首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
Bacterial biosynthesis of polyunsaturated fatty acids   总被引:2,自引:0,他引:2  
  相似文献   

3.
The biosynthesis of polyunsaturated fatty acids by rat sertoli cells.   总被引:1,自引:0,他引:1  
1. The biosynthesis of polyunsaturated fatty acids (PUFA) of the n-6 and n-3 series was investigated in cultured Sertoli cells. 18:2n-6, 18:3n-6, 20:2n-6, 18:3n-3 and 20:3n-3 were added individually at a concentration of 20 mumol to culture media. 2. Maximum incorporation of 20- and 22-carbon PUFA into membrane lipids was observed after 72 hr of incubation with all the exogenous substrates used. 3. As reported in other cell systems, the delta 6 desaturation was the first rate-limiting step; the major factor regulating this activity was the concentration of linoleic acid or alpha-linolenic acid in the medium. 4. Our data show that the delta 5-desaturation represents a second regulatory step in PUFA biosynthesis. 5. The sum of n-6 and n-3 PUFA of the 22 carbon chain length constantly represented between 11 and 12% of total fatty acids, regardless of the exogenous substrate used. 6. Our kinetic studies of the incorporation of PUFA of the n-6 and n-3 series did not permit detection of a delta 8 desaturase activity.  相似文献   

4.
Hyperphenylalaninemic (HPA) children display low levels of long-chain polyunsaturated fatty acids (LCPUFA), particularly docosahexaenoic acid (DHA), in circulating lipids and erythrocytes. We have investigated the effects on the blood fatty acid status and lipid picture of a balanced supplementation with LCPUFA in HPA children through a double-blind, placebo-controlled trial. A total of 20 well-controlled HPA, school-age children were randomized to receive through a 12-month trial fat capsules supplying either 26% fatty acid as LCPUFA (including 4.6%gamma -linolenic acid, 7.4% arachidonic acid, AA, 5.5% eicosapentaenoic acid and 8% DHA) or placebo (olive oil). The study supplementation was administered in order to provide 0.3-0.5% of the individual daily energy requirements as LCPUFA. Reference data were obtained from healthy children of comparable age. Among HPA children (whose DHA status was poor at baseline), those supplemented with LCPUFA showed an increase of around 100% in the baseline DHA levels in plasma phospholipids and erythrocytes. No changes of AA levels were observed. Blood lipid levels did not significantly change. A balanced supplementation with LCPUFA in treated HPA children may improve the DHA status without adversely affecting the AA status.  相似文献   

5.
Huang YS  Pereira SL  Leonard AE 《Biochimie》2004,86(11):793-798
Polyunsaturated fatty acids (PUFAs) are important for the normal development and function of all organisms, and are essential in maintaining human health. Impaired PUFA metabolism is thought to be associated with pathogenesis of many chronic diseases. Dietary supplementation of PUFAs, such as gamma-linolenic acid, arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which bypass the defective or dysfunctional steps of the biosynthetic pathway has been found to significantly alleviate the symptoms of the disease. These findings have drawn a great deal of interest from general public and food manufacturers. As the demand of these beneficial PUFAs has drastically increased in recent years, there are also increasing efforts in finding the alternate sources of PUFAs that are more economical and sustainable. One option is to modify the oil-seed crops to produce PUFAs through genetic engineering technique. This review examines the isolation, identification and expression of genes encoding the enzymes required for the biosynthesis of the above mentioned PUFAs in plants.  相似文献   

6.
Human subjects consuming fish oil showed a significant suppression of cyclooxygenase-2 (COX-2) expression in blood monocytes when stimulated in vitro with lipopolysaccharide (LPS), an agonist for Toll-like receptor 4 (TLR4). Results with a murine monocytic cell line (RAW 264.7) stably transfected with COX-2 promoter reporter gene also demonstrated that LPS-induced COX-2 expression was preferentially inhibited by docosahexaenoic acid (DHA, C22:6n-3) and eicosapentaenoic acid (EPA, C20:5n-3), the major n-3 polyunsaturated fatty acids (PUFAs) present in fish oil. Additionally, DHA and EPA significantly suppressed COX-2 expression induced by a synthetic lipopeptide, a TLR2 agonist. These results correlated with the preferential suppression of LPS- or lipopeptide-induced NF kappa B activation by DHA and EPA. The target of inhibition by DHA is TLR itself or its associated molecules, but not downstream signaling components. In contrast, COX-2 expression by TLR2 or TRL4 agonist was potentiated by lauric acid, a saturated fatty acid. These results demonstrate that inhibition of COX-2 expression by n-3 PUFAs is mediated through the modulation of TLR-mediated signaling pathways. Thus, the beneficial or detrimental effects of different types of dietary fatty acids on the risk of the development of many chronic inflammatory diseases may be in part mediated through the modulation of TLRs.  相似文献   

