首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species (ROS) have emerged as important signaling molecules in the regulation of various cellular processes. In our study, we investigated the effect of a wide range of ROS on Chinese hamster lung fibroblast (V79) cell proliferation. Treatment with H2O2 (100 microM), superoxide anion (generated by 1 mM xanthine and 1 mU/ml xanthine oxidase), menadione, and phenazine methosulfate increased the cell proliferation by approximately 50%. Moreover, a similar result was observed after partial inhibition of superoxide dismutase (SOD) and glutathione peroxidase. This upregulation of cell proliferation was suppressed by pretreatment with hydroxyl radical scavengers and iron chelating agents. In addition to ROS, treatment with exogenous catalase and SOD mimic (MnTMPyP) suppressed the normal cell proliferation. Short-term exposure of the cells to 100 microM H2O2 was sufficient to induce proliferation, which indicated that activation of the signaling pathway is important as an early event. Accordingly, we assessed the ability of H2O2 to activate mitogen-activated protein kinases (MAPK). Jun-N-terminal kinase (JNK) and p38 MAPK were both rapidly and transiently activated by 100 microM H2O2, with maximal activation 30 min after treatment. However, the activity of extracellular signal-regulated kinase (ERK) was not changed. Pretreatment with SB203580 and SB202190, specific inhibitors of p38 MAPK, reduced the cell proliferation induced by H2O2. The activation of both JNK and p38 MAPK was also suppressed by pretreatment with hydroxyl radical scavenger and iron chelating agents. Our results suggest that the trace metal-driven Fenton reaction is a central mechanism that underlies cell proliferation and MAPK activation.  相似文献   

2.
T Ochi  M Ohsawa 《Mutation research》1985,143(3):137-142
The effect of various scavengers of active oxygen species on the induction of chromosomal aberrations by cadmium chloride (CdCl2) was investigated in cultured Chinese hamster V79 cells. Incidences of chromosomal aberrations by CdCl2 were partially or fully reduced by the presence of catalase, mannitol (a scavenger of hydroxyl radicals) and butylated hydroxytoluene (BHT, an antioxidant). These findings may indicate participation of the active oxygen species such as hydrogen peroxide (H2O2) or hydroxyl radicals in the clastogenicity of cadmium. In contrast, superoxide dismutase (SOD) and dimethylfuran (a scavenger of singlet oxygen) did not influence incidences of chromosomal aberrations by CdCl2. These results suggest that superoxide anion and singlet oxygen are not directly involved in the clastogenicity of the metal. The presence of aminotriazole (an inhibitor of catalase) increased incidences of chromosomal aberrations by CdCl2. This emphasizes participation of H2O2 in the clastogenicity of cadmium.  相似文献   

3.
Conditions necessary for the activation by ascorbic acid of soluble guanylate cyclase purified from bovine lung have been examined. Ascorbic acid (0.1-10 mM) did not directly activate the enzyme, nonetheless, pronounced activation by ascorbate (3-10 mM) was observed in incubation mixtures containing 1 microM bovine liver catalase. Superoxide dismutase (SOD) and mannitol did not affect the catalase-dependent activation of guanylate cyclase elicited by ascorbate, suggesting that superoxide anion and hydroxyl radical were not mediating the activation of the enzyme. However, SOD enhanced the relatively low level activation of the enzyme elicited by catalase in the absence of added ascorbate. Pronounced inhibition (both with and without added ascorbate) was observed of catalase-dependent activation of guanylate cyclase by either ethanol (100 mM) or a fungal catalase preparation. Neither ethanol nor fungal catalase inhibited activation of guanylate cyclase by S-nitrosyl-N-acetyl-penicillamine (SNAP), a source of the nitric oxide free radical. These observations indicate that autoxidation of ascorbic acid or thiols present with the guanylate cyclase preparation leads to generation of H2O2, and its metabolism by bovine liver catalase mediates the concomitant activation of guanylate cyclase. The mechanism of activation appears to be associated with the presence of Compound I of catalase and to be inhibited by superoxide anion.  相似文献   

