首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The chemical composition of cell walls from choline-less Torulopsis pintolopesii grown with choline or with methionine was studied. Methioninegrown cells synthesized a weakened cell wall compared to normal choline-grown yeast. The ethylenediamine fractionation procedure yielded three fractions—A, B, and C—with different solubilities. Glucose and mannose were detected in hydrolysed unfractionated cell walls from yeasts grown under both conditions as well as in all fractions. Glucose content was greater in fractions B and C from methioninegrown cells; the mannose content was about the same. Walls from choline-grown cells (W c ) had 25% more protein than walls from methionine-grown cells (W m ). The amino acid composition of the proteins of W c and W m was not qualitatively altered. Seventeen amino acids were identified; glutamic and aspartic acids and valine predominated. W c had 3.5 times more lipid than W m . The amount of phosphorus was the same. Yeasts grown on methionine synthesized more ergosterol than choline-grown cells. The rate of formation of spheroplasts was higher in methionine-grown cells. Rates of incorporation of adenine, glutamic acid, and uracil were similar in cells grown on methionine or choline; incorporation of phenylalanine and tyrosine was depressed in methionine-grown cells.  相似文献   

2.
We have used measurements of fluorescence and circular dichroism (CD) to compare chlorosome-membrane preparations derived from the green filamentous bacterium Chloroflexus aurantiacus grown in continuous culture at two different light-intensities. The cells grown under low light (6 mol m–2 s–1) had a higher ratio of bacteriochlorophyll (BChl) c to BChl a than cells grown at a tenfold higher light intensity; the high-light-grown cells had much more carotenoid per bacteriochlorophyll.The anisotropy of the QY band of BChl c was calculated from steady-state fluorescence excitation and emission spectra with polarized light. The results showed that the BChl c in the chlorosomes derived from cells grown under high light has a higher structural order than BChl c in chlorosomes from low-light-grown cells. In the central part of the BChl c fluorescence emission band, the average angles between the transition dipole moments for BChl c molecules and the symmetry axis of the chlorosome rod element were estimated as 25° and 17° in chlorosomes obtained from the low- and high-light-grown cells, respectively.This difference in BChl organization was confirmed by the decay associated spectra of the two samples obtained using picosecond single-photon-counting experiments and global analysis of the fluorescence decays. The shortest decay component obtained, which probably represents energy-transfer from the chlorosome bacteriochlorophylls to the BChl a in the baseplate, was 15 ps in the chlorosomes from high-light-grown cell but only 7 ps in the preparation from low-light grown cells. The CD spectra of the two preparations were very different: chlorosomes from low-light-grown cells had a type II spectrum, while those from high-light-grown cells was of type I (Griebenow et al. (1991) Biochim Biophys Acta 1058: 194–202). The different shapes of the CD spectra confirm the existence of a qualitatively different organization of the BChl c in the two types of chlorosome.Abbreviations BChl bacteriochlorophyll - CD circular dichroism - DAS decay associated spectrum - PMSF phenylmethylsulfonyl fluoride  相似文献   

3.
A thermophilic spore-forming strain HN-68, only d-xylose grown cells of which have an activity of d-glucose isomerization, was isolated from soil, and identified to be similar to Bacillus coagulans Hammer. The conditions necessary for maximal production of the glucose isomerizing activity by the cells from shaken cultures in d-xylose media were studied. Much higher activities were observed with the cells grown from 14 ~ 16 hours at 40°C on d-xylose medium containing yeast extract, ammonium chloride, manganese sulfate and calcium carbonate. d-Glucose isomerizing activity was also developed inductively by exposing the washed cells grown on d-glucose to d-xylose within one hour. With the use of living cells as an enzyme source, the addition of both cobaltous ion and toluene in reaction system remarkably enhanced the reaction rate of d-glucose isomerization.  相似文献   

