首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In comparison to wild type Arabidopsis thaliana, the auxin resistant mutants axr1 and axr2 exhibit reduced inhibition of root elongation in response to auxins. Several auxin-regulated physiological processes are also altered in the mutant plants. When wild-type, axr1 and axr2 seedlings were grown in darkness on media containing indoleacetic acid (IAA), promotion of root growth was observed at low concentrations of IAA (10?11 to 10?7M) in 5-day-old axr2 seedlings, but not in axr1 or wild-type seedlings. In axr1 there was little or no measurable root growth response over the same concentration range. In wild type, root growth was inhibited at concentrations greater than 10?10M and no detectable root growth response was observed at lower concentrations. In addition, production of lateral roots in response to IAA increased in axr2 seedlings and decreased in axr1 seedlings relative to wild type. Promotion of root elongation and initiation of lateral roots in axr2 seedlings in response to auxin indicate that axr2 seedlings are able to perceive and respond to IAA.  相似文献   

2.
The initiation of lateral root primordia and their subsequentemergence as secondary roots have been examined in attachedand excised roots of Zea mays grown in the presence or absenceof indol-3-yl acetic acid (IAA). Exposure to IAA enhanced anlageinception in both batches of roots. In the attached roots, theIAA-induced stimulation of primordium initiation was followedby a similar increase in lateral emergence. IAA treatment, however,had no effect on the number of laterals produced, per centimetreof root, in the excised primaries. Thus, exposure to IAA didnot directly enhance lateral emergence in the attached rootsnor did it stimulate such emergence in the excised ones. Nocorrelation was found between proliferative activity in themeristem at the apex of the primary or the rate of root elongationon the one hand, and either the number of primordia initiated,or the number of laterals produced, per centimetre of primary,on the other. Zea mays, maize, root, primordium, lateral, indol-3-yl acetic acid, meristematic activity  相似文献   

3.
Summary Few studies have focused on the effect of a broad range of phytohormones on growth and secondary metabolism of a single hairy root species. We measured growth, development, and production of the antimalarial drug, artemisinin, in Artemisia annua hairy roots in response to the five main hormones: auxins, cytokinins, ethylene, gibberellins (GA), and abscisic acid (ABA). Single roots grown in six-well plates in medium B5 with 0.01 mgl−1 (0.029 μM) GA3 produced the highest values overall in terms of the number of lateral roots, length of the primary root, lateral root tip density, total lateral root length, and total root length. When the total root lengths are compared, the best conditions for stimulating elongation appear to be: GA 0.01 mgl−1 (0.029μM)> ABA 1.0 mgl−1 (3.78μM)=GA 0.02 mgl−1 (0.058μM). Bulk yields of biomass were inversely proportional to the concentration of each hormone tested. All cultures provided with ABA yielded the highest amount of biomass. Both 6-benzylaminopurine and 2-isopentenyladenine inhibited root growth, however, only 2-isopentenyladenine stimulated artemisinin production, more than twice that of the B5 controls, and more than any other hormone studied. These results will prove useful in increasing hairy root growth and artemisinin production.  相似文献   

4.
The spacing of lateral root primordia in the primary root of Pisum sativum (cv. Alaska) seedlings is influenced by both predetermined lateral root initiation sites in the embryonic radicle and by factors present during seedling growth. When pea seeds were germinated in the presence of the mitotic inhibitor, colchicine, the triarch radicle produced three ranks of primordiomorphs indicating sites of embryonic lateral root primordia. The number of primordiomorphs was not the same along the three xylem strands in the radicle. Normally germinated seedling roots (5 days old) also showed a different number of lateral root primordia associated with the three strands. In both cases, the strand with the greatest number of primordia (or primordiomorphs) was associated with a cotyledonary trace. This indicated a possible role for the cotyledons in setting the pattern of lateral root distribution during radicle development. The spacing of lateral root primordia could be altered by the application of growth regulators. Seedling root tips (2 mm) were removed (? rt) and replaced with indoleacetic acid (+IAA), and in some instances seedlings were also treated with the auxin transport inhibitor, 3,3a-dihydro-2-(p-methoxyphenyl)-8H-pyrazolo[5, 1-α]isoindol-8-one (+DPX). In the growth regulator treatments, primary root elongation was inhibited, a greater number of lateral root primordia were initiated compared to controls, and the spacing intervals between primordia were greatly reduced. The — rt, +IAA, +DPX-treatment resulted in the closest possible spacing intervals (av. 0.4 ? 0.6 mm), but resulted in fused or fasciated laterals. The — rt, + IAA-treatment produced the shortest spacing intervals which resulted in “normal” lateral roots (0.8 ? 1.1 mm).  相似文献   