4.
Park WH  Han YW  Kim SH  Kim SZ 《Mutation research》2007,619(1-2):81-92
We investigated the involvement of ROS such as H2O2 and O2*-, and GSH in As4.1 cell death induced by pyrogallol. The intracellular H2O2 levels were decreased or increased depending on the concentration and incubation time of pyrogallol. The levels of O2*- were significantly increased. Pyrogallol reduced the intracellular GSH content. And ROS scavengers, Tempol, Tiron, Trimetazidine and NAC could not significantly down-regulate the production of H2O2 and O2*-. However, these ROS scavengers slightly inhibited apoptosis. Interestingly, Tempol showing the recovery of GSH depletion induced by pyrogallol significantly decreased apoptosis without the significant reduction of intracellular O2*- levels. SOD and catalase did not change the level of H2O2 but decreased the level of O2*-. The inhibition of GSH depletion by these was accompanied with the decrease of apoptosis, as evidenced by sub-G1 DNA content, annexin V staining, mitochondria membrane potential (DeltaPsi(m)) and Western data. In addition, ROS scavengers and SOD did not alter a G2 phase accumulation of the cell cycle induced by pyrogallol. However, catalase changed the cell cycle distributions of pyrogallol-treated cells to those of pyrogallol-untreated cells. In summary, we have demonstrated that pyrogallol potently generates ROS, especially O2*-, in As4.1 JG cells, and Tempol, SOD and catalase could rescue to a lesser or greater extent cells from pyrogallol-induced apoptosis through the up-regulation of intracellular GSH content.  相似文献   

5.
Reactive oxygen species (ROS), such as superoxide and H(2)O(2), are capable of modifying vascular tone, although the response to ROS can vary qualitatively among vascular beds, experimental procedures, and species. Endothelin-1 (ET-1) induces superoxide production, which can be dismutated to H(2)O(2). The RhoA/Rho kinase pathway partially mediates ET-1-induced contraction and recently was implicated in superoxide-induced contraction. We hypothesized that H(2)O(2), not superoxide, mediates venous ET-1-induced contraction. Rat thoracic aorta and vena cava contracted to exogenously added H(2)O(2) (1 microM-1 mM) [maximum aortic contraction = 10 +/- 3% of phenylephrine (10 microM) contraction; maximum venous contraction = 85 +/- 13% of norepinephrine (10 microM) contraction]. (+)-(R)-trans-4-(1-aminoethyl-N-4-pyridil)cyclohexanecarboxamide dihydrochloride (Y-27632, 10 microM), a Rho kinase inhibitor, significantly reduced venous H(2)O(2)-induced contraction (15 +/- 1% of control maximum) and reduced maximum ET-1-induced contraction by 59 +/- 1%. However, neither the H(2)O(2) scavenger catalase (100 and 2,000 U/ml) nor cell permeable polyethylene glycol-catalase (163 and 326 U/ml) reduced ET-1-induced contraction in the vena cava. The catalase inhibitor 3-aminotriazole (3-AT) also had no effect on maximal venous ET-1-induced contraction. Basal H(2)O(2) levels were three times higher in the vena cava than in the aorta (vena cava, 0.74 +/- 0.09 nmol H(2)O(2)/mg protein; aorta, 0.24 +/- 0.05 nmol H(2)O(2)/mg protein). ET-1 (100 nM) increased H(2)O(2) in the vena cava but not in the aorta (vena cava, 154.10 +/- 17.29% of control H(2)O(2); aorta, 83.72 +/- 20.20%). Antagonism of either ET(A) or ET(B) receptors with the use of atrasentan (30 nM) or BQ-788 (100 nM), respectively, reduced ET-1 (100 nM)-induced increases in venous H(2)O(2). In summary, ET-1 increased H(2)O(2) in veins but not arteries, and venous ET-1-induced H(2)O(2) production was independent of the contractile properties of ET-1.  相似文献   