4.
The formation of ubiquinone 10 and bacteriochlorophyll (bchl) was determined in Rhodospirillum rubrum grown under different culture conditions. Transfer of chemotrophically grown cultures to photosynthetic conditions leads to the formation of the pigments until cells reach the stationary phase of growth. Bchl-synthesis initially exceeds quinone synthesis. On a cellular protein basis quinone levels first decrease by about a factor of two and subsequently increase by a factor of four. Bchl levels per protein increase until cells reach the stationary phase of growth. Quinone levels per bchl decrease rather rapidly and become constant in the growing culture. When cells were transferred under continuous phototrophic conditions to new culture medium, both pigments are formed concomitantly. While protein synthesis starts immediately, bchl and ubiquinone formation is slightly delayed. This causes a short time decrease in the amount of both pigments per cellular protein followed by an increase to a constant level. Ratios of ubiquinone per bchl are constant. The transfer of phototrophically grown cultures to chemotrophic conditions results in a complete inhibition of bchl formation while quinone synthesis resumes. Quinone cellular levels decrease slightly and then remain constant. Quinone values increase per bchl which is eventually diluted out of the cells.  相似文献   

5.
(1) The electron transport system of heterotrophically dark-grown Rhodobacter capsulatus was investigated using the wild-type strain MT1131 and the phototrophic non-competent (Ps-) mutant MT-GS18 carrying deletions of the genes for cytochrome c 1 and b of the bc 1 complex and for cytochrome c 2. (2) Spectroscopic and thermodynamic data demonstrate that deletion of both bc 1 complex and cyt. c 2 still leaves several haems of c- and b-type with Em7.0 of +265 mV and +354 mV at 551–542 nm, and +415 mV and +275 mV at 561–575 nm, respectively. (3) Analysis of the oxidoreduction kinetic patterns of cytochromes indicated that cyt. b 415 and cyt. b 275 are reduced by either ascorbate-diaminodurene or NADH, respectively. (4) Growth on different carbon and nitrogen sources revealed that the membrane-bound electron transport chain of both MT1131 and MT-GS18 strains undergoes functional modifications in response to the composition of the growth medium used. (5) Excitation of membrane fragments from cells grown in malate minimal medium by a train of single turnover flashes of light led to a rapid oxidation of 32% of the membrane-bound c-type haem complement. Conversely, membranes prepared from peptone/yeast extract grown cells did not show cyt. c photooxidation. These results are discussed within the framework of an electron transport chain in which alternative pathways bypassing both the cyt. c 2 and bc 1 complex might involve high-potential membrane bound haems of b- and c-type.Abbreviations AA antimycin A - CCCP carbonylcyanide m-chlorophenyl hydrazone - CN- cyanide - DAD diaminodurene - Q2H2 ubiquinol-2 - Q-pool ubiquinone-10 pool - RC photochemical reaction center  相似文献   

6.
In cells a portion of cytochrome c (cyt c) (15–20%) is tightly bound to cardiolipin (CL), one of the phospholipids constituting the mitochondrial membrane. The CL-bound protein, which has nonnative tertiary structure, altered heme pocket, and disrupted Fe(III)-M80 axial bond, is thought to play a role in the apoptotic process. This has attracted considerable interest in order to clarify the mechanisms governing the cyt c–CL interaction. Herein we have investigated the binding reaction of CL with the c-type cytochromes from horse heart and yeast. Although the two proteins possess a similar tertiary architecture, yeast cyt c displays lower stability and, contrary to the equine protein, it does not bind ATP and lacks pro-apoptotic activity. The study has been performed in the absence and in the presence of ATP and NaCl, two compounds that influence the (horse cyt c)-CL binding process and, thus, the pro-apoptotic activity of the protein. The two proteins behave differently: while CL interaction with horse cyt c is strongly influenced by the two effectors, no effect is observed for yeast cyt c. It is noteworthy that NaCl induces dissociation of the (horse cyt c)–CL complex but has no influence on that of yeast cyt c. The differences found for the two proteins highlight that specific structural factors, such as the different local structure conformation of the regions involved in the interactions with either CL or ATP, can significantly affect the behavior of cyt c in its reaction with liposomes and the subsequent pro-apoptotic action of the protein.  相似文献   

