首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
tau mutations that deregulate alternative exon 10 (E10) splicing cause frontotemporal dementia with parkinsonism chromosome 17-type by several mechanisms. Previously we showed that E10 splicing involved exon splicing enhancer sequences at the 5' and 3' ends of E10, an exon splicing silencer, a weak 5' splice site, and an intron splicing silencer (ISS) within intron 10 (I10). Here, we identify additional regulatory sequences in I10 using both non-neuronal and neuronal cells. The ISS sequence extends from I10 nucleotides 11-18, which is sufficient to inhibit use of a weakened 5' splice site of a heterologous exon. Furthermore, ISS function is location-independent but requires proximity to a weak 5' splice site. Thus, the ISS functions as a linear sequence. A new cis-acting element, the intron splicing modulator (ISM), was identified immediately downstream of the ISS at I10 positions 19-26. The ISM and ISS form a bipartite regulatory element, within which the ISM functions when the ISS is present, mitigating E10 repression by the ISS. Additionally, the 3' splice site of E10 is weak and requires exon splicing enhancer elements for efficient E10 inclusion. Thus far, tau FTDP-17 splicing mutations affect six predicted cis-regulatory sequences.  相似文献   

2.
Mutations in the tau gene are pathogenic causing autosomal dominant frontotemporal dementia with Parkinsonism-chromosome 17 type (FTDP-17). Some mutations in tau exon 10 (E10) and immediately adjacent sequences cause disease by altering E10 splicing. To determine the mechanism of normal E10 splicing regulation and how FTDP-17 mutations alter splicing, mutational analysis of E10 was performed. The results show that E10 contains a complex array of both enhancer and inhibitor cis-acting elements that modulate usage of a weak 5' splice site. The 5' end of E10 contains a previously unrecognized multipartite exon splicing enhancer (ESE) composed of an SC35-like binding sequence, a purine-rich sequence, and an AC-rich element. Downstream of this ESE is a purine-rich exon splicing inhibitor. Intronic sequences immediately downstream of E10 also are inhibitory. The results support an alternative model in which I10 inhibitory sequences appear to function as a linear sequence. The cis-elements described are not redundant, and all appear required for normal E10 splicing. Results with double mutations demonstrate that the ESE and the intronic inhibitory element collaborate to regulate splicing. Thus splicing of tau E10 is regulated by a complex set of cis-acting elements that span nearly the entire exon and also include intronic sequences.  相似文献   

3.
Regulation of tau exon 10 splicing plays an important role in tauopathy. One of the cis elements regulating tau alternative splicing is a stem-loop structure at the 5' splice site of tau exon 10. The RNA helicase(s) modulating this stem-loop structure was unknown. We searched for splicing regulators interacting with this stem-loop region using an RNA affinity pulldown-coupled mass spectrometry approach and identified DDX5/RNA helicase p68 as an activator of tau exon 10 splicing. The activity of p68 in stimulating tau exon 10 inclusion is dependent on RBM4, an intronic splicing activator. RNase H cleavage and U1 protection assays suggest that p68 promotes conformational change of the stem-loop structure, thereby increasing the access of U1snRNP to the 5' splice site of tau exon 10. This study reports the first RNA helicase interacting with a stem-loop structure at the splice site and regulating alternative splicing in a helicase-dependent manner. Our work uncovers a previously unknown function of p68 in regulating tau exon 10 splicing. Furthermore, our experiments reveal functional interaction between two splicing activators for tau exon 10, p68 binding at the stem-loop region and RBM4 interacting with the intronic splicing enhancer region.  相似文献   

4.
Mutations in the human tau gene leading to aberrant splicing have been identified in FTDP-17, an autosomal dominant hereditary neurodegenerative disorder. Molecular mechanisms by which such mutations cause tau aberrant splicing were not understood. We characterized two mutations in exon 10 of the tau gene, N279K and Del280K. Our results revealed an exonic splicing enhancer element located in exon 10. The activity of this AG-rich splicing enhancer was altered by N279K and Del280K mutations. This exonic enhancer element interacts with human Tra2 beta protein. The interaction between Tra2 beta and the exonic splicing enhancer correlates with the activity of this enhancer element in stimulating splicing. Biochemical studies including in vitro splicing and RNA interference experiments in transfected cells support a role for Tra2 beta protein in regulating alternative splicing of human tau gene. Our results implicate the human tau gene as a target gene for the alternative splicing regulator Tra2 beta, suggesting that Tra2 beta may play a role in aberrant tau exon 10 alternative splicing and in the pathogenesis of tauopathies.  相似文献   

