首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Injuries to the lateral collateral ligaments of the ankle joint are among the most frequently occurring injuries at the lower limb. The present study was conducted for the purpose of establishing the basis for the development of a quantitative diagnostic procedure for such injuries. To achieve this goal, the effect of four types of ligament injuries on the three-dimensional mechanical characteristics of the ankle were investigated. These types of injuries consisted of: 1) isolated tear of the anterior talofibular ligament; 2) isolated tear of the calcaneofibular ligament; 3) isolated tear of the posterior talofibular ligament; and 4) combined tear of both the anterior talofibular ligament and the calcaneofibular ligament. The experiments were conducted on 31 amputated lower limbs and consisted of comparing the three-dimensional load-displacement and flexibility characteristics of the ankle joint prior to and following sectioning of selected ligaments. The experimental and analytical procedures used to derive these characteristics was developed previously by the authors. From the results of this study it was concluded that the three-dimensional flexibility characteristics of the ankle joint are strongly influenced by damage to the lateral collateral ligaments. Furthermore, it was found that each type of ligament injury produced unique and identifiably changes in the flexibility characteristics of the ankle. These unique changes, which are described in detail in this paper, can be used to discriminate between the different types of ligament injuries. Consequently, it was concluded that it is feasible to develop a quantitative diagnostic procedure for ankle ligament injuries based on the effect of the injury on the flexibility characteristics of the ankle.  相似文献   

2.
It is clinically challenging to distinguish between ankle and subtalar joints instability in vivo. Understanding the changes in load-displacement at the ankle and subtalar joints after ligament injuries may detect specific changes in joint characteristics that cannot be detected by investigating changes in range of motion alone. The effect of restricting joints end range of motion with ankle braces was already established, but little is known about the effect of an ankle brace on the flexibility of the injured ankle and subtalar joints. Therefore, the purposes of this study were to (1) understand how flexibility is affected at the ankle and subtalar joints after sectioning lateral and intrinsic ligaments during combined sagittal foot position and inversion and during internal rotation and (2) investigate the effect of a semi-rigid ankle brace on the ankle and subtalar joint flexibility. Kinematics and kinetics were collected from nine cadaver feet during inversion through the range of ankle flexion and during internal rotation. Motion was applied with and without a brace on an intact foot and after sequentially sectioning the calcaneofibular ligament (CFL) and the intrinsic ligaments. Segmental flexibility was defined as the slope of the angle-moment curve for each 1 Nm interval. Early flexibility significantly increased at the ankle and subtalar joint after CFL sectioning during inversion. The semi-rigid ankle brace significantly decreased early flexibility at the subtalar joint during inversion and internal rotation for all ligament conditions and at the ankle joint after all ligaments were cut.  相似文献   

3.
Knowledge of ligament fibre recruitment at the human ankle joint complex is a fundamental prerequisite for analysing mobility and stability. Previous experimental and modelling studies have shown that ankle motion must be guided by fibres within the calcaneofibular and tibiocalcaneal ligaments, which remain approximately isometric during passive flexion. The purpose of this study was to identify these fibres.

Three below-knee amputated specimens were analysed during passive flexion with combined radiostereometry for bone pose estimation and 3D digitisation for ligament attachment area identification. A procedure based on singular value decomposition enabled matching bone pose with digitised data and therefore reconstructing position in space of ligament attachment areas in each joint position. Eleven ordered fibres, connecting corresponding points on origin and insertion curves, were modelled for each of the following ligaments: posterior talofibular, calcaneofibular, anterior talofibular, posterior tibiotalar, tibiocalcaneal, and anterior tibiotalar.

The measured changes in length for the ligament fibres revealed patterns of tightening and slackening. The most anterior fibre of the calcaneofibular and the medio-anterior fibre of the tibiocalcaneal ligament exhibited the most isometric behaviour, as well as the most posterior fibre of the anterior talofibular ligament. Fibres within the calcaneofibular ligament remain parallel in the transverse plane, while those within the tibiocalcaneal ligament become almost parallel in joint neutral position. For both these ligaments, fibres maintain their relative inclination in the sagittal plane throughout the passive flexion range.