5.
Root branching patterns in intact and decapitated flax (Linum usitatissimumL.) roots were compared. The number of initiated primordia in the control and decapitated roots was similar, but decapitated roots produced an increased number of lateral roots owing to an increase in the number of primordia developed into the laterals. It is suggested that the apical meristem influences lateral root development only at the stage of root emergence from the parent root.  相似文献   

6.
Auxin Induced Lateral Root Formation in Chicory   总被引:2,自引:0,他引:2  
The supply of auxins [2,4-dichlorophenoxy acetic acid (2,4D),indole-3 acetic acid (1AA) and -naphthaleneacetic acid (NAA)]to excised chicory roots induced the formation of lateral rootmeristems mainly located close to the pre-existing apical rootmeristem. Lateral root growth induced in non-excised roots requiredhigher auxin concentrations. Inhibition of root elongation andconcomittant enlargement of the apices was also observed. SupplyingIAA induced the formation of lateral meristems earlier thanNAA, but subsequently favoured root elongation. Conversely,in the presence of 2,4D, reactivation of pericycle cells wasvery intense, but conversion of primordia to laterals was inhibited.Regardless of the auxin used, the responsive area in which lateralmeristems appeared was located a maximum of 4 mm away from theapical meristem. This region remained devoid of any lateralroot formation under control conditions. Pericycle cells oppositethe xylem poles in the diarch stele regained meristematic activityand divided transversally, giving rise to shorter cells. Thesecells subsequently divided periclinally, forming pairs of cellson the same transverse level. The root primordium extruded throughcortical cells and was surrounded by a lacuna formed to thedetriment of cortical cells.Copyright 1998 Annals of BotanyCompany Auxins,Cichorium intybus, chicory, lateral root, root elongation.  相似文献   

7.
The proximal-distal distribution of the lateral roots of five species was studied. A detailed investigation was carried out on two of the five species, Ceratopteris thalictroides and Cucurbita maxima. A definite pattern of lateral root arrangement, with a degree of variability related to the number of protoxylem poles, was found in all of the species studied. In the fern Ceratopteris, lateral root initiation was found to be related to the segmentation of the apical cell, which in turn determines the distribution of the laterals. In this species the lateral roots occur in a predictable sequence and they are grouped in pairs. In the angiosperms studied, the pattern of lateral root distribution seemed to depend primarily upon a rather strict longitudinal relationship between the lateral root primordia formed opposite any one protoxylem pole. In Cucurbita maxima, 93.7 ± 5.02% of the lateral root primordia observed were in a specific sequence. The laterals of this species are also arranged in groups. In the other plants studied, Arachis hypogaea, Victoria trickeri, and Eichhornia crassipes, the laterals were not as regularly arranged, but nevertheless they were found to be arranged in groups along the main root axis and not randomly dispersed. Factors controlling the spacing of lateral root primordia include their relationship with the developing vascular system, a direct effect of the parent root apex, and an effect of older lateral root primordia in the same sector of the root.  相似文献   

8.
9.
Summary The endangeredPhebalium equestre D. A. Cooke and the rarePhebalium hillebrandii J. H. Willis were propagated in vitro using shoot tips and nodal segments as explants. For each species, shoot proliferation was initiated on de Fossard MZZM (Medium levels of minerals, Zero auxins, Zero cytokinins and Medium levels of sucrose, growth factors, and amino acids) medium supplemented with 1 μM benzyladenine. ExcisedP. equestre shoots initiated roots when cultured on MZZM medium containing 60 μM 2,4-dichlorophenoxyacetic acid, whileP. hillebrandii shoots required LZZL (Low levels of minerals, Zero auxins, Zero cytokinins and Low levels of sucrose, growth factors, and amino acids) medium containing 10 μM 2,4-D for maximal root initiation. Both species required transfer to MZZM medium without growth regulators after 2 wk to allow root initials to develop and grow. Plantlets were successfully transferred to soil with 80% survival after 2 mo.  相似文献   

10.
The effects of white light and decapitation on the initiation and subsequent emergence and elongation of lateral roots of apical maize (Zea mays L. cv LG 11) root segments have been examined. The formation of lateral root primordium was inhibited by the white light. This inhibition did not depend upon the presence of the primary root tip. However, root decapitation induced a shift of the site of appearance of the most apical primordium towards the root apex, and a strong disturbance of the distribution pattern of primordium volumes along the root axis. White light had a significant effect neither on the distribution pattern of primordium volumes, nor on the period of primordium development (time interval required for the smallest detectable primordia to grow out as secondary roots). Thus, considering the rooting initiation and emergence, the light effect was restricted to the initiation phase only. Moreover, white light reduced lateral root elongation as well as primary root growth.  相似文献   