5.
6.
The tau gene encodes a microtubule-associated protein that is critical for neuronal survival and function. Splicing defects in the human tau gene lead to frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), an autosomal dominant neurodegenerative disorder. Genetic mutations associated with FTDP-17 often affect tau exon 10 alternative splicing. To investigate mechanisms regulating tau exon 10 alternative splicing, we have developed a green fluorescent protein reporter for tau exon 10 skipping and an expression cloning strategy to identify splicing regulators. A role for SRp54 (also named SFRS11) as a tau exon 10 splicing repressor has been uncovered using this strategy. The overexpression of SRp54 suppresses tau exon 10 inclusion. RNA interference-mediated knock-down of SRp54 increases exon 10 inclusion. SRp54 interacts with a purine-rich element in exon 10 and antagonizes Tra2beta, an SR-domain-containing protein that enhances exon 10 inclusion. Deletion of this exonic element eliminates the activity of SRp54 in suppressing exon 10 inclusion. Our data support a role of SRp54 in regulating tau exon 10 splicing. These experiments also establish a generally useful approach for identifying trans-acting regulators of alternative splicing by expression cloning.  相似文献   

7.
An alternatively spliced form of the presenilin 2 (PS2) gene lacking exon 5 (PS2V) was found in human brains with sporadic Alzheimer's disease. PS2V was induced by hypoxic stress in human neuroblastoma SK-N-SH cells, indicating that hypoxic stress affects the splicing machineries for PS2 exon 5. Here, we identified the critical cis-acting element (sec 2) on the PS2 pre-mRNA responsible for the aberrant splicing of PS2 exon 5 under hypoxic stress conditions. The element was composed of 23 nucleotides in exon 5 and RNA structural analyses showed a stem-loop structure in this sequence. Treatment with an antisense oligonucleotide directed toward the cis-acting element caused an increase in exon 5 inclusion. These results indicate that the sec 2 identified in this study is a novel regulatory element for exon 5 splicing under stress conditions and that trans-acting factors could specifically bind to the element to skip exon 5 of PS2.  相似文献   

8.
Frontotemporal dementia accounts for a significant fraction of dementia cases. Frontotemporal dementia with parkinsonism linked to chromosome 17 is associated with either exonic or intronic mutations in the tau gene. This highlights the involvement of aberrant pre-mRNA splicing in the pathogenesis of neurodegenerative disorders. Little is known about the molecular mechanisms of the splicing defects underlying these diseases. To establish a model system for studying the role of pre-mRNA splicing in neurodegenerative diseases, we have constructed a tau minigene that reproduces tau alternative splicing in both cultured cells and in vitro biochemical assays. We demonstrate that mutations in a nonconserved intronic region of the human tau gene lead to increased splicing between exon 10 and exon 11. Systematic biochemical analyses indicate the importance of U1 snRNP and, to a lesser extent, U6 snRNP in differentially recognizing wild-type versus intron mutant tau pre-mRNAs. Gel mobility shift assays with purified U1 snRNP and oligonucleotide-directed RNase H cleavage experiments support the idea that the intronic mutations destabilize a stem-loop structure that sequesters the 5' splice site downstream of exon 10 in tau pre-mRNA, leading to increases in U1 snRNP binding and in splicing between exon 10 and exon 11. Thus, mutations in nonconserved intronic regions that increase rather than decrease alternative splicing can be an important pathogenic mechanism for the development of human diseases.  相似文献   