7.
8.
9.
Regulation of polyunsaturated fatty acid (PUFA) biosynthesis in proliferating and NGF-differentiated PC12 pheochromocytoma cells deficient in n-3 docosahexaenoic acid (DHA 22:6n-3) was studied. A dose- and time-dependent increase in eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5n-3) and DHA in phosphatidylethanolamine (PtdEtn) and phosphatidylserine (PtdSer) glycerophospholipids (GPL) via the elongation/desaturation pathway following alpha-linolenic acid (ALA, 18:3n-3) supplements was observed. That was accompanied by a marked reduction of eicosatrienoic acid (Mead acid 20:3n-9), an index of PUFA deficiency. EPA supplements were equally effective converted to 22:5n-3 and 22:6n-3. On the other hand, supplements of linoleic acid (LNA, 18:2n-6) were not effectively converted into higher n-6 PUFA intermediates nor did they impair elongation/desaturation of ALA. Co-supplements of DHA along with ALA did not interfere with 20:5n-3 biosynthesis but reduced further elongation to 22-hydrocarbon PUFA intermediates. A marked decrease in the newly synthesized 22:5n-3 and 22:6n-3 following ALA or EPA supplements was observed after nerve growth factor (NGF)-induced differentiation. NGF also inhibited the last step in 22:5n-6 formation from LNA. These results emphasize the importance of overcoming n-3 PUFA deficiency and raise the possibility that growth factor regulation of the last step in PUFA biosynthesis may constitute an important feature of neuronal phenotype acquisition.  相似文献   

10.
11.
The de novo biosynthesis of 6,9,12-linolenic acid, 11,14-eicosadienoic acid, 5,11,14-eicosatrienoic acid, and arachidonic acid was demonstrated in adult female cockroaches, Periplaneta americana. These four polyunsaturated fatty acids (PUFA) were present primarily in the phospholipid (PL) fraction of both males and females. They were purified by AgNO3 thin-layer chromatography and high pressure liquid chromatography. The double bond positions of the major isomer of eicosatrienoic acid were shown to be at the delta 5,11,14 positions by gas chromatography-mass spectrometry (GC-MS) of both methoxy and epoxide derivatives and gas-liquid chromatography (GLC) and GC-MS of ozonolysis products. The other PUFAs cochromatographed with standards on both packed and capillary GLC columns. The in vivo incorporation of [1-14C]acetate into 5,11,14-eicosatrienoic acid, 11,14-eicosadienoic acid, 6,9,12-linolenic acid, and arachidonic acid was demonstrated by radio-GLC and radio-HPLC and for 5,11,14-eicosatrienoic acid by radio-GLC of ozonolysis products. The latter technique clearly demonstrated that the entire eicosatrienoic acid molecule was labeled. Thoracic tissue contained the highest amount of radiolabeled 5,11,14-eicosatrienoic acid (1.6% of total radioactivity incorporated into PL) while radiolabeled 11,14-eicosadienoic acid was found primarily in abdominal epidermal tissue (2% of total radioactivity incorporated into PL). Radiolabeled arachidonic and 6,9,12-linolenic acids comprised 0.1 and 0.02%, respectively, of the total radioactivity in the PL fraction. These data document the de novo biosynthesis of di-, tri-, and tetraunsaturated fatty acids in the American cockroach, and indicate that this animal can desaturate on both sides of the delta 9 double bond of oleic acid.  相似文献   