11.
The growth response (increase in weight) of cultured explants from seedling date (Phoenix dactylifera L.) and mature coconut (Cocos nucifera L. cv. Malayan Dwarf) palms to source and concentration of organic nitrogen. carbohydrate, auxins, cytokinins and gibberellins was examined. Growth was strongly stimulated by the presence of auxins (10?7 to 10?6M), cytokinins (10?6 to 10?5M), high concentrations of sucrose (0.2 M), and in the absence of NH4Cl, by organic sources of reduced nitrogen. Higher concentrations of auxin (2,4-D or NAA at 10?6 to 10?5M) which still stimulated growth of Phoenix tissue, proved inhibitory to growth of freshly excised Cocos tissues. Explants from both palms initiated roots when subcultured on a medium with increased levels of auxin (NAA, 2.5 × 10?6 to 2.5 × 10?5M) and reduced levels of cytokinin (6-BAP, 5 × 10?8M). Isolated roots excised from these explants continued growth and produced new laterals when subcultured on media with GA3 (5 × 10?7M) and reduced levels of auxin, cytokinin, and either minerals or sucrose.  相似文献   

12.
MACLEOD  R. D. 《Annals of botany》1976,40(3):551-562
Lateral root primordia in i are first initiated 2–3 daysfollowing the onset of germination, after which they take 5.17–6.35days to complete their development and emerge as lateral roots.Variation in the amount of time elapsing between primordiuminitiation and emergence as a lateral is probably a reflectionof the cell number attained by any one primordium at the timeof emergence. The number of primordia produced per cm of primaryroot growth (5.35–6.65) was not affected by variationin the rate of root elongation, although the number of primordiaproduced each day increased with increase in the rate of rootgrowth. In colchicine-treated roots, the amount of time between primordiuminitiation in the C-tumour and the subsequent emergence of alateral (5.43–6.43 days) was similar to the value obtainedin control roots. Primordia which were present at the time ofcolchicine treatment responded to treatment in a number of differentways, depending on the stage of development reached. Primordiain the first 2.66 days of their development die following treatment;those between 2.66 and 3.69 days old have their developmentinhibited but stay alive; primordia which have been developingfor 3.69–4.91 days following initiation grow out as straightlaterals, while those between 4.91 and 5.77 days old form C-tumoursand emerge as inhibited laterals.  相似文献   

13.
Summary Yellowish compact callus, induced from cowpea hypocotyls on Murashige and Skoog(MS) medium (1962) containing 0.2 mg/l(0.93 μM) kinetin and 0.4 mg/l (1.81 μM) 2,4-dichlorophenoxyacetic acid (2,4-D), was subcultured on MS medium containing cytokinin alone, auxin alone, or auxins plus cytokinins in order to determine the effect of cytokinins on root organogenesis in callus cultures. The callus actively proliferated on the same medium but did not show any organogenic activity macroscopically as well as microscopically. On medium with N6-benzyladenine (BA) and 1-naphthaleneacetic acid (NAA), the yellowish compact callus first changed to pale green compact callus and then many green spots appeared on its surface under light culture. But the yellowsih compact callus remained yellowish and white spots appeared on its surface in dark culture. These spots gradually became white nodular structures. Adventitious root formation from the nodular structures occurred not only on the same medium, but also on medium with either auxin or cytokinin but not both. Yellowish compact callus on medium with auxin alone was transformed to yellowish friable callus, which did not develop adventitious roots. The yellowish friable callus could gain rhizogenic activity only after morphological modification to pale green compact callus on medium with auxin plus cytokinin. The modified callus did not form adventitious roots on medium with auxins but only with cytokinins. Therefore, it is suggested that cytokinins have stimulating effects on root formation from callus that previously did not show rhizogenic activity on medium with auxins alone. In addition, the rhizogenic potential of cowpea callus was discriminated from that of leaf explants, which formed adventitious roots directly on medium with auxin alone.  相似文献   