9.
Tau protein, which binds to and stabilizes microtubules, is critical for neuronal survival and function. In the human brain, tau pre-mRNA splicing is regulated to maintain a delicate balance of exon 10-containing and exon 10-skipping isoforms. Splicing mutations affecting tau exon 10 alternative splicing lead to tauopathies, a group of neurodegenerative disorders including dementia. Molecular mechanisms regulating tau alternative splicing remain to be elucidated. In this study, we have developed an expression cloning strategy to identify splicing factors that stimulate tau exon 10 inclusion. Using this expression cloning approach, we have identified a previously unknown tau exon 10 splicing regulator, RBM4 (RNA binding motif protein 4). In cells transfected with a tau minigene, RBM4 overexpression leads to an increased inclusion of exon 10, whereas RBM4 down-regulation decreases exon 10 inclusion. The activity of RBM4 in stimulating tau exon 10 inclusion is abolished by mutations in its RNA-binding domain. A putative intronic splicing enhancer located in intron 10 of the tau gene is required for the splicing stimulatory activity of RBM4. Immunohistological analyses reveal that RBM4 is expressed in the human brain regions affected in tauopathy, including the hippocampus and frontal cortex. Our study demonstrates that RBM4 is involved in tau exon 10 alternative splicing. Our work also suggests that down-regulating tau exon 10 splicing activators, such as RBM4, may be of therapeutic potential in tauopathies involving excessive tau exon 10 inclusion.  相似文献   

10.
11.
Mutations that stimulate exon 10 inclusion into the human tau mRNA cause frontotemporal dementia with parkinsonism, associated with chromosome 17 (FTDP-17), and other tauopathies. This suggests that the ratio of exon 10 inclusion to exclusion in adult brain is one of the factors to determine biological functions of the tau protein. To investigate the underlying splicing mechanism and identify potential therapeutic targets for tauopathies, we generated a series of mini-gene constructs with intron deletions from the full length of tau exons 9-11 mini-gene construct. RT-PCR results demonstrate that there is a minimum distance requirement between exon 10 and 11 for correct splicing of the exon 10. In addition, SRp20, a member of serine-arginine (SR) protein family of splicing factors was found to facilitate exclusion of exon 10 in a dosage-dependent manner. Significantly, SRp20 also induced exon 10 skipping from pre-mRNAs containing mutations identified in FTDP-17 patients. Based on those results, we generated a cell-based system to measure inclusion to exclusion of exon 10 in the tau mRNA using the luciferase reporter. The firefly luciferase was fused into exon 11 in frame, and a stop code was also created in exon 10. Inclusion of exon 10 prevents luciferase expression, whereas exclusion of exon 10 generates luciferase activity. To minimize baseline luciferase expression, our reporter construct also contains a FTDP-17 mutation that increases exon 10 inclusion. We demonstrate that the splicing pattern of our reporter construct mimics that of endogenous tau gene. Co-transfection of SRp20 and SRp55, two SR proteins that promote exon 10 exclusion, increases production of luciferase. We conclude that this cell-based system can be used to identify biological substances that modulate exon 10 splicing.  相似文献   

12.
Alternative splicing plays an important role in the control of apoptosis. A number of genes related to apoptosis undergo alternative splicing. Among them, the apoptotic regulator Bcl-x produces two major isoforms, Bcl-xL and Bcl-xS, through the alternative splicing of exon 2 in its pre-mRNA. These isoforms have antagonistic function in apoptotic pathway; Bcl-xL is pro-apoptotic, while Bcl-xS is anti-apoptotic. The balanced ratio of two isoforms is important for cell survival. However, regulatory mechanisms of Bcl-x splicing remain poorly understood. Using a mini-gene system, we have found that a 105 nt exonic region (E3b) located within exon 3 affects exon 2 splicing in the Bcl-x gene. Further deletion and mutagenesis studies demonstrate that this 105 nt sequence contains various functional elements which promote skipping of exon 2b. One of these elements forms a stem-loop structure that stimulates skipping of exon 2b. Furthermore our results prove that the stem-loop structure functions as an enhancer in general pre-mRNA splicing. We conclude that we have identified a cis-regulatory element in exon 3 that affects splicing of exon 2 in the Bcl-x gene. This element could be potentially targeted to alter the ratio of Bcl-xL and Bcl-xS for treatment of tumors through an apoptotic pathway.  相似文献   