6.
Tumor necrosis factor-alpha (TNF-alpha) induces reactive oxygen species (ROS) that serve as second messengers for intracellular signaling. Currently, precise roles of individual ROS in the actions of TNF-alpha remain to be elucidated. In this report, we investigated the roles of superoxide anion (O-(2)), hydrogen peroxide (H(2)O(2)), and peroxynitrite (ONOO(-)) in TNF-alpha-triggered apoptosis of mesangial cells. Mesangial cells stimulated by TNF-alpha produced O-(2) and underwent apoptosis. The apoptosis was inhibited by transfection with manganese superoxide dismutase or treatment with a pharmacological scavenger of O-(2), Tiron. In contrast, although exogenous H(2)O(2) induced apoptosis, TNF-alpha-triggered apoptosis was not affected either by transfection with catalase cDNA or by treatment with catalase protein or glutathione ethyl ester. Similarly, although ONOO(-) precursor SIN-1 induced apoptosis, treatment with a scavenger of ONOO(-), uric acid, or an inhibitor of nitric oxide synthesis, N(G)-nitro-L-argininemethyl ester hydrochloride, did not affect the TNF-alpha-triggered apoptosis. Like TNF-alpha-induced apoptosis, treatment with a O-(2)-releasing agent, pyrogallol, induced typical apoptosis even in the concurrent presence of scavengers for H(2)O(2) and ONOO(-). These results suggested that, in mesangial cells, TNF-alpha induces apoptosis through selective ROS. O-(2), but not H(2)O(2) or ONOO(-), was identified as the crucial mediator for the TNF-alpha-initiated, apoptotic pathway.  相似文献   

7.
The effects of hydrogen peroxide (H2O2, 1 nM-5 mM) on the tone of the rings of aorta precontracted with phenylephrine (PE) were studied in 4-5 months streptozotocin (STZ)-diabetic rats and their age-matched controls. H2O2 induced brief contraction before relaxation in endothelium-containing rings that was more pronounced in diabetic rats. Removal of the endothelium or pretreatment of rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 microM) abolished H2O2-induced immediate and transient increase in tone, but preincubation with indomethacin (10 microM) had no effect on contractions induced by H2O2 in both group of animals. Pretreatment with L-NAME or indomethacin as well as absence of endothelium produced an inhibition of H2O2-induced relaxation that was more pronounced in diabetic rings. Chronically STZ-diabetes resulted in a significant increase in H2O2-induced maximum relaxation that was largely endothelium-dependent. Decreased sensitivity (pD2) of diabetic vessels to vasorelaxant action of H2O2 was normalized by superoxide dismutase (SOD, 80 U/ml). Pretreatment with SOD had no effect on H2O2-induced maximum relaxations in both group of animals but led to an increase in H2O2-induced contractions in control rats. When the rings pretreated with diethyldithiocarbamate (DETCA, 5 mM), H2O2 produced only contraction in control rats, and H2O2-induced relaxations were markedly depressed in diabetic rats. H2O2 did not affect the tone of intact or endothelium-denuded rings in the presence of catalase (2000 U/ml). Aminotriazole (AT, 10 mM) failed to affect H2O2-induced contractions or relaxations in all rings. Our observations suggest that increased production of oxygen-derived free radicals (OFRs) in diabetic state leads to a decrease in SOD activity resulting an increase in endogenous superoxide anions (O2*-), that is limited cytotoxic actions, and an increase in catalase activity resulting a decrease in both H2O2 concentrations and the production of harmful hydroxyl radical (*OH) in diabetic aorta in long-term. Present results indicate that increased vascular activity of H2O2 may be an important factor in the development of vascular disorders associated with chronically diabetes mellitus. Enhanced formation of *OH, that is a product of exogenous H2O2 and excess O2*, seems to be contribute to increased relaxations to exogenously added H2O2 in chronically diabetic vessels.  相似文献   

