首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heinz Zinke 《Planta》1968,82(1):50-72
Summary In the present work the influence of moist air, of sand and of several solutions on the geotropic behaviour of primary roots is studied. The course of the geotropic movement is the result of a concerted action of positive and negative reactions the intensity and duration of which differ in roots of various species.In pea roots the negative movement appears only during a short stage of development. No direct relation exists between the speed of elongation and the appearance of the negative reaction.Primary roots of Zea mays and of Pisum arvense are indifferent to thigmotropic stimuli. The negative movement has, at least in pea roots a smaller mechanically effective force than the positive movement. Therefore the negative reaction does not appear in sand because it cannot overcome the mechanical resistance of the granular medium.In liquid media pea roots react in another way than in air: here the negative reaction begins later, but it has then more influence on the course of the geotropic curvature.The influence of different cations on the geotropic behaviour and on the elongation of the roots can be understood as a combined action of the osmotic effect and of the specific ionic permeability.In pea roots the negative reaction, which appears during the time from 3 to 6 hours after the induction also depends on a definite level of turgor.Primary roots of Zea mays, which grow in a relatively large angle to the vertical line do not lose their geotropic sensibility. They react like plagiotropic organs.In pea roots relations exist between the development of the positive and the negative reaction and the presence of the cotyledons and the tip of the root.Both reactions are induced at the same time by the gravitional stimulus. Their reaction times, however, are different.The root tip is necessary for the induction of both reactions. The negative curvature also appears when the tip is cut off before the end of the reaction time.The course of the geotropic movement of primary roots is compared with the geotropic behaviour of rhizomes. As a possible explanation of both kinds of reactions a two-hormone-hypothesis is discussed.  相似文献   

2.
Seedlings of Norway spruce (Picea abies L.) have been found to synthesize anthocyanins in the root tips as well as in the hypocotyls upon irradiation with white light when kept at 4°C for 6–8 days. In addition, it has also been found that the elongation and the geotropic curvature of spruce roots are dependent on the light conditions. The course of the geotropic curvature in spruce roots containing anthocyanins has been followed during a period of 5 h, in which the seedlings were geotropically stimulated continuously in the horizontal position. When the stimulation was performed in white light and in darkness at 21°C, significantly larger curvatures were observed in the roots pretreated at 4°C in darkness than in the roots containing anthocyanins. The specific curvature (curvature in degrees per mm elongation), however, was approximately the same in both types of roots stimulated in white light. This was due to a retarded elongation of the roots pretreated with light at 4°C and containing anthocyanins. A smaller difference in elongation rate between roots with and without anthocyanins was observed in the dark than in the light, but even in the dark the anthocyanin-containing roots grew more slowly than roots without anthocyanins. In order to find out if it is the anthocyanin content or the illumination which affects the elongation and geotropic curvature in the roots, a series of similar experiments was performed using cress seedlings grown at 4°C in light or darkness. Roots of cress seedlings cultivated under conditions which would induce anthocyanin formation in spruce roots exhibited the highest geotropic responses both in light and darkness as compared to cress seedlings grown at 4°C in darkness. As in the case of spruce roots an increase in elongation was observed in cress roots illuminated during the geotropic stimulation. These similarities in the behaviour made it relevant to compare the development of the geotropic curvature in cress and spruce roots.  相似文献   

3.
Geotropic Curvatures in Roots of Cress (Lepidium sativum)   总被引:1,自引:0,他引:1  
Roots of cress growing between two agar slices develop an asymmetry in the extreme root tip region after 10 to 20 min of horizontal stimulation. After prolonged stimulation (exceeding 50 min) the asymmetry disappears and after 3 h the curvature is distributed over the entire growing region. The course of the initial stages in the geotropic curvature has been followed by light microscopy and scanning electron microscopy. — When stimulated at an angle of 135° with the gravitational force, the asymmetry in the root tip is clearly visible after 10 min of stimulation. The asymmetry in the root cap can be explained by a difference in the elongation rate of the epidermal cells on the upper and lower sides of the stimulated root. The disappearance of the asymmetry is followed by a second phase in which there is a differential growth of the cortical cells on the two sides of the elongation zone. The average growth rate of cells in the upper half of the apical region during the first 50 min of continuous stimulation is 1.5 μm per min, while the elongation rate of the entire root is 16.2 μm per min. Only small modifications in the elongation rates were observed when stimulated and unstimulated roots were rotated parallel to the horizontal axis of a klinostat at 2 rpm. The ultimate curvature developed after 50 min is unaffected by stimulation times exceeding the reaction time which for cress roots has been found to be about 5 min. The two phases in the development of geotropic curvature are discussed in view of the statolith theory.  相似文献   