12.
Prostaglandin H synthase can oxidize arachidonic acid with leuco-dichlorofluorescein as reducing cosubstrate. Addition of 0.5 mM phenol increases the oxidation of leuco-dichlorofluorescein 5-fold, probably by acting as a cyclic intermediate in the oxidation. Tetramethyl-p-phenylenediamine is also oxidized as cosubstrate. Its oxidation is not influenced by phenol. A stoichiometry of close to one mole of tetramethyl-p-phenylenediamine or leuco-dichlorofluorescein consumed per mole of arachidonic acid was found in the initial phase of the reaction. In the presence of phenol + leuco-dichlorofluorescein, the oxidation rate of arachidonic acid is about 40% lower than with phenol alone as cosubstrate. Since dichlorofluorescein has a molar extinction coefficient of 91 · 103 at 502 nm, the oxidation of less than 1 μM leuco-dichlorofluorescein can be detected spectrophotometrically. The rate of extinction change with leuco-dichlorofluorescein (at 502 nm) is about 4-fold more rapid than with tetramethyl-p-phenylenediamine (at 611 nm). With this spectrophotometric assay we have confirmed that arachidonic acid, linolenic acid, adrenic acid, γ-linolenic acid, eicosapentaenoic acid, are substrates for prostaglandin H synthase with decreasing reaction rates in the mentioned order. The same order of reaction rates were found when oxygen consumption was measured. The assay also shows that docosahexaenoic acid is substrate for the enzyme. The reaction rate of the enzyme evidently is decreased both by a n − 3 double bond and by deviation from a 20 carbon chain length of the fatty acid substrate.  相似文献   

13.
Reduction of fatty acids having one to four double bonds per molecule to the corresponding alcohols, and the utilization of such alcohols for alkyl dihydroxyacetone phosphate (alkyl DHAP) synthesis was measured with microsomal preparations from 19-day-old rat brain. While alkyl DHAP formation proceeded well with octadecenol, octadecadienol, octadecatrienol and eicosatetraenol, fatty acids with more than one cis-double bond were not readily reduced to the corresponding alcohols.  相似文献   

14.
15.
16.
Thraustochytrium is a unicellular marine protist for the commercial production of very long-chain polyunsaturated fatty acids (VLCPUFAs). Biosynthesis of these VLCPUFAs in the protist is catalysed by a PUFA synthase comprising three subunits, each with multiple catalytic domains. Among these domains, two tandem FabA-like dehydratase domains (DH1 and DH2) in subunit-C together are responsible for introducing double bonds in VLCPUFAs. Domain swapping analysis in yeast showed that the defective phenotype of a Scfas1 mutant could be complemented by expressing an engineered ScFAS1 gene in which the DH domain was replaced by a single DH1 or mutated DH2 of the two. Heterologous expression of the PUFA synthase in E. coli showed that the mutation of DH1 of the two or deletion of DH1 or substitution of DH1 with DH2 resulted in the complete loss of activity in the biosynthesis of VLCPUFAs. Mutation of DH2 of the two or deletion of the DH2 domain produced a small amount of DPA, but not docosahexaenoic acid (DHA). These results indicate that each of the two FabA-like domains of the PUFA synthase possesses distinct function. DH1 domain is essential for the biosynthesis of VLCPUFAs, but DH2 domain is required for the biosynthesis of DHA.  相似文献   

17.
Digestion and absorption of polyunsaturated fatty acids.   总被引:6,自引:0,他引:6  
Polyunsaturated fatty acids play an important part in the structure and function of cellular membranes and are precursors of lipid mediators which play a key role in cardiovascular and inflammatory diseases. Dietary sources of essential fatty acids are vegetable oils for either linoleic or alpha-linolenic acids, and sea fish oils for eicosapentaenoic and docosahexaenoic acids. Because of the specificity of the pancreatic lipid hydrolases, triglyceride fatty acid distribution is an essential parameter in the digestibility of fats. The efficiency of the intestinal uptake depends on the hydrolysis and especially on their micellarization. n-3 polyunsaturated fatty acid ethyl ester digestion is recognized to be impaired, but n-3 polyunsaturated fatty acid triglyceride hydrolysis remains a controversial point, and to some authors explains differences observed between vegetable and fish oil absorption. So additional studies are required to investigate this intestinal step. In enterocytes, morphological and biochemical absorption processes involve reesterification of long-chain fatty acids and lipoprotein formation. At this level, specific affinity of I- and L-FABPc (cytosolic fatty acid binding proteins) to polyunsaturated fatty acids requires further investigation. A better understanding of the role of these FABPc might bring to light the esterification step, particularly the integration of polyunsaturated fatty acids into phospholipids. With reference to differences published between fish and vegetable oil absorption, longer-term absorption studies appear essential to some authors. Polyunsaturated fatty acid absorption is thought to be not very dissimilar to that of long-chain mono-unsaturated fatty acid absorption. However, several digestion and absorption specific steps are worth studying with reference to the crucial role of polyunsaturated fatty acids in the organism, and for example adaptation of possible dietary supplements.  相似文献   