13.
Genes in Caenorhabditis elegans operons are transcribed as polycistronic pre-mRNAs in which downstream gene products are trans spliced to a specialized spliced leader, SL2. SL2 is donated by a 110-nucleotide RNA, SL2 RNA, present in the cell as an Sm-bound snRNP. SL2 RNA can be conceptually folded into a phylogenetically conserved three-stem-loop secondary structure. Here we report an in vivo mutational analysis of the SL2 RNA. Some sequences can be changed without consequence, while other changes result in a substantial loss of trans splicing. Interestingly, the spliced leader itself can be dramatically altered, such that the first stem-loop cannot form, with only a relatively small loss in trans-splicing efficiency. However, the primary sequence of stem II is crucial for SL2 trans splicing. Similarly, the conserved primary sequence of the third stem-loop plays a key role in trans splicing. While mutations in stem-loop III allow snRNP formation, a single nucleotide substitution in the loop prevents trans splicing. In contrast, the analogous region of SL1 RNA is not highly conserved, and its mutation does not abrogate function. Thus, stem-loop III appears to confer a specific function to SL2 RNA. Finally, an upstream sequence, previously predicted to be a proximal sequence element, is shown to be required for SL2 RNA expression.  相似文献   

14.
Gu J  Shi J  Wu S  Jin N  Qian W  Zhou J  Iqbal IG  Iqbal K  Gong CX  Liu F 《FEBS letters》2012,586(16):2239-2244
Alternative splicing of tau exon 10 generates tau isoforms with three or four microtubule-binding repeats, named 3R- or 4R-tau. Normal adult human brain expresses equal levels of them. Imbalance of 3R-tau and 4R-tau associates with several tauopathies. Splicing factor 9G8 suppresses tau exon 10 inclusion and its function is regulated by phosphorylation. Here, we found that cyclic AMP-dependent protein kinase (PKA) phosphorylated 9G8. The catalytic subunits α and β of PKA interacted with 9G8, and activation of PKA enhanced the interaction. Up-regulation of PKA activity prevented 9G8 from inhibition of tau exon 10 inclusion. These findings provide novel insights into the regulation of tau exon 10 splicing and further our understanding of neurodegeneration associated with dysregulation of tau exon 10 splicing.  相似文献   

15.
Alternative splicing of tau exon 10 generates tau with three or four microtubule-binding repeats (3R-tau or 4R-tau). The ratio of 3R-tau to 4R-tau is approximately 1:1 in the adult normal human brain. Disturbances in the ratio result in neurodegenerative tauopathies. Splicing factor SC35 acts on a SC35-like element located at the 5′ end of tau exon 10 and promotes tau exon 10 inclusion. Here, we report that protein kinase (PKA) was able to interact and phosphorylate SC35. Activation or overexpression of PKA catalytic subunits promoted SC35-mediated tau exon 10 inclusion. Four PKA catalytic subunits, α1, α2, β1, and β2, all enhanced SC35-promoted tau exon 10 inclusion. SC35 has four putative PKA phosphorylation sites, Ser121, Ser128, Ser130, and Ser171. Pseudophosphorylation (SC354E) and blockage (SC354A) of phosphorylation of SC35 at these four sites increased and decreased, respectively, SC35’s ability to promote tau exon 10 inclusion. Moreover, PKA catalytic subunits no longer further enhanced tau exon 10 inclusion when these four were mutated to either alanine or glutamate. These results suggest that PKA interacts with and phosphorylates SC35 and enhances SC35-promoted tau exon 10 inclusion. In Alzheimer’s brain, down-regulation of the PKA pathway could lead to dysregulation of tau exon 10, contributing to tau pathogenesis.  相似文献   

16.
Abnormal alternative splicing of tau exon 10 results in imbalance of 3R-tau and 4R-tau expression, which is sufficient to cause neurofibrillary degeneration. Splicing factor SC35, a member of the superfamily of the serine/arginine-rich (SR) proteins, promotes tau exon 10 inclusion. The molecular mechanism by which SC35 participates in tau exon 10 splicing remains elusive. In the present study, we found that tau pre-mRNA was coprecipitated by SC35 tagged with HA. Mutation of the SC35-like exonic splicing enhancer located at exon 10 of tau affected both the binding of SC35 to tau pre-mRNA and promotion of tau exon 10 inclusion, suggesting that SC35 acts on the SC35-like exonic splicing enhancer to promote tau exon 10 inclusion. Dyrk1A (dual-specificity tyrosine-phosphorylated and regulated kinase 1A) phosphorylated SC35 in vitro and interacted with it in cultured cells. Overexpression of Dyrk1A suppressed SC35's ability to promote tau exon 10 inclusion. Downregulation of Dyrk1A promoted 4R-tau expression. Therefore, upregulation of Dyrk1A in Down syndrome brain or Alzheimer's brain may cause dysregulation of tau exon 10 splicing through SC35, and probably together with other splicing factors, leading to the imbalance in 3R-tau and 4R-tau expression, which may initiate or accelerate tau pathology and cause neurofibrillary degeneration in the diseases.  相似文献   