4.
The geotropic development in roots of Norway spruce [(Picea abies (L.)] H. Karst, has been followed by light and electron microscopy and compared with the movement of cell organelles (statoliths) in the root cap cells. The geotropic curvature develops in two phases: (a) an initial curvature in the root cap region, which results in an asymmetry in the extreme root tip and which appears after about 3 h stimulation in the horizontal position; and (b) the geotropic curvature in the basal parts of the root tip, which after 8 h is distributed over the entire elongation zone. A graphic extrapolation, based on measurements of the root curvatures after various stimulation periods, indicates a presentation time in the range of 8 to 10 min. The root anatomy and ultrastructure have been examined in detail in order to obtain information as to which organelles may act as gravity receptors. The root cap consists of a central core (columella) distinct from the peripheral part. The core contains three to four rows of parenchymatic cells each consisting of 15 to 18 storeys of statocyte cells with possibly mobile cell organelles. Amyloplasts and nuclei have been found to be mobile in the root cap cells, and the movement of both types of organelles has been followed after inversion of the seedlings and stimulation in the horizontal position for various periods of time at 4°C and 21°C. Three-dimensional reconstructions of spruce root cap cells based on serial sectioning and electron microscopy have been performed. These demonstrate that the endoplasmic reticulum (ER)-system and the vacuoles occupy a considerable part of the statocyte cell. For this reason the space available for free movement of single statolith particles is highly restricted.  相似文献   

5.
Henry Wilkins  R. L. Wain 《Planta》1975,126(1):19-23
Summary Exogeneous application of abscisic acid (ABA) to intact roots of LG 11 maize seedlings inhibits root elongation and induces bending of the root in response to gravity in darkness, even though the roots of these seedlings are not normally positively geotropic in the dark. ABA cannot, however, induce geotropic curvature in dark-exposed decapped roots, thus confirming that the root cap is the site of graviperception in the intact root.Abbreviation ABA abscissic acid  相似文献   

6.
In an attempt to explain the influence of gravity on the behaviour of ageotropic plant organs, a pea mutant (Pisum sativum ageotropum) and normal pea (Pisum sativum cv. Sabel) were examined. The mutant has a significantly lower germination rate (large seeds: 25%, small seeds: 10%) than normal pea seeds (55%). Removal of testa increased germination dramatically, the values obtained were 63 and 89%, respectively. Immediately after imbibition the mutant from which the testa had been removed, developed more slowly than normal pea seeds; after 28 h the difference in elongation rate between the two types was reversed. When continuously stimulated geotropically in the horizontal position the elongation in the mutant is larger than in the normal pea roots kept in the same position. During a 24 h period starting 48 h after imbibition the mutant root elongated 45.0 mm while the value for the normal pea root was 11.5 mm. The course of the geotropic curvature in roots of the two types has been followed during a period of 24 h. Normal pea roots develop an asymmetry in the extreme root tip region after 30 min of horizontal stimulation. After prolonged stimulation (exceeding 2 h) the asymmetry has disappeared and the curvature distributed over the entire growth region. When roots of normal pea are stimulated continuously at various angles, the optimum angle of geotropic response is 90° with decreasing responses in the order 135° (i.e. the root tip is pointing obliquely upward) and 45°. The presumed ageotropic behaviour of the mutant has only to a certain extent been confirmed in the present study. When stimulated at 135° a slight positive curvature developed; stimulation at 90° and 45° gave a slight negative curvature.  相似文献   