14.
Roots of tomato (Lycopersicon esculentum Mill. cv. Bonny Best) were excised and cultured in the presence of the abscisic acid synthesis inhibitor fluridone, and with concentrations of exogenous abscisic acid ranging from 10−10to 10−4M to determine the effects of abscisic acid and its synthesis inhibition on the development of lateral roots in in vitro cultured tomato roots. Exogenous abscisic acid inhibited lateral root initiation and emergence at concentrations of 10−6M and greater. Fluridone (10−6M) enhanced the formation of lateral roots even in the presence of abscisic acid, at all concentrations tested except 10−4M. Abscisic acid increased apical distance, and fluridone reduced it up to 10−5M abscisic acid. Both fluridone and abscisic acid reduced lateral and primary root lengths. It was concluded the endogenous abscisic acid is probably involved in the regulation of lateral root initiation and root apical dominance, and that abscisic acid may affect lateral root initiation differently than lateral root emergence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The effect of cytokinins was studied on the incorporation of 14C-labelled precursors into the nucleic acid fraction of protoplasts isolated from callus or roots of Brassica campestris. Protoplasts from callus and roots took up 14C-uridine from the incubation medium and incorporated this precursor into the ribonucleic acid fraction during the experimental period of 16 h. Low concentrations of kinetin (10?8-5 × 10?6M) did not stimulate the incorporation, and kinetin inhibited this process at higher concentrations (5 × 10?5M). This result led to an investigation on the uptake of cytokinins by protoplasts of roots. In contrast to a rapid uptake of radio-actively labelled adenine and uridine. protoplasts from roots took up only small amounts of labelled kinetin. zeatin, zeatin riboside and zeatin nucleotides from the incubation medium. Root sections took up far more adenine and kinetin than protoplasts from roots. The ratio between the amount of kinetin taken up and applied was much higher for the sections than for protoplasts, indicating that intact root cells took up kinetin far more rapidly than protoplasts. It is suggested that the plasmalemma and cell wall play an essential role in the uptake of cytokinins or that the differences in the uptake rates are related to differences between the rates of metabolism of cytokinins in root sections and in protoplasts.  相似文献   

16.
D. Klämbt 《Biologia Plantarum》1985,27(2-3):204-208
It is generally accepted that plant growth and development are regulated by the known plant hormones. Some objections to the functions of auxins and cytokinins in the induction of shoot and root primordia are reported. Instead of them oligopeptides of special amino acid sequences could be the endogenous signals. There exist structure relationships between auxins and parts of the α-helical oligopeptides of defined amino acid sequences. The same is true for cytokinins. The most difficult part of this hypothesis is its verification. Using protonemata ofFunaria hygrometrica bud induction by various oligopeptides was investigated. The most active peptide tested is leucine-tryptophan. On the other hand endogenous oligopeptides containing [14C]-leucine in the moss protonemata during endogenous bud initiation were looked for. Three to four different oligopeptide spots seem to be related to bud induction.  相似文献   

17.
The plant hormone auxin has been shown to be involved in lateral root development and application of auxins, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), increases the number of lateral roots in several plants. We found that the effects of two auxins on lateral root development in the indica rice (Oryza sativa L. cv. IR8) were totally different from each other depending on the application method. When the roots were incubated with an auxin solution, IAA inhibited lateral root development, while IBA was stimulatory. In contrast, when auxin was applied to the shoot, IAA promoted lateral root formation, while IBA did not. The transport of [3H]IAA from shoot to root occurred efficiently (% transported compared to supplied) but that of [3H]IBA did not, which is consistent with the stimulatory effect of IAA on lateral root production when applied to the shoot. The auxin action of IBA has been suggested to be due to its conversion to IAA. However, in rice IAA competitively inhibited the stimulatory effect of IBA on lateral root formation when they were applied to the incubation solution, suggesting that the stimulatory effect of IBA on lateral root development is not through its conversion to IAA.  相似文献   

18.
19.
We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.  相似文献   

20.
Pueraria lobata hairy roots have faster elongationand more branches than normal roots. The responses of hairy roots and normalroots to treatment with three auxins, indole-3-acetic acid (IAA),indole-3-butyric acid (IBA), and naphthalene acetic acid (NAA) were different.In normal roots, all three auxins strongly stimulated lateral root formation atall tested concentrations. Responses to IAA and IBA in primary root growth andlateral root elongation were similar and depended on concentration; promotionat0.1 M, no effect at 1.0 M, and inhibition at2.5 M. In hairy roots, lateral root formation varied inresponseto the different auxins, i.e. depressed by NAA, unaffected by IAA, and promotedby IBA. Primary root growth was slightly inhibited by IBA and was unaffected byIAA. However, mean lateral root length was reduced in response to IAA and IBA.Only NAA exerted strong inhibition on primary and lateral root elongation inboth root types. The similar free IAA and conjugated IAA content but quitedifferent basal ethylene production and biosynthesis in hairy and normal rootssuggested different mechanisms of response to exogenous auxins in the two roottypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号