17.
Alternative splicing is a hallmark of glycoprotein hormone receptor gene regulation, but its molecular mechanism is unknown. The LH receptor (LHR) gene possesses 11 exons, but exon 10 is constitutively skipped in the New World monkey lineage (LHR type 2), whereas it is constitutively spliced in the human (LHR type 1). This study identifies the regulatory elements of exon 10 usage. Sequencing of genomic marmoset DNA revealed that the cryptic LHR exon 10 is highly homologous to exon 10 from other species and displays intact splice sites. Functional studies using a minigene approach excluded the contribution of intronic, marmoset-specific long interspersed nucleotide-1 elements to exon 10 skipping. Sequencing of the genomic regions surrounding exon 10 from several primate lineages, sequence comparisons including the human and mouse LHR gene, revealed the presence of unique nucleotides at 3'-intronic position -19 and -10 and at position +26 within exon 10 of the marmoset LHR. Exon trap experiments and in vitro mutagenesis of these nucleotides resulted in the identification of a composite regulatory element of splicing consisting of cis-acting elements represented by two polypyrimidine tracts and a trans-acting element within exon 10, which affect the secondary RNA structure. Changes within this complex resulted either in constitutive exon inclusion, constitutive skipping, or alternative splicing of exon 10. This work delineates the molecular pathway leading to intronization of exon 10 in the LHR type 2 and reveals, for the first time, the essential function of regulatory and structural elements involved in glycoprotein hormone receptor splicing.  相似文献   

18.
U4atac snRNA forms a base-paired complex with U6atac snRNA. Both snRNAs are required for the splicing of the minor U12-dependent class of eukaryotic nuclear introns. We have developed a new genetic suppression assay to investigate the in vivo roles of several regions of U4atac snRNA in U12-dependent splicing. We show that both the stem I and stem II regions, which have been proposed to pair with U6atac snRNA, are required for in vivo splicing. Splicing activity also requires U4atac sequences in the 5' stem-loop element that bind a 15.5 kDa protein that also binds to a similar region of U4 snRNA. In contrast, mutations in the region immediately following the stem I interaction region, as well as a deletion of the distal portion of the 3' stem-loop element, were active for splicing. Complete deletion of the 3' stem-loop element abolished in vivo splicing function as did a mutation of the Sm protein binding site. These results show that the in vivo sequence requirements of U4atac snRNA are similar to those described previously for U4 snRNA using in vitro assays and provide experimental support for models of the U4atac/U6atac snRNA interaction.  相似文献   

19.
20.
Hyperphosphorylation and deposition of tau into neurofibrillary tangles is a hallmark of Alzheimer disease (AD). Alternative splicing of tau exon 10 generates tau isoforms containing three or four microtubule binding repeats (3R-tau and 4R-tau), which are equally expressed in adult human brain. Dysregulation of exon 10 causes neurofibrillary degeneration. Here, we report that cyclic AMP-dependent protein kinase, PKA, phosphorylates splicing factor SRSF1, modulates its binding to tau pre-mRNA, and promotes tau exon 10 inclusion in cultured cells and in vivo in rat brain. PKA-Cα, but not PKA-Cβ, interacts with SRSF1 and elevates SRSF1-mediated tau exon 10 inclusion. In AD brain, the decreased level of PKA-Cα correlates with the increased level of 3R-tau. These findings suggest that a down-regulation of PKA dysregulates the alternative splicing of tau exon 10 and contributes to neurofibrillary degeneration in AD by causing an imbalance in 3R-tau and 4R-tau expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号