration of ACE inhibitors or AT(1) antagonists to insulin-resistant rodents can increase protein expression of GLUT-4 in skeletal muscle and myocardium. These data support the concept that ACE inhibitors can beneficially modulate glucose control in insulin-resistant states, possibly through a NO-dependent effect of bradykinin and/or antagonism of ATII action on skeletal muscle.  相似文献   

19.
Young JC  Young RE 《Life sciences》2002,71(15):1731-1737
Glucose transport in muscle is a function of the muscle metabolic state, as evidenced by the increase in glucose transport which occurs with conditions of altered aerobic metabolism such as hypoxia or contractile activity. The energy state of the muscle can be determined by the muscle phosphocreatine concentration. Dietary supplementation of creatine has been shown to increase both phosphocreatine (PCr) and creatine (TCr) levels in muscle, although not in the same proportion, so that the PCr/TCr ratio falls suggesting an altered energy state in the cell. The purpose of this study was to determine the effect of increased creatine content on glucose uptake in muscle. PCr and TCr were determined in plantaris muscles from rats following five weeks of dietary supplementation of creatine monohydrate (300 mg/kg/day). (3)H-2-deoxyglucose uptake was measured in epitrochlearis muscles incubated in the presence or absence of a maximally stimulating dose of insulin. Despite a significant increase in creatine content in muscle, neither basal nor insulin-stimulated glucose uptake was altered in creatine supplemented rats. Since PCr levels were not increased with creatine supplementation, these results suggest that the actual concentration of PCr is a more important determinant of glucose uptake than the PCr/TCr ratio.  相似文献   

20.
Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3‐kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin‐activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho‐aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho‐aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号