8.
Rat lenses in organ culture were exposed to activated species of oxygen generated in the culture medium either by xanthine oxidase and hypoxanthine or by riboflavin and visible light, two systems which have been shown to produce superoxide and H2O2. In each case there was marked damage to carrier-mediated transport systems of the lens. Under standard culture conditions this damage was strongly inhibited by catalase, but not by superoxide dismutase (SOD). By the addition to the medium of chelated iron, hydroxyl radicals were produced in a Fenton reaction with a concomitant decrease in H2O2 levels. With both oxygen radical-generating systems, the addition of chelated iron strongly inhibited lens damage. This inhibitory effect could be reversed by the addition of SOD with the chelated iron. Under such conditions SOD converts superoxide anion to H2O2, thereby preventing reduction of the chelated iron and thus stopping the generation of hydroxyl radicals. Increased lens damage following addition of SOD to the iron-containing systems correlated with higher H2O2 concentrations, and was inhibited by catalase. These findings suggest that, when generated in the fluids surrounding the lens, H2O2 poses a much greater oxidative stress for the lens than do the superoxide or hydroxyl free radicals.  相似文献   

9.
A I Cederbaum  E Dicker  G Cohen 《Biochemistry》1980,19(16):3698-3704
The microsomal oxidation of ethanol or 1-butanol was increased by ferrous ammonium sulfate-ethylenediaminetetraacetic acid (1:2) (Fe-EDTA) (3.4-50 microM). The increase was blocked by hydroxyl radical scavenging agents such as dimethyl sulfoxide or mannitol. The activities of aminopyrine demethylase or aniline hydroxylase were not affected by Fe-EDTA. The accumulation of H2O2 was decreased in the presence of Fe-EDTA, consistent with an increased utilization of H2O2. Other investigators have shown that Fe-EDTA increases the formation of hydroxyl radicals in systems where superoxide radicals are generated. The stimulation by Fe-EDTA appears to represent a pathway involving hydroxyl radicals rather than catalase because (1) stimulation occurred in the presence of azide, which inhibits catalase, (2) stimulation occurred in the presence of 1-butanol, which is not an effective substrate for catalase, and (3) stimulation was blocked by hydroxyl radical scavenging agents, which do not affect catalase-mediated oxidation of ethanol. A possible role for contaminating iron in the H2O or buffers could be ruled out since similar results were obtained with or without chelex-100 treatment of these solutions. The stimulatory effect by Fe-EDTA required microsomal electron transfer with NADPH, and H2O2 could not replace the NADPH-generating system. In the absence of microsomes or catalase, Fe-EDTA also stimulated the coupled oxidation of ethanol during the oxidation of xanthine by xanthine oxidase. These results suggest that during microsomal electrom transfer, conditions may be appropriate for a Fenton type or a modified Haber-Weiss type of reaction to occur, leading to the production of hydroxyl radicals.  相似文献   

10.
Production of reactive oxygen species (ROS) may be increased during hypoxia in pulmonary arteries. In this study, the role of ROS in the effect of hypoxia on endothelin (ET) type B (ETB) receptor-mediated vasocontraction in lungs was determined. In rat intrapulmonary (approximately 0.63 mm ID) arteries, contraction induced by IRL-1620 (a selective ETB receptor agonist) was significantly attenuated after 4 h of hypoxia (30 mmHg Po2) compared with normoxic control (140 mmHg Po2). The effect was abolished by tiron, a scavenger of superoxide anions, but not by polyethylene glycol (PEG)-conjugated catalase, which scavenges H2O2. The hypoxic effect on ETB receptor-mediated vasoconstriction was also abolished by endothelium denudation but not by nitro-L-arginine and indomethacin. Exposure for 4 h to exogenous superoxide anions, but not H2O2, attenuated the vasoconstriction induced by IRL-1620. Confocal study showed that hypoxia increased ROS production in pulmonary arteries that were scavenged by PEG-conjugated SOD. In endothelium-intact pulmonary arteries, the ETB receptor protein was reduced after 4 h of exposure to hypoxia, exogenous superoxide anions, or ET-1. BQ-788, a selective ETB receptor antagonist, prevented these effects. ET-1 production was stimulated in endothelium-intact arteries after 4 h of exposure to hypoxia or exogenous superoxide anions. This effect was blunted by PEG-conjugated SOD. These results demonstrate that exposure to hypoxia attenuates ETB receptor-mediated contraction of rat pulmonary arteries. A hypoxia-induced production of superoxide anions may increase ET-1 release from the endothelium and result in downregulation of ETB receptors on smooth muscle.  相似文献   