The observed significant change in both shape and orientation of the ankle ligaments suggest that this knowledge is fundamental for future mechanical analysis of their response to external forces.  相似文献   


4.
Joint surface interaction and ligament constraints determine the kinematic characteristics of the ankle and subtalar joints. Joint surface interaction is characterized by joint contact mechanics and by relative joint surface position potentially characterized by distance mapping. While ankle contact mechanics was investigated, limited information is available on joint distance mapping and its changes during motion. The purpose of this study was to use image-based distance mapping to quantify this interaction at the ankle and subtalar joints during tri-planar rotations of the ankle complex. Five cadaveric legs were scanned using Computed Tomography and the images were processed to produce 3D bone models of the tibia, fibula, talus and calcaneus. Each leg was tested on a special linkage through which the ankle complex was loaded in dorsiflexion/plantarflexion, inversion/eversion, and internal/external rotation and the resulting bone movements were recorded. Fiduciary bone markers data and 3D bone models were combined to generate color-coded distance maps for the ankle and subtalar joints. The results were processed focusing on the changes in surface-to-surface distance maps between the extremes of the range of motion and neutral. The results provided detailed insight into the three-dimensional highly coupled nature of these joints showing significant and unique changes in distance mapping from neutral to extremes of the range of motion. The non-invasive nature of the image-based distance mapping technique could result, after proper modifications, in an effective diagnostic and clinical evaluation technique for application such as ligament injuries and quantifying the effect of arthrodesis or total ankle replacement surgery.  相似文献   

5.
The in-vitro, three dimensional kinematic characteristics of the human ankle and subtalar joint were investigated in this study. The main goals of this investigation were: 1) To determine the range of motion of the foot-shank complex and the associated range of motion of the ankle and subtalar joints; 2) To determine the kinematic coupling characteristics of the foot-shank complex, and 3) To identify the relationship between movements at the ankle and subtalar joints and the resulting motion produced between the foot and the shank. The tests were conducted on fifteen fresh amputated lower limbs and consisted of incrementally displacing the foot with respect to the shank while the motion of the articulating bones was measured through a three dimensional position data acquisition system. The kinematic analysis was based on the helical axis parameters describing the incremental displacements between any two of the three articulating bones and on a joint coordinate system used to describe the relative position between the bones. From the results of this investigation it was concluded that: 1) The range of motion of the foot-shank complex in any direction (dorsiflexion/plantarflexion, inversion/eversion and internal rotation/external rotation) is larger than that of either the ankle joint or the subtalar joint.; 2) Large kinematic coupling values are present at the foot-shank complex in inversion/eversion and in internal rotation/external rotation. However, only a slight amount of coupling was observed to occur in dorsiflexion/plantarflexion.; 3) Neither the ankle joint nor the subtalar joint are acting as ideal hinge joints with a fixed axis of rotation.; 4) Motion of the foot-shank complex in any direction is the result of rotations at both the ankle and the subtalar joints. However, the contribution of the ankle joint to dorsiflexion/plantarflexion of the foot-shank complex is larger than that of the subtalar joint and the contribution of the subtalar joint to inversion/eversion is larger than that of the ankle joint.; 5) The ankle and the subtalar joints have an approximately equal contribution to internal rotation/external rotation movements of the foot-shank complex.  相似文献   

6.
Patients with subtalar joint instability may be misdiagnosed with ankle instability, which may lead to chronic instability at the subtalar joint. Therefore, it is important to understand the difference in kinematics after ligament sectioning and differentiate the changes in kinematics between ankle and subtalar instability. Three methods may be used to determine the joint kinematics; the Euler angles, the Joint Coordinate System (JCS) and the helical axis (HA). The purpose of this study was to investigate the influence of using either method to detect subtalar and ankle joints instability. 3D kinematics at the ankle and subtalar joint were analyzed on 8 cadaveric specimens while the foot was intact and after sequentially sectioning the anterior talofibular ligament (ATFL), the calcaneofibular ligament (CFL), the cervical ligament and the interosseous talocalcaneal ligament (ITCL). Comparison in kinematics calculated from sensor and anatomical landmarks was conducted as well as the influence of Euler angles and JCS rotation sequence (between ISB recommendation and previous research) on the subtalar joint. All data showed a significant increase in inversion when the ITCL was sectioned. There were differences in the data calculated using sensors coordinate systems vs. anatomic coordinate systems. Anatomic coordinate systems were recommended for these calculations. The Euler angle and JCS gave similar results. Differences in Euler angles and JCS sequence lead to the same conclusion in detecting instability at the ankle and subtalar joint. As expected, the HA detected instability in plantarflexion at the ankle joint and in inversion at the subtalar joint.  相似文献   