7.
Poul  Larsen 《Physiologia plantarum》1969,22(3):469-488
Roots which are turned from their normal direction to directions at various angles with the plumb line develop the largest geotropic curvatures during a subsequent klinostat rotation period when the stimulation angle is well above the horizontal. In experiments with roots of Lepidium sativum L., the optimum is located at 120 to 140° when the stimulation time is between 2 and 15 min. If this fact is to be explained by the movements of amyloplasts in the root cap cells, one would expect roots which bad been kept inverted before the stimulation (so that the moveable amyloplasts are accumulated in the opposite end of the cells) to show an optimum angle well below 90°. — Pre-inversion of the roots did suppress the curvatures produced by stimulation at angles larger than 90° when measured after 10 to 30 min of klinostat rotation. This suppression may be taken as a support for the starch statolith hypothesis, since the amyloplasts in pre-inverted roots placed at angles exceeding 90° have a restricted opportunity to slide along the cell walls compared to non-inverted roots placed at the same angles. In pre-inverted roots measured after a period of klinostat rotation, however, no optimum was found at angles below 90°. When the stimulation time was 3.75 min, the response curves were nearly symmetrical about 90°. Stimulation for 15 min, on the other hand, resulted in curvatures which were much larger (although suppressed in comparison with non-inverted roots) when the stimulation angle was 165° than when it was 15°. During the 15 min stimulation period itself, however, pre-inverted roots curved 0.3° when stimulated at 15, but only 3.4° at 165°. This small difference was very highly significant and is in agreement with the starch statolith hypothesis insofar as the amyloplasts in pre-inverted roots placed at 15° have the greatest opportunity to slide along the cell walls. The lack of further development (and the actual decrease) of their curvatures during the subsequent klinostat rotation must then be due to other, depressing, factors, summarily designated as tonic. At angles above 90°, the tonic factors are either absent or even enhancing. Tbe tonic effects cannot be explained by amyloplast movements.  相似文献   

8.
The efficiency of the geocontrol system of pea and. maize roots was compared on the basis of their oscillation movements. The rate of elongation of maize roots is 3.6 times higher, the amplitudes of oscillation deviations are 10 times lower and their frequency is 5 times lower than the corresponding values recorded for pea roots. The period of time which elapses between the stimulus and growth response, i.e. the geotropic reaction time, is 4 times shorter in maize roots than in pea roots. The maize root is able to correct the direction of its elongation 3.5 to 5 times more frequently than the root of pea. This characterize the difference between the both compared control systems from the point of view of physiological economy.  相似文献   

9.
Previously inverted Lepidium roots were placed in a horizontal position and the amyloplasts in the statocytes of the root cap allowed to fall through their entire range of movement across the cell. Under these conditions the amyloplasts first follow a mainly downward course for 6 to 8 min at a speed between 0.5 and 0.8 μm per min. For the next 10 min they move slightly more slowly in a direction away from the apical end of the cell, still sinking somewhat, but without reaching the plasmalemma along the lower wall. Previous experiments have shown that conditions assumed to allow the amyloplasts to slide parallel to the longitudinal cell walls are those that give rise to the largest geotropic curvatures. Such conditions are for instance (1) stimulation at 135° (root tips pointing obliquely upward) and (2) inversion of roots for 16 min followed by stimulation at 45°. Treatments assumed not to permit extensive sliding of the amyloplasts produce smaller geotropic curvatures, namely (3) stimulation at 45° without pre-inversion and (4) inversion followed by stimulation at 135°. The location of the amyloplasts after these four kinds of treatment has now been determined on photomicrographs and the assumptions concerning the paths and extent of sliding of the amyloplasts confirmed. Observations on electron micrographs showed that under all conditions the amyloplasts are separated from the plasmalemma by other organelles, such as ER, nucleus or vacuoles. In roots rotated for 15 min parallel to the horizontal axis of the klinostat at 2 rpm, the amyloplasts are not clumped together as densely as in normal, inverted or stimulated roots, but they are not scattered over the entire cell volume. The statolith function of the amyloplasts is discussed in view of these and other observations.  相似文献   