11.
We determined the acute effects of oxidative stress on glucose uptake and intracellular signaling in skeletal muscle by incubating muscles with reactive oxygen species (ROS). Xanthine oxidase (XO) is a superoxide-generating enzyme that increases ROS. Exposure of isolated rat extensor digitorum longus (EDL) muscles to Hx/XO (Hx/XO) for 20 min resulted in a dose-dependent increase in glucose uptake. To determine whether the mechanism leading to Hx/XO-stimulated glucose uptake is associated with the production of H2O2, EDL muscles from rats were preincubated with the H2O2 scavenger catalase or the superoxide scavenger superoxide dismutase (SOD) prior to incubation with Hx/XO. Catalase treatment, but not SOD, completely inhibited the increase in Hx/XO-stimulated 2-deoxyglucose (2-DG) uptake, suggesting that H2O2 is an intermediary leading to Hx/XO-stimulated glucose uptake with incubation. Direct H2O2 also resulted in a dose-dependent increase in 2-DG uptake in isolated EDL muscles, and the maximal increase was threefold over basal levels at a concentration of 600 micromol/l H2O2. H2O2-stimulated 2-DG uptake was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin, but not the nitric oxide inhibitor NG-monomethyl-l-arginine. H2O2 stimulated the phosphorylation of Akt Ser473 (7-fold) and Thr308 (2-fold) in isolated EDL muscles. H2O2 at 600 micromol/l had no effect on ATP concentrations and did not increase the activities of either the alpha1 or alpha2 catalytic isoforms of AMP-activated protein kinase. These results demonstrate that acute exposure of muscle to ROS is a potent stimulator of skeletal muscle glucose uptake and that this occurs through a PI3K-dependent mechanism.  相似文献   

12.
Dichloroacetonitrile (DCAN), is a member of haloacetonitrile group and detected in drinking water supplies as a by-product of chlorination process. The mechanism of DCAN-induced carcinogenesis is believed to be mediated by oxidative bioactivation of DCAN molecules. The present study was designed to investigate if reactive oxygen species (ROS), similar to that generated in biological systems, are capable of oxidative activation of DCAN. A model ROS generation system (Fenton-like reaction; Fe2+ and H2O2) that predominantly produces hydroxyl radical (OH*) was used. DCAN oxidation was monitored by the extent of cyanide (CN-) release. The results indicate that DCAN was markedly oxidized by this system, and the rate of oxidation was dependent on DCAN concentration. Four-fold increase in H2O2 concentration (50-200 mM) resulted in a 35-fold increase in CN- release. The rates of DACN oxidation in presence of various transition metals were in the following order; iron>copper>titanium. DCAN oxidation was enhanced significantly by the addition of vitamin C and sulfhydryl compounds such as glutathione, N-acetyl-L- cysteine, and dithiothreitol (10 mM) to 140, 130, 145 and 136% of control, respectively. Addition of H2O2 scavenger; catalase or iron chelator; desferrioxamine (DFO) resulted in a significant decrease in CN- release 47 and 41% of control, respectively. Addition of various concentrations of the free radical scavengers, DMSO, or mannitol, to the incubation mixtures caused a significant decrease in DCAN oxidation, 32 and 50% of control, respectively. Michaelis-Menten kinetic analysis of the rates of this reaction, with or without inhibitors, indicated that ROS mediated oxidation of DCAN was inhibited by catalase (Ki = 0.01 mM)>DFO (0.02 mM) > mannitol (0.09 mM) > DMSO (0.12 mM). In conclusion, our results indicate that DCAN is oxidized by a ROS-mediated mechanism. This mechanism may have an important role in DCAN bioactivation and DCAN-induced genotoxicity at target organs where multiple forms of ROS generating systems are abundant.  相似文献   