7.
An instrumented,dynamic test for anterior laxity of the ankle joint complex   总被引:1,自引:0,他引:1  
Evaluation of anterior laxity of the ankle joint complex is a difficult clinical problem. Currently, the prime determinant for anterolateral ligament function is the subjective manual examination of anterior laxity of the ankle joint complex. An instrumented dynamic test was developed for objective measurement of anterior laxity of the ankle joint complex. The principle of the test was to apply a force-impulse to the calcaneus, within the muscle reflex time, and to measure anterior–posterior and mediolateral rotation. The test was performed on a cadaver specimen and on 15 volunteers of which five subjects suffered from chronic one-sided lateral ankle ligament instability.

In the cadaver test, anterior translation values increased from 5 to 11 mm, after cutting the anterior talofibular ligament and subsequently cutting the calcaneofibular ligament. In the 10 normal subjects, the mean anterior translation value was 6.7 mm (±1.9 mm). The relative variation of the test result within a measurement session was 2.5% (±1.6%). Between the sessions the relative laxity variation was 2.6% (±2.6%). In the ten normal subjects the mean right–left difference was not significantly different from zero. In four out of the five patients it was more than 2 mm. As in the cadaver test in all measurements, the mediolateral rotations were small (<2.5°). The volunteers complained about same pain at the heel after multiple test sessions.

In conclusion the dynamic, functional test appears to be capable of objectively measuring a value for anterior laxity of the ankle joint complex reflecting the functional status of the anterolateral ankle ligaments.  相似文献   


8.
Although the anterior drawer test at the ankle joint is commonly used in routine clinical practice, very little is known about the sharing of load between the individual passive structures and the joint response at different flexion angles.A mathematical model of the ankle joint was devised to calculate ligament fibre recruitment and load/displacement curves at different flexion angles. Ligaments were modelled as three-dimensional arrays of fibres, and their orientations at different flexion angles were taken from a previously validated four-bar-linkage model in the sagittal plane. A non-linear stress/strain relationship was assumed for ligament fibres and relevant mechanical parameters were taken from two reports in the literature. Talus and calcaneus were assumed to move as a single rigid body. Antero/distal motion of the talus relative to the tibia was analysed.The ankle joint was found to be stiffer at the two extremes of the flexion range, and the highest laxity was found around the neutral position, confirming previous experimental works. With a first dataset, a 20N anterior force produced 4.3, 5.5, and 4.4mm displacement respectively at 20 degrees plantarflexion, at neutral, and at 20 degrees dorsiflexion. At 10 degrees plantarflexion, for a 6mm displacement, 65% of the external force was supported by the anterior talofibular, 11% by the deep anterior tibiotalar and 5.5% by the tibionavicular ligament. Corresponding results from a second dataset were 1.4, 2.4 and 1.8mm at 40N force, and 80%, 0% and 2% for a 3mm displacement. A component of the contact force supported the remainder.  相似文献   

9.
A technique to study the three-dimensional (3D) mechanical characteristics of the ankle and of the subtalar joints in vivo and in vitro is described. The technique uses an MR scanner compatible 3D positioning and loading linkage to load the hindfoot with precise loads while the foot is being scanned. 3D image processing algorithms are used to derive from the acquired MR images bone morphology, hindfoot architecture, and joint kinematics. The technique was employed to study these properties both in vitro and in vivo. The ankle and subtler joint motion and the changes in architecture produced in response to an inversion load and an anterior drawer load were evaluated. The technique was shown to provide reliable measures of bone morphology. The left-to-right variations in bone morphology were less than 5%. The left-to-right variations in unloaded hindfoot architecture parameters were less than 10%, and these properties were only slightly affected by inversion and anterior drawer loads. Inversion and anterior drawer loads produced motion both at the ankle and at the subtalar joint. In addition, high degree of coupling, primarily of internal rotation with inversion, was observed both at the ankle and at the subtalar joint. The in vitro motion produced in response to inversion and anterior drawer load was greater than the in vivo motion. Finally, external motion, measured directly across the ankle complex, produced in response to load was much greater than the bone movements measured through the 3D stress MRI technique indicating the significant effect of soft tissue and skin interference.  相似文献   