7.
1. Chlorobium limicola forma sp. thiosulfatophilum was cultivated at 22 and 22000 lux. 2. The content of bchl d on a protein basis in the low light intensity cultures was about twice that of the high light intensity cultures. 3. After growth at 22 lux the red bchl d peak was at c. 743 nm, while at the higher intensity this peak was at c. 732 nm. 4. Electron microscopy of thin sections of Chlorobium revealed that vesicle size was greater at the low light intensity than at the high. 5. This was confirmed by sucrose density gradient centrifugation of differentially 14C-labelled vesicles from cultures grown at the two intensities. 6. The optimum temperature for growth was about 35°C. Incubation at the optimum temperature was particularly beneficial at high light intensity.Abbreviation bchl bacteriochlorophyll  相似文献   

8.
The effects of three organic compounds were tested on one of the most used marine micro-algae in the aquaculture of molluscs and crustaceans, Tetraselmis suecica. Studies were made in axenic conditions with yeast extract, peptone and glucose added to the culture medium, each alone, in combinations of two or all together. Medium without any organic compound was used for the control. Cultures containing yeast extract grew best, reaching maximum cell density of 3.79 × 106 and 3.84 × 106 cells ml−1. The organic carbon source affected the biochemical composition. The components most affected were the carbohydrates, with values between 6.5 pg cell−1 in control cultures and 48.5 pg cell−1 in glucose cultures. Protein content ranged between 27.5 pg cell−1 in control cultures and 88.6 pg cell−1 in yeast + glucose + peptone cultures. The lipid content changed little. Maximum protein yields were reached in cultures with yeast + glucose and with yeast - glucose - peptone, with values of 24.6 and 28.2 mg 1−1 d−1, respectively. These values are 22 and 25 times those in control cultures. A maximum carbohydrate yield of 7.9 mg carbohydrate per litre per day was obtained in yeast + glucose + peptone cultures, 27 times that in the control cultures. The maximum lipid yield was obtained with yeast + glucose + peptone and yeast + glucose. Maximum energy values were 308 kcal 1 in yeast extract - glucose - peptone cultures and 279 kcal 1−1 in yeast extract + glucose cultures. Gross energy values in control cultures were 24.5 kcal 1−1, but peptone cultures presented the minimum energy value, 22 kcal 1−1. The yeast extract: glucose ratio in the culture medium was optimized. A ratio 2:1 produced the best yields in cells, protein, carbohydrate and gross energy.  相似文献   

9.
The protein composition, cytochrome content, and reductase activity in the dissimilatory selenate-reducing bacterium Geospirillum barnesii strain SeS3, grown with thiosulfate, nitrate, selenate, or fumarate as the terminal electron acceptor, was investigated. Comparison of seven high-molecular-mass membrane proteins (105.3, 90.3, 82.6, 70.2, 67.4, 61.1, and 57.3 kDa) by SDS-PAGE showed that their detection was dependent on the terminal electron acceptor used. Membrane fractions from cells grown on thiosulfate contained a 70.2-kDa c-type cytochrome with absorbance maxima at 552, 522, and 421 nm. A 61.1-kDa c-type cytochrome with absorption maxima at 552, 523, and 423 nm was seen in membrane fractions from cells grown on nitrate. No c-type cytochromes were detected in membrane fractions of either selenate- or fumarate-grown cells. Difference spectra, however, revealed the presence of a cytochrome b 554 (absorption maxima at 554, 523, and 422 nm) in membrane fractions from selenate-grown cells and a cytochrome b 556 (absorption maxima at 556, 520, and 416 nm) in membrane fractions from fumarate-grown cells. Analysis of reductase activity in the different membrane fractions showed variability in substrate specificity. However, enzyme activity was greatest for the substrate on which the cells had been grown (e.g., membranes from nitrate-grown cells exhibited the greatest activity with nitrate). These results show that protein composition, cytochrome content, and reductase activity are dependent on the terminal electron acceptor used for growth. Received: 21 August 1996 / Accepted: 24 October 1996  相似文献   