13.
Arsenic trioxide has been known to regulate many biological functions such as cell proliferation, apoptosis, differentiation, and angiogenesis in various cell lines. We investigated the involvement of GSH and ROS such as H(2)O(2) and O(2)(*-) in the death of As4.1 cells by arsenic trioxide. The intracellular ROS levels were changed depending on the concentration and length of incubation with arsenic trioxide. The intracellular O(2)(*-) level was significantly increased at all the concentrations tested. Arsenic trioxide reduced the intracellular GSH content. Treatment of Tiron, ROS scavenger decreased the levels of ROS in 10 microM arsenic trioxide-treated cells. Another ROS scavenger, Tempol did not decrease ROS levels in arsenic trioxide-treated cells, but slightly recovered the depleted GSH content and reduced the level of apoptosis in these cells. Exogenous SOD and catalase did not reduce the level of ROS, but did decrease the level of O(2)(*-). Both of them inhibited GSH depletion and apoptosis in arsenic trioxide-treated cells. In addition, ROS scavengers, SOD and catalase did not alter the accumulation of cells in the S phase induced by arsenic trioxide. Furthermore, JNK inhibitor rescued some cells from arsenic trioxide-induced apoptosis, and this inhibitor decreased the levels of O(2)(*-) and reduced the GSH depletion in these cells. In summary, we have demonstrated that arsenic trioxide potently generates ROS, especially O(2)(*-), in As4.1 juxtaglomerular cells, and Tempol, SOD, catalase, and JNK inhibitor partially rescued cells from arsenic trioxide-induced apoptosis through the up-regulation of intracellular GSH levels.  相似文献   

14.
Captopril, an angiotensin converting enzyme (ACE) inhibitor, was hypothesized to be a potential scavenger of free radicals because of the presence of a thiol group. The scavenging action of captopril was examined against superoxide anion (O2-), hydroxyl radical (OH.), hypohalite radical (HOCL) either generated biochemically, or derived from activated polymorphonuclear leukocytes (PMN). Our results indicate that captopril is an extremely potent free radical scavenger, scavenging power being as effective as superoxide dismutase (SOD) against O2-, or dimethylthiourea against OH., but better than allopurinol against OCL. plus HOCL. Free radical scavenging action of captopril against PMN-derived free radical is equivalent to the combined effects of SOD, catalase and allopurinol.  相似文献   

15.
Xanthine oxidase with acetaldehyde as substrate (the XOA system) generated superoxide anion and hydrogen peroxide, but this system had only weak bactericidal activity. Addition of Fe2+ and EDTA to the XOA system (XOA-Fe-EDTA system) increased bactericidal activity against Staphylococcus aureus, Escherichia coli, Listeria monocytogenes and Salmonella typhimurium, although both Mycobacterium tuberculosis and Candida albicans remained highly resistant. Catalase (H2O2 scavenger) and mannitol (.OH scavenger) almost completely inhibited the bactericidal activity of the XOA-Fe-EDTA system whereas SOD (O2- scavenger) was less inhibitory. Azide (1O2 scavenger) caused no such inhibition. The results suggest the possible role of .OH, H2O2 and O2- in the XOA-Fe-EDTA-mediated antimicrobial system, as effector molecules. There was no correlation between resistance of a given bacterium to active oxygen and the level of endogenous active oxygen-scavengers.  相似文献   