10.
11.
Shoe-surface interface characteristics have been implicated in the high incidence of ankle injuries suffered by athletes. Yet, the differences in rotational stiffness among shoes may also influence injury risk. It was hypothesized that shoes with different rotational stiffness will generate different patterns of ankle ligament strain. Four football shoe designs were tested and compared in terms of rotational stiffness. Twelve (six pairs) male cadaveric lower extremity limbs were externally rotated 30 deg using two selected football shoe designs, i.e., a flexible shoe and a rigid shoe. Motion capture was performed to track the movement of the talus with a reflective marker array screwed into the bone. A computational ankle model was utilized to input talus motions for the estimation of ankle ligament strains. At 30 deg of rotation, the rigid shoe generated higher ankle joint torque at 46.2?±?9.3 Nm than the flexible shoe at 35.4?±?5.7 Nm. While talus rotation was greater in the rigid shoe (15.9?±?1.6 deg versus 12.1?±?1.0 deg), the flexible shoe generated more talus eversion (5.6?±?1.5 deg versus 1.2± 0.8 deg). While these talus motions resulted in the same level of anterior deltoid ligament strain (approxiamtely 5%) between shoes, there was a significant increase of anterior tibiofibular ligament strain (4.5± 0.4% versus 2.3?±?0.3%) for the flexible versus more rigid shoe design. The flexible shoe may provide less restraint to the subtalar and transverse tarsal joints, resulting in more eversion but less axial rotation of the talus during foot∕shoe rotation. The increase of strain in the anterior tibiofibular ligament may have been largely due to the increased level of talus eversion documented for the flexible shoe. There may be a direct correlation of ankle joint torque with axial talus rotation, and an inverse relationship between torque and talus eversion. The study may provide some insight into relationships between shoe design and ankle ligament strain patterns. In future studies, these data may be useful in characterizing shoe design parameters and balancing potential ankle injury risks with player performance.  相似文献   

12.
The anterior drawer test at the human ankle joint is a routine clinical examination. The relationship between the mechanical response of this joint and the flexion angle was elucidated by a recent mathematical model, using purely elastic mechanical characteristics for the ligament fibres. The objective of the present work was to assess the effect of ligament viscoelasticity on the force response of the ankle joint for anterior displacements of the foot relative to the tibia, at different ankle flexion positions. A viscoelastic model of the ligaments from the literature was included in the recently proposed mathematical model. Drawer tests were simulated at several flexion angles and for increasing velocities of the imposed anterior displacement. The stiffness of the model ankle joint increased only modestly with velocity. The response force found for a 6mm displacement at 20 degrees plantarflexion increased by only 13% for a one hundred-fold increase in velocity from 0.1 to 10 mm/s. The flexion angle was confirmed as the most influential parameter in the mechanical response of the ankle to anterior drawer test.  相似文献   

13.
Kinematics and flexibility properties of both natural and replaced ankle joints are affected by the geometry of the articulating surfaces. Recent studies proposed an original saddle-shaped, skewed, truncated cone with laterally oriented apex, as tibiotalar contact surfaces for ankle prosthesis. The goal of this study was to compare in vitro this novel design with traditional cylindrical or medially centered conic geometries in terms of their ability to replicate the natural ankle joint mechanics. Ten lower limb cadaver specimens underwent a validated process of custom design for the replacement of the natural ankle joint. The process included medical imaging, 3D modeling and printing of implantable sets of artificial articular surfaces based on these three geometries. Kinematics and flexibility of the overall ankle complex, along with the separate ankle and subtalar joints, were measured under cyclic loading. In the neutral and in maximum plantarflexion positions, the range of motion under torques in the three anatomical planes of the three custom artificial surfaces was not significantly different from that of the natural surfaces. In maximum dorsiflexion the difference was significant for all three artificial surfaces at the ankle complex, and only for the cylindrical and medially centered conic geometries at the tibiotalar joint. Natural joint flexibility was restored by the artificial surfaces nearly in all positions. The present study provides experimental support for designing articular surfaces matching the specific morphology of the ankle to be replace, and lays the foundations of the overall process for designing and manufacturing patient-specific total ankle replacements.  相似文献   