10.
Chlorosome-depleted membranes and a reaction center complex with well-defined subunit composition were prepared from the green sulfur bacterium Chlorobium vibrioforme under anaerobic conditions. The reaction center complex contains a 15-kDa polypeptide with the N-terminal amino acid sequence MEPQLSRPETASNQVR/. This sequence is nearly identical to the N-terminus of the pscD gene product from Chlorobium limicola (Hager-Braun et al. (1995) Biochemistry 34: 9617–9624). In the presence of ferredoxin and ferredoxin:NADP+ oxidoreductase, the membranes and the isolated reaction center complex photoreduced NADP+ at rates of 333 and 110 mol (mg bacteriochlorophyll a)–1 h–1, respectively. This shows that the isolated reaction center complex contains all the components essential for steady state electron transport. Midpoint potentials at pH 7.0 of 160 mV for cytochrome c 551 and of 245 mV for P840 were determined by redox titration. Antibodies against cytochrome c 551 inhibit NADP+ reduction while antibodies against the bacteriochlorophyll a-binding Fenna-Matthews-Olson protein do not.Abbreviations FMO protein Fenna-Matthews-Olson protein - TMBZ 3,3,5,5-tetramethylbenzidine  相似文献   

11.
Thiobacillus novellus cannot be grown in mineral salts media unless supplied with yeast extract. The requirement is only for miniscule amounts of yeast extract and is not fully expressed unless cells grown in a complex medium are allowed to multiply in a mineral salts medium for four to five generations. Individual sulfur-containing organic compounds, namely biotin, coenzyme A, and lipoic acid, but not reduced inorganic sulfur compounds, can substitute for the yeast extract requirement. Biotin can fully satisfy this requirement at a concentration insufficient to fulfill the biosynthetic sulfur needs; further, the organisms continue to incorporate 35SO4 into cellular protein in the presence of yeast extract or biotin. It is concluded that biotin is required as a growth factor and not owing to an inability to obtain sulfur from sulfate; the reasons why coenzyme A and thiamine pyrophosphate can substitute for biotin are discussed.Non-standard Abbreviations MS Mineral Salts Base  相似文献   

12.
The thermoacidophilic iron-oxidizing chemolithotroph Sulfobacillus sibiricus N1T is characterized by steady growth and amplified cell yield when grown in vigorously aerated medium containing Fe2+, glucose, and yeast extract as energy sources. In this case, carbon dioxide, glucose, and yeast extract are used as carbon sources. Glucose is assimilated through the fructose-bisphosphate pathway and the pentose-phosphate pathway. The glyoxylate bypass does not function in S. sibiricus, and the tricarboxylic acid cycle is disrupted at the level of 2-oxoglutarate dehydrogenase. The presence of ribulose-bisphosphate carboxylase indicates that carbon dioxide fixation proceeds through the Calvin cycle. The activity of ribulose-bisphosphate carboxylase is highest in autotrophically grown cells. The cells also contain pyruvate carboxylase, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxytransphosphorylase.  相似文献   

13.
Summary The activity of NADH oxidase in cell fractions of R. rubrum was measured. In cells grown photosynthetically (anaerobic in the light) and semiaerobically in the dark, the highest activity was found to be in the 19,000xg pellet. This consisted preponderantly of cytoplasmic membrane and cell wall material. Bchl was more enriched in the purified thylakoids than the NADH oxidase activity.In extracts of cells grown aerobically the oxidase activity was higher than in cells grown anaerobically or semiaerobically. The highest activity was recovered in the 220,000xg pellet. The data suggest that NADH oxidase as well as bacteri ochlorophyll can be localized in the total intracellular membrane system. However, the distribution is inhomogeneous. Most of the NADH oxidase activity is localized in the c. m. region and most of bchl in the thylakoids.Abbreviations c. m. cytoplasmic membrane - th. Thylakoid - bchl bacteriochlorophyll - Tris Tris (hydroxymethyl) amino-methane  相似文献   