16.
This study was performed to investigate the role of reactive oxygen species and inducible nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2) metabolites in the lipopolysaccharide effect on bradykinin-induced relaxation in middle cerebral arteries from normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). LPS exposure (10 microg/ml for 1-5 h) reduced bradykinin relaxation; this effect appeared earlier and was greater in arteries from SHR than WKY rats. LPS also reduced the relaxation to the NO donor diethylamine (DEA)-NO; however, LPS modified neither the bradykinin relaxation after inhibiting NO synthesis with N(G)-monomethyl-L-arginine (0.1 mM) nor endothelial NOS expression. In arteries from WKY rats, the respective iNOS and COX-2 inhibitors aminoguanidine (0.1 mM) and NS-398 (10 microM) and the superoxide anion scavenger SOD (100 U/ml) reduced the LPS effect on bradykinin relaxation; however, the thromboxane A(2) (TxA(2))PGH(2) receptor antagonist SQ-29548 (1 microM) and the H(2)O(2) scavenger catalase (1,000 U/ml) did not modify the LPS effect. In arteries from SHR, all of these drugs reduced the LPS effect. LPS exposure (5 h) increased superoxide anion levels in arteries from both strains and TxA(2) levels only in SHR. COX-2 expression rose to a similar level in arteries from both strains after 1 and 5 h of LPS incubation, whereas expression of Cu/Zn- and Mn-SOD only increased after 5 h. In conclusion, in segments from WKY rats, LPS reduced bradykinin-induced relaxation through increased production of NO (from iNOS) and superoxide anion. The greater LPS effect observed in arteries from SHR seems to be related to higher participation of reactive oxygen species and contractile prostanoids (probably TxA(2)).  相似文献   

17.
Endothelium-dependent, nitric oxide (NO)-mediated vasodilation can be impaired by reactive oxygen species (ROS), and this deleterious effect of ROS on NO availability may increase with aging. Endothelial function declines rapidly after menopause, possibly because of loss of circulating estrogen and its antioxidant effects. The purpose of the current study was to determine the role of O(2)(-) and H(2)O(2) in regulating flow-induced dilation in coronary arterioles of young (6-mo) and aged (24-mo) intact, ovariectomized (OVX), or OVX + estrogen-treated (OVE) female Fischer 344 rats. Both aging and OVX reduced flow-induced NO production, whereas flow-induced H(2)O(2) production was not altered by age or estrogen status. Flow-induced vasodilation was evaluated before and after treatment with the superoxide dismutase (SOD) mimetic Tempol (100 μM) or the H(2)O(2) scavenger catalase (100 U/ml). Removal of H(2)O(2) with catalase reduced flow-induced dilation in all groups, whereas Tempol diminished vasodilation in intact and OVE, but not OVX, rats. Immunoblot analysis revealed elevated nitrotyrosine with aging and OVX. In young rats, OVX reduced SOD protein while OVE increased SOD in aged rats; catalase protein did not differ in any group. Collectively, these studies suggest that O(2)(-) and H(2)O(2) are critical components of flow-induced vasodilation in coronary arterioles from female rats; however, a chronic deficiency of O(2)(-) buffering by SOD contributes to impaired flow-induced dilation with aging and loss of estrogen. Furthermore, these data indicate that estrogen replacement restores O(2)(-) homeostasis and flow-induced dilation of coronary arterioles, even at an advanced age.  相似文献   