18.
Rabbit reticulocytes obtained by repeated bleeding metabolize exogenous [1-14C]linoleic acid and [1-14C]arachidonic acid by three different pathways. 1. Incorporation into cellular lipids: 50% of the fatty acids metabolized are incorporated into phospholipids, mainly phosphatidylcholine (32.8%) but also into phosphatidylethanolamine (12%), whereas about 10% of the radioactivity was found in the neutral lipids (mono- di- and triacylglycerols, but not cholesterol esters). 2. Formation of lipoxygenase products: 30% of the fatty acids metabolized are converted via the lipoxygenase pathway mainly to hydroxy fatty acids. Their formation is strongly inhibited by lipoxygenase inhibitors such as 5,8,11,14-eicosatetraynoic acid or nordihydroguaiaretic acid. Inhibition of the lipoxygenase pathway results in an increase of the incorporation of the fatty acids into cellular lipids. 15-Hydroxy-5,8,11,13(Z,Z,Z,E)eicosatetraenoic acid and 13-hydroxy-9,11(Z,E)-octadecadienoic acid are incorporated by reticulocytes into cellular lipids and also are metabolized via beta-oxidation. The metabolism of arachidonic acid and linoleic acid is very similar except for a higher incorporation of linoleic acid into neutral lipids. 3. beta-Oxidation of the exogenous fatty acids: about 10% of the polyenoic fatty acids are metabolized via beta-oxidation to 14CO2. Addition of 5,8,11,14-eicosatetraynoic acid strongly increased the 14CO2 formation from the polyenoic fatty acids whereas antimycin A completely abolished beta-oxidation. Erythrocytes show very little incorporation of unsaturated fatty acids into phospholipids and neutral lipids. Without addition of calcium and ionophore A23187 lipoxygenase metabolites could not be detected.  相似文献   

19.
20.
Because of their structures, phleic acids (general formula: CH3-(CH2)m-(CH=CH-CH2-CH2)n-CO2H; main component: m = 14, n = 5) cannot be synthesized by the same kinds of enzymatic systems as other natural polyunsaturated fatty acids. By using specifically labelled 14C compounds, we have tested the ability of different molecules to be incorporated in the phleate skeletons by Mycobacterium phlei. The localisation of radioactive carbon atoms has been studied by chemical degradation of labelled phleates, isolation and purification of the degradation products, and determination of their specific radioactivity. When M. phlei cells are incubated with labelled acetate, the unsaturated and saturated parts of the molecules of phleic acids are unequally labelled. The radioactivity of succinate monoester on the one hand and fatty acids (mixture of myristic and palmitic acids) on the other hand, measured after oxidative degradation of phleate esters, shows a constant ratio under definite conditions. Whether [1-14C]acetate or [2-14C]acetate is used for incubation, the same ratio is observed. Therefore acetate is the precursor of the unsaturated part as well as of the saturated part of the phleate molecules. By using labelled fatty acid esters, it has been found that palmitic acid is the precursor of phleates with m = 14, while myristic acid is the precursor of phleates with m = 12. Stearic and eicosanoic acids are not incorporated without degradation. The hypothesis of a condensation of a saturated fatty acid with a preformed polyunsaturated molecule was examined. Search for such a molecule in the lipids of M. phlei gives negative results. Pentaunsaturated phleate arising from palmitate is more abundant than pentaunsaturated phleate arising from myristate, while the reverse is true for hexaunsaturated phleates. These observations make very unlikely such an hypothesis. An elongation process fits well with the observed facts provided that this process involves elongation by two acetate units simultaneously, making elongation by four carbon atoms at a time. Such a requirement would be easily satisfied if two molecules of acetate are condensed together before their utilization in the elongation process. In such a hypothetical process, crotonate would be the most probable substrate of the elongation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号