14.
Visible region of an absorption spectrum was followed in cells of original strains and of rough mutants ofSaccharomyces cerevisiae andS. cerevisiae var.ellipsoideus. It was found that there are no substantial differences in relative content of cytochromesb andc in aerobically grown rough and smooth yeast forms, in spite of the fact that both forms differ substantially in the metabolic oxygen quotient. If the cytochromes present were not reduced in washed cells by dithionite or by substrate addition, the rough forms exhibited a lower cytochrome b:c ratio than the smooth forms. Under anaerobic conditions of cultivation, the rough forms retained a typical aerobic spectrum, lacking, however, the cytochromea and a3 band; the ratio of cytochromesb andc was changed in favour of cytochromeb (from the original 1.7: 1 up to 3.4: 1). The inability of the rough mutants to produce anaerobic cytochrome spectrum represented by cytochrome b1 was connected with their inability to reproduce under anaerobic conditions.  相似文献   

15.
Summary Characteristic changes in the ultrastructure of the green algaScenedesmus armatus, grown in batch culture in the presence of aqueous fuel-oil extract (AFOE) have been observed. The changes affected mainly chloroplasts and mitochondria. The regular arrangement of the thylakoid stacks became distorted and the whole chloroplast lobed. Plastoglobules were more numerous in the treated cells than in the controls, especially after long-term exposure to AFOE.The mitochondrial matrix cells exposed to AFOE were more electron-translucent. An increase in the number of small mitochondrial profiles was observed after prolonged treatment with AFOE.The number and size of osmophilic bodies increased markedly in the cytoplasm of the treated cells. The cytochemical reaction of these bodies with Sudan black B indicated their lipid composition.Plasmalemma invagination into the cytoplasm and vacuoles, cytoplasmic layers, and an increase in size of the vacuolar compartment were observed in cells exposed to AFOE for a long time.The possibility that detoxification, involving microbody activity, may have occurred inScenedesmus is suggested.Abbreviation AFOE aqueous fuel-oil extract  相似文献   

16.
The green sulfur bacterium Chlorobium limicola UdG6040 exhibited a significant change in the spectral properties of its antenna when transferred from batch culture to a sulfide-limited chemostat. In steady-state continuous cultures, the in vivo absorption maximum of the culture changed to shorter wavelengths according to the dilution rate. The maximum difference observed was of 15 nm when cells were growing at 0.087 h–1. HPLC analyses revealed that the observed spectral change was caused by a partial enrichment of the original BChl c-containing antenna with BChl d molecules together with a change in the homolog composition of both pigments. The relative amount of BChl d reached a maximum value of 50% when cells were growing at 0.087 h–1. The content of BChl d decreased to less than the 22% when the dilution rate was diminished to 0.015 h–1. An unbalance of pigment synthesis at high dilution rates is suspected to be responsible of the changes observed in the antenna composition. Chlorosomes isolated from Chl. limicola UdG6040 growing at 0.070 h–1 contain organised pools of BChl c and BChl d in equal amounts. Received: 2 December 1998 / Accepted: 25 February 1999  相似文献   

17.
Whole cells and cell walls of the mycelial and yeast forms ofBlastomyces dermatitidis grown in four different media were analyzed for differences in lipid, fatty acid, carbohydrate, and protein contents. The bound (saponifiable) fatty acids of yeast and mycelial whole cells (but not the cell walls) vary considerably in response to growth medium. The percentage of readily extractable lipid varied somewhat in whole cells. The percentage of carbohydrate and protein of whole cells and cell walls are little affected by the medium in which the cells are grown.  相似文献   