14.
The geometrical shape of the trochlea tali is responsible for two completely different courses of motion in the ankle joint setting out from the neutral position: dorsiflexion and plantar flexion. Dorsiflexion: The tibia leads the talus, whereas the fibula is pushed laterally by the screw-shaped lateral articular facet of the talus. The malleoli tightly embrace the trochlea tali, whilst an obvious cleft appears dorsally and medially between the superior articular surface of the talus and the tibial roof. Plantar flexion: The fibula leads the talus which withdraws from the medial malleolus by stretching the anterior talofibular ligament. At the same time the superior articular face of the talus closely contacts the tibial roof.  相似文献   

15.
Computational models of musculoskeletal joints and limbs can provide useful information about joint mechanics. Validated models can be used as predictive devices for understanding joint function and serve as clinical tools for predicting the outcome of surgical procedures. A new computational modeling approach was developed for simulating joint kinematics that are dictated by bone/joint anatomy, ligamentous constraints, and applied loading. Three-dimensional computational models of the lower leg were created to illustrate the application of this new approach. Model development began with generating three-dimensional surfaces of each bone from CT images and then importing into the three-dimensional solid modeling software SOLIDWORKS and motion simulation package COSMOSMOTION. Through SOLIDWORKS and COSMOSMOTION, each bone surface file was filled to create a solid object and positioned necessary components added, and simulations executed. Three-dimensional contacts were added to inhibit intersection of the bones during motion. Ligaments were represented as linear springs. Model predictions were then validated by comparison to two different cadaver studies, syndesmotic injury and repair and ankle inversion following ligament transection. The syndesmotic injury model was able to predict tibial rotation, fibular rotation, and anterior/posterior displacement. In the inversion simulation, calcaneofibular ligament extension and angles of inversion compared well. Some experimental data proved harder to simulate accurately, due to certain software limitations and lack of complete experimental data. Other parameters that could not be easily obtained experimentally can be predicted and analyzed by the computational simulations. In the syndesmotic injury study, the force generated in the tibionavicular and calcaneofibular ligaments reduced with the insertion of the staple, indicating how this repair technique changes joint function. After transection of the calcaneofibular ligament in the inversion stability study, a major increase in force was seen in several of the ligaments on the lateral aspect of the foot and ankle, indicating the recruitment of other structures to permit function after injury. Overall, the computational models were able to predict joint kinematics of the lower leg with particular focus on the ankle complex. This same approach can be taken to create models of other limb segments such as the elbow and wrist. Additional parameters can be calculated in the models that are not easily obtained experimentally such as ligament forces, force transmission across joints, and three-dimensional movement of all bones. Muscle activation can be incorporated in the model through the action of applied forces within the software for future studies.  相似文献   

16.
External rotation of the foot has been implicated in high ankle sprains. Recent studies by this laboratory, and others, have suggested that torsional traction characteristics of the shoe-surface interface may play a role in ankle injury. While ankle injuries most often involve damage to ligaments due to excessive strains, the studies conducted by this laboratory and others have largely used surrogate models of the lower extremity to determine shoe-surface interface characteristics based on torque measures alone. The objective of this study was to develop a methodology that would integrate a motion analysis-based kinematic foot model with a computational model of the ankle to determine dynamic ankle ligament strains during external foot rotation. Six subjects performed single-legged, internal rotation of the body with a planted foot while a marker-based motion analysis was conducted to track the hindfoot motion relative to the tibia. These kinematic data were used to drive an established computational ankle model. Ankle ligament strains, as a function of time, were determined. The anterior tibiofibular ligament (ATiFL) experienced the highest strain at 9.2±1.1%, followed by the anterior deltoid ligament (ADL) at 7.8±0.7%, averaged over the six subjects. The peak ATiFL strain occurred prior to peak strain in the ADL in all subjects. This novel methodology may provide new insights into mechanisms of high ankle sprains and offer a basis for future evaluations of shoe-surface interface characteristics using human subjects rather than mechanical surrogate devices.  相似文献   