10.
The movement of auxin in Phaseolus vulgaris roots has been examined after injection of IAA?3H into the basal root/hypocotyl region of intact, dark-grown seedlings. Only a portion of the applied IAA?3H was transported unchanged to the root tip. The major part of the chromatographed, labelled compounds translocated to the roots was indole-3-acetylaspartic acid (IAAsp) and an unidentified compound running near the front in isopropanol, ammonia, water. The velocity of the auxin transport (7.2 mm per hour) was calculated from scintillation countings of methanol extracts from serial sections of the root. An accumulation of radioactive compounds in the extreme root tip, was observed 5 h after the injection of IAA. The influence of exogenous IAA on the geotropical behaviour of the bean seedling roots was examined. Pretreated roots were stimulated for 5 min in the horizontal position and then rotated parallel to the horizontal axis of the klinostat for 60 or 90 min. The resulting geotropic curvature of IAA-injected and control roots showed significantly different patterns of development. When the stimulation was started 5 h after application of the auxin, the geotropic curvature became larger in roots of the injected plants than in the controls. If, however, the translocation period was extended to 20 h the geotropic curvature was significantly smaller in the roots of the injected plants. The auxin injection did not significally affect the rate of root elongation. The change in geotropical behaviour of the roots is interpreted as a result of the influence of the conversion products of the applied IAA on the geotropical responsiveness.  相似文献   

11.
Roots of cress (Lepidium sativum L, ) seedlings continuouslystimulated at an angle of 135°—root tips pointingobliquely upwards—develop a larger final geotropic curvaturethan roots stimulated at 45° or 90°. This well-knownbehaviour has previously been interpreted as support for thestarch statolith hypothesis. In the present experiments two groups of cress and lettuce (Lactucasativa L.) seedlings were used: (a) the control group in whichthe roots were allowed to curve without adjustment of the stimulationangle, and (b) the test group in which the roots were readjustedat different time intervals to the original stimulation angle.They were stimulated continuously at 45°, 90°, or 135°and the development of root curvatures was followed over a periodof 5–8 h. Initially (1–2 h) the rate of curvature was approximatelythe same for 135° and 90° control and tested cress andlettuce roots. Thereafter the test roots stimulated at 135°followed a linear curvature pattern. Seedlings stimulated at45° and 90° did not show the same linearity in curvaturedevelopment in the test group. The rates of curvature in thetest group were generally higher than in the control group atangles less than 135°. Cress seedlings were examined by light and electron microscopyin order to follow the movement of the cell organelles in thestatocytes. In the statocytes of roots of test seedlings thestarch statoliths were located in the position attained beforethe first readjustment of the stimulation angle. In the statocytesof control roots the starch statoliths followed the curvatureof the root tip sliding along the cell walls and attaining therest position as in normally orientated roots. The behaviour of control and readjusted roots is interpretedas a result of interaction between starch statoliths and endoplasmicreticulum membranes.  相似文献   

12.
When roots of cress seedlings (Lepidium sativum L.) are stimulated for 10 min at an angle of 135° (i.e. the root tips are pointing obliquely upward), the resulting geotropic curvatures become larger than after 10 min stimulation at 45°. This well-known behavior has been explained by the better conditions for statoliths, initially located in the floor end of the statocytes, to slide along the cell walls when root tips are pointing upward at 135° than when pointing downward at 45°. Accepting this explanation, one would predict the optimum angle of stimulation to be near 45° when roots had first been kept inverted long enough for their statoliths to accumulate in the opposite end of each functional statocyte. This prediction has been verified in experiments with cress seedlings which were first kept inverted for 16 min, then stimulated for 10 min at given angles, and subsequently rotated parallel to the horizontal axis of the klinostat at 2 rpm. Under these conditions, roots stimulated at 45° curve faster during a 20 to 30 min period on the klinostat than roots stimulated at 135°, but thereafter they stop curving. Roots stimulated at 135°, on the other hand, although initially curving slower than those at 45°, continue curving for at least a whole hour, and attain larger curvatures than the others after 40 min. The optimum shifts from near 45° to near 135° during the course of the klinostat rotation. The behavior of normal and pre-invertcd roots is interpreted as the result of at least two effects: (1) a stimulation due to the movement of amyloplasts, which is enhanced if these are allowed to slide along the cell walls, and (2) a modification of the development of the resulting curvatures by tonic effects, which are inhibitory between stimulation angles 0° and 90°, and absent or enhancing between 90° and 180°.  相似文献   