18.
Green sulfur bacteria possess a complex photosynthetic machinery. The dominant light harvesting systems are chlorosomes, which consist of bacteriochlorophyll c, d or e oligomers with small amounts of protein. The chlorosomes are energetically coupled to the membrane-embedded iron sulfur-type reaction center via a bacteriochlorophyll a-containing baseplate protein and the Fenna-Matthews-Olson (FMO) antenna protein. The fluorescence yield and spectral properties of these photosynthetic complexes were investigated in intact cells of several species of green sulfur bacteria under physiological, anaerobic conditions. Surprisingly, green sulfur bacteria show a complex modulation of fluorescence yield upon illumination that is very similar to that observed in oxygenic phototrophs. Within a few seconds of illumination, the fluorescence reaches a maximum, which decreases within a minute of illumination to a lower steady state. Fluorescence spectroscopy reveals that the fluorescence yield during both processes is primarily modulated on the FMO-protein level, while the emission from chlorosomes remains mostly unchanged. The two most likely candidates that modulate bacteriochlorophyll fluorescence are (1) direct excitation quenching at the FMO-protein level and (2) indirect modulation of FMO-protein fluorescence by the reduction state of electron carriers that are part of the reaction center.  相似文献   

19.
Ethanol-sensitive mutants of Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
Saccharomyces cerevisiae mutants unable to grow at ethanol concentrations at which the wild type strain S288C does grow, have been isolated. Some of them show additional phenotypic alterations in colony size, temperature sensitivity and viability in ethanol, which cosegregate with the growth sensitivity in ethanol. 21 selected monogenic ethanol-sensitive mutants define 20 complementation groups, denominated ETA1 to ETA20, which indicates that there is a high number of genes involved in the ethanol tolerance/sensitivity mechanism.Out of 21 selected monogenic mutants, 20 are not altered in the glycolytic pathway since, when maintained in glucosesupplemented medium, they can produce as much ethanol as the wild type and at about the same velocity. Nor do any of the mutants seem to be altered in the lipid biosynthetic pathway since, whether grown in the absence or in the presence of ethanol, their concentration of fatty acids and ergosterol is similar to that of the wild type under the same conditions. Therefore growth sensitivity to ethanol does not seem necessarily to be related to carbohydrate or lipid metabolism.Non-common abbreviations YP yeast extract peptone medium - YPD yeast extract peptone dextrose agar or medium - YPG yeast extract peptone glycerol agar - YPDE yeast extract peptone dextrose ethanol agar or medium - SD yeast nitrogen base dextrose agar - SPO yeast extract potassium acetate glucose agar - PD parental ditype - NPD non-parental ditype - TT tetratype  相似文献   

20.
This work is concerned with the metabolism of Caldithrix abyssi—an anaerobic, moderately thermophilic bacterium isolated from deep-sea hydrothermal vents of the Mid-Atlantic Ridge and representing a new, deeply deviated branch within the domain Bacteria. Cells of C. abyssi grown on acetate and nitrate, which was reduced to ammonium, possessed nitrate reductase activity and contained cytochromes of the b and c types. Utilization of acetate occurred as a result of the operation of the TCA and glyoxylate cycles. During growth of C. abyssi on yeast extract, fermentation with the formation of acetate, propionate, hydrogen, and CO2 occurred. In extracts of cells grown on yeast extract, acetate was produced from pyruvate with the involvement of the following enzymes: pyruvate: ferredoxin oxidoreductase (2.6 μmol/(min mg protein)), phosphate acetyltransferase (0.46 μmol/(min mg protein)), and acetate kinase (0.3 μmol/(min mg protein)). The activity of fumarate reductase (0.14 μmol/(min mg protein)), malate dehydrogenase (0.17 μmol/(min mg protein)), and fumarate hydratase (1.2 μmol/(min mg protein)), as well as the presence of cytochrome b, points to the formation of propionate via the methyl-malonyl-CoA pathway. The activity of antioxidant enzymes (catalase and superoxide dismutase) was detected. Thus, enzymatic mechanisms have been elucidated that allow C. abyssi to switch from fermentation to anaerobic respiration and to exist in the gradient of redox conditions characteristic of deep-sea hydrothermal vents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号