18.
It is unknown which of the reactive oxygen species is primarily responsible for the cytotoxicity of 95% O2 for rat distal fetal lung epithelial cells in vitro. Incubation of cells with 25 U/ml polyethylene glycol (PEG)-conjugated SOD and 50 U/ml PEG-catalase, but not PEG-SOD or SOD mimics alone, significantly reduced 95% O2-mediated cytotoxicity. Liposome-entrapped catalase, without SOD, also significantly reduced 95% O2-mediated cytotoxicity. Increased formation of lipid hydroperoxides, as assessed by the formation of 8-isoprostane and aldehydes, was attenuated by both 100 microM Trolox, a vitamin E analogue, and by 5 microM U74389G, an amino steroid. Trolox, but not U74389G, prevented an increase in cell-derived H2O2, hydroxyl radical and 95% O2-mediated cytotoxicity. An increase in hydroxyl radical formation, but not cell death, observed in 95% O2, was prevented by 0.1 microM phenanthrolene, a cell permeant iron chelator. DNA extracts of rat distal fetal lung epithelial cells maintained under serum-free conditions had an electrophoretic pattern consistent with some degree of apoptosis. However, no increase in laddering was seen with exposure to 95% O2. These data are consistent with hydrogen peroxide, but not lipid hydroperoxides or hydroxyl radical, being a critical effector of O2-mediated necrotic cell death in distal lung epithelial cells.  相似文献   

19.
Cytotoxicity resulting from the interaction of fluorescent light from a flow hood with Hepes-buffered cell culture medium at room temperature was demonstrated. Toxicity was prevented by keeping both cells (V79 Chinese hamster) and medium shielded from direct fluorescent light ("dark conditions") or by supplementing the medium with 10 micrograms/ml catalase; this suggests that extracellular hydrogen peroxide is a major cause of the lethal effect under "lighted conditions." No sensitization resulted from the exposure of cells in a sodium bicarbonate (SBC)-buffered medium to fluorescent light, nor in a catalase supplemented SBC-buffered medium. The Hepes/light reaction during routine cell manipulations presensitized cells to hypothermia damage in the dark with the presensitization being more severe for 5 than for 10 degrees C hypothermic exposure. Presensitization was prevented by performing the complete experiment under dark conditions or by supplementing the medium with 10 micrograms/ml catalase. However, catalase did not improve the hypothermic survival when experiments were performed under dark conditions. Hence, 10 micrograms/ml catalase does not protect cells from hypothermic (5 and 10 degrees C) damage per se, but rather from Hepes/light sublethal damage which interacts with hypothermic sublethal damage to result in lethal lesions. Additionally, under dark conditions, superoxide dismutase (SOD), allopurinol, catalase plus SOD, DMSO, or mannitol did not improve survival when present during hypothermic storage, suggesting that extracellular superoxide anion, hydrogen peroxide, or hydroxyl radicals are not the cause of cell killing under conditions of pure hypothermia uncomplicated by prehypothermic ischemia or hypoxia.  相似文献   

20.
Cardiac ischemia/reperfusion leads to coronary endothelial dysfunction, mediated by superoxide anion (O2-), but not hydroxyl radical (*OH). Ischemic preconditioning and mitochondrial ATP-dependent potassium channel opener (diazoxide) protect endothelium in the mechanism involving attenuation of O2- burst at reperfusion. We hypothesize that the endothelial protection involves upregulation of myocardial anty-O2- defense. Langendorff-perfused guinea-pig hearts were subjected to global ischemia/reperfusion (IR) or were preconditioned prior to IR with three cycles of ischemia/reperfusion (IPC) or infusion/washout of 0.5 microM diazoxide. Coronary flow responses to acetylcholine were measures of endothelium-dependent vascular function. Myocardial outflow of O2- and of *OH during reperfusion and myocardial activities of superoxide dismutase (SOD) and catalase were measured. IR impaired acetylcholine response and augmented cardiac O2- and *OH outflow. IPC, diazoxide, and SOD (150 IU/ml) attenuated O2- outflow, increased *OH outflow and protected endothelium. There were no differences in Cu/Zn-SOD, Mn-SOD and catalase activities between sham-perfused and IR hearts and only catalase activity was increased in the IPC hearts. We speculate that: (i) IPC and diazoxide endothelial protection involves activation of some SOD-like anti-O2- mechanism resulting in attenuation of O2- burst and increase in *OH burst, (ii) improved SOD activity might have not been detected because it was confined to a small, although functionally important, enzyme fraction, like that bound to the endothelial glycocalyx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号