13.
M. Schurzmann  V. Hild 《Planta》1980,150(1):32-36
The effect of externally applied indoleacetic acid (IAA) and abscisic acid (ABA) on the growth of roots of Zea mays L. was measured. Donor blocks of agar with IAA or ABA were placed laterally on the roots and root curvature was measured. When IAA was applied to vertical roots, a curvature directed toward the donor block was observed. This curvature corresponded to a growth inhibition at the side of the root where the donor was applied. When IAA was applied to horizontal roots from the upper side, normal geotropic downward bending was delayed or totally inhibited. The extent of retardation and the inhibition of curvature were found to depend on the concentration of IAA in the donor block. ABA neither induced curvature in vertical roots nor inhibited geotropic curvature in horizontal roots; thus the growth of roots was not inhibited by ABA. However, when, instead of donor blocks, root tips or coleoptile tips were placed onto vertical roots, a curvature of the roots was observed.Abbreviations ABA abscisic acid - IAA 3-indoleacetic acid  相似文献   

14.
Although exogenous electric fields have been reported to influence the orientation of plant root growth, reports of the ultimate direction of differential growth have been contradictory. Using a high‐resolution image analysis approach, the kinetics of electrotropic curvature in Vigna mungo L. roots were investigated. It was found that curvature occurred in the same root toward both the anode and cathode. However, these two responses occurred in two different regions of the root, the central elongation zone (CEZ) and distal elongation zone (DEZ), respectively. These oppositely directed responses could be reproduced individually by a localized electric field application to the region of response. This indicates that both are true responses to the electric field, rather than one being a secondary response to an induced gravitropic stimulation. The individual responses differed in the type of differential growth giving rise to curvature. In the CEZ, curvature was driven by inhibition of elongation, whereas curvature in the DEZ was primarily due to stimulation of elongation. This stimulation of elongation is consistent with the growth response of the DEZ to other environmental stimuli.  相似文献   

15.
Geoperception in the lentil root cap   总被引:1,自引:0,他引:1  
Previous analysis showed that, in its initial phase, the geotropic response of Lens culinaris L. roots cannot be explained by a simple action by sliding, pressure or contact of amyloplasts on a sensitive surface located along the longitudinal wall. In this study another mode of action is tested by considering the following parameters as functions of the roots inclination: (1) the distance (d) which the amyloplasts move; (2) their number of contacts (mean c) with parietal cytoplasm; (3) the variable (sin alpha) of the transversal component of the statolith weight (mean M x g sin alpha). It is shown that the initial rate of curvature (mean V), at the various angles, is related to the sedimentation of the amyloplasts by the equation mean V = a log b mean d mean c sin alpha (where a and b are constants). The results obtained prove that the geotropic stimulation is dependent upon the sine of the angle (alpha) of the root inclination and explain the sine rule deviation. The role of statoliths is discussed in the light of recent literature on growth inhibitors which are involved in the geotropic reaction.  相似文献   

16.
Temperature Sensing by Primary Roots of Maize   总被引:2,自引:0,他引:2       下载免费PDF全文
Zea mays L. seedlings, grown on agar plates at 26°C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.  相似文献   

17.
玉米初生根向水性诱导优化试验研究   总被引:2,自引:0,他引:2  
为了研究湿度梯度对根系向水性反应的影响,采用Takahashi and Scott于1993年创建的方法,设置以下3个试验:1)向水性诱导物不同倾斜角试验;2)根系距向水性诱导物不同距离试验;3)根尖距底部饱和K2CO3溶液不同距离试验。同时,还研究了根长和根系延伸速率对根系向水性弯曲的影响。结果表明,用饱和K2CO3溶液控制湿度时根系的向水性弯曲度明显大于纯水。随着诱导物倾斜角的增大,向水性弯曲增强。与距诱导物3 mm和6 mm相比,根系直接接触诱导物时表现出最大的向水性反应。与根尖距底部盐溶液6 cm相比,相距4 cm时向水性弯曲度增大,这些与根尖周围的湿度梯度增大有关。当根长为1.0、1.5、2.0、2.5、3.0 cm时,短根比长根表现出更大的向水性反应,这可能与其较慢的延伸速率为根系对湿度梯度的反应提供了更充足的时间有关。为了验证这个假说,用相同长度的根系、通过控制不同温度进行试验,结果表明根系的向水性弯曲随温度升高而降低。可见,玉米初生根的向水性反应受环境和根系发育阶段两方面影响。当根系相距诱导物较近、根系周围的湿度梯度较大时,根系向水性反应更强。而且,具有较小延伸速率根系的向水性反应更大。考虑到干旱条件下根系伸长慢、且土壤中湿度梯度大,因而可以认为干旱条件下根系的向水性生长在玉米吸收水分中有重要作用。同时,对根系向水性诱导方法的优化有助于其生理机制的进一步研究。  相似文献   