17.
The objective of this study was to produce linear and nonlinear viscoelastic models of eight major ligaments in the human ankle/foot complex for use in computer models of the lower extremity. The ligaments included in this study were the anterior talofibular (ATaF), anterior tibiofibular (ATiF), anterior tibiotalar (ATT), calcaneofibular (CF), posterior talofibular (PTaF), posterior tibiofibular (PTiF), posterior tibiotalar (PTT), and tibiocalcaneal (TiC) ligaments. Step relaxation and ramp tests were performed. Back-extrapolation was used to correct for vibration effects and the error introduced by the finite rise time in step relaxation tests. Ligament behavior was found to be nonlinear viscoelastic, but could be adequately modeled up to 15 percent strain using Fung's quasilinear viscoelastic (QLV) model. Failure properties and the effects of preconditioning were also examined.  相似文献   

18.
Description and error evaluation of an in vitro knee joint testing system   总被引:2,自引:0,他引:2  
An experimental system for the analysis of knee joint biomechanics is presented. The system provides for the simultaneous recording of ligament forces using buckle transducers and three-dimensional joint motion using an instrumented spatial linkage, as in vitro specimens are subjected to a variety of external loads by a pneumatic loading apparatus with associated force transducers. The system components are described, and results of an evaluation of system errors and accuracy are presented. The experimental setup has been successfully used in the analysis of normal knee ligament mechanics, as well as surgical reconstructions of the anterior cruciate ligament. The system can also be adapted to test other human or animal in vitro joints.  相似文献   

19.
The aim of this investigation was to study the possible relationships between anthropometry, flexibility and specific swimming results in female breaststroke swimmers. Subjects were 125 female breaststroke swimmers in age of 11-18 years. Body height and mass were measured and BMI (kg/m2 ) and Broca index (body height in cm - 100 = weight in kg) were calculated. The flexibility of hip external rotation, knee external rotation, ankle dorsal flexion and ankle supination were measured with plastic goniometer. 100 m breaststroke swimming using kickboard and legs only was used as a swimming performance parameter. The number of kicks was also fixed. Horizontal jumping ability was measured using a simple standing broad jump (cm) minus body height (cm). As a rule, flexibility in different joints did not depend on anthropometrical parameters. Only knee external rotation and ankle dorsal flexion correlated significantly with body mass (r = -0.221 and r = -0.210, respectively) and BMI (r = 0.242 and r = 0.204, respectively). The relationship between flexibility in different joints, as a rule, was not significant. Stepwise multiple regression analysis indicated that from the used anthropometrical parameters the most important was the body height, which explained 11.1% (R2 x 100) of the 100 m breaststroke swim results using legs only. The most important parameter from the measured flexibility indices was knee external rotation (11.1%, R2 x 100). Combination of knee external rotation and ankle supination increased the determination coefficient to 24.4%. Finally, three flexibility measures (knee external rotation, ankle supination, hip external rotation) explained the swimming results by 28.2% (R2 x 100). It was concluded that the good flexibility is more important than single anthropometrical parameters when explaining the breaststroke swimming results using kickboard and legs only.  相似文献   

20.
Mobility of the subtalar joint in the intact ankle complex   总被引:8,自引:0,他引:8  
A previous study by these authors showed that the calcaneus follows a unique path of unresisted coupled motion relative to the tibia during passive flexion and that most of this motion occurred at the ankle level. Subtalar motion in the intact ankle complex was observed only when perturbations from this path were induced by the application of force to the calcaneus. Relative motion of the bones of the ankle complex was tracked by stereophotogrammetry in seven specimens. Anatomical landmarks, reference frames and joint angles were defined by standard techniques. Sequential moments were applied to the calcaneus about the long axis of the tibia. Measured movements at subtalar level demonstrated plantarflexion coupled to supination and internal rotation (inversion) and dorsiflexion coupled to pronation and external rotation (eversion). These movements were resisted and were fully recovered when the external load was removed. Subtalar motion diminished as the ankle approached maximal dorsi- and plantarflexion. Two clearly distinguished mean axes of rotation were observed for inversion and eversion runs. The axes of inversion and eversion of the subtalar complex changed orientation along a preferred and repeatable path. The subtalar joint complex occupied only a single stable position in the unloaded state and with no range of unresisted motion. It is inferred that mobility was possible only by the stretching and lengthening of the ligaments and the indentation of the articular surfaces, requiring the application of loads. The subtalar joint complex behaves like a flexible structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号