18.
Root Nodule Symbiosis II   总被引:2,自引:0,他引:2  
Nodule-roots of Myrica cerifera (Southern Wax Myrtle) and Casuarina cunning hamiana (Australian Pine) have a negative geotropic curvature. Studies of their endogenotts auxin content revealed a pattern of correlation: the absence of detectable auxin when the geotropisni was negative. Non-nodulated roots of Myrica exhibited a normal positive geotropic curvature and possessed an auxin content within an anticipated range (10 mg/kg). Root nodules of Alnus species, whose roots exhibit a positive geotropic curvature, contained measurable endogenous auxin (20 mg IAA/kg). The presence of an indoleaectic acid oxidase system in Myrica and Casuarina root nodules has heen described and correlations are drawn between non-detectable endogenous auxin concentrations and high enzymatic activities. It is suggested that the negative geotropic curvature of the nodule-roots of Myrica and Casuarina is due to the presence of a sub-optimal concentration of auxin which in turn results from the activity of an indoleacetic aeid destroying system.  相似文献   

19.
Ishikawa H  Hasenstein KH  Evans ML 《Planta》1991,183(3):381-390
We used a video digitizer system to measure surface extension and curvature in gravistimulated primary roots of maize (Zea mays L.). Downward curvature began about 25 +/- 7 min after gravistimulation and resulted from a combination of enhanced growth along the upper surface and reduced growth along the lower surface relative to growth in vertically oriented controls. The roots curved at a rate of 1.4 +/- 0.5 degrees min-1 but the pattern of curvature varied somewhat. In about 35% of the samples the roots curved steadily downward and the rate of curvature slowed as the root neared 90 degrees. A final angle of about 90 degrees was reached 110 +/- 35 min after the start of gravistimulation. In about 65% of the samples there was a period of backward curvature (partial reversal of curvature) during the response. In some cases (about 15% of those showing a period of reverse bending) this period of backward curvature occurred before the root reached 90 degrees. Following transient backward curvature, downward curvature resumed and the root approached a final angle of about 90 degrees. In about 65% of the roots showing a period of reverse curvature, the roots curved steadily past the vertical, reaching maximum curvature about 205 +/- 65 min after gravistimulation. The direction of curvature then reversed back toward the vertical. After one or two oscillations about the vertical the roots obtained a vertical orientation and the distribution of growth within the root tip became the same as that prior to gravistimulation. The period of transient backward curvature coincided with and was evidently caused by enhancement of growth along the concave and inhibition of growth along the convex side of the curve, a pattern opposite to that prevailing in the earlier stages of downward curvature. There were periods during the gravitropic response when the normally unimodal growth-rate distribution within the elongation zone became bimodal with two peaks of rapid elongation separated by a region of reduced elongation rate. This occurred at different times on the convex and concave sides of the graviresponding root. During the period of steady downward curvature the elongation zone along the convex side extended farther toward the tip than in the vertical control. During the period of reduced rate of curvature, the zone of elongation extended farther toward the tip along the concave side of the root. The data show that the gravitropic response pattern varies with time and involves changes in localized elongation rates as well as changes in the length and position of the elongation zone. Models of root gravitropic curvature based on simple unimodal inhibition of growth along the lower side cannot account for these complex growth patterns.  相似文献   

20.
Mirza JI 《Plant physiology》1987,83(1):118-120
In an attempt to study and distinguish the effects of light and gravity on the direction of horizontal root growth, wild-type and an agravitropic mutant of Arabidopsis thaliana L., aux-1 were examined. The mutant aux-1 seedling roots are agravitropic but do respond to light, thus allowing the effects of light and gravity on roots to be studied separately. It is shown that in addition to the recognized negative phototropic and positive gravitropic responses of the root, there are also horizontal curvatures (clockwise or counterclockwise) induced by both unilateral light and gravity. The effects of light and gravity in inducing the horizontal curvature of roots are synergistic when both act in the same direction, and are antagonistic when acting in opposite directions. The results indicate that light and gravity interact to determine the direction and magnitude of the horizontal curvature of roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号