首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scavenger receptor BI (SR-BI) facilitates the efflux of cellular cholesterol to plasma high density lipoprotein (HDL). Recently, the ATP-binding cassette transporter 1 (ABC1) was identified as a key mediator of cholesterol efflux to apolipoproteins and HDL. The goal of the present study was to determine a possible interaction between the SR-BI and ABC1 cholesterol efflux pathways in macrophages. Free cholesterol efflux to HDL was increased ( approximately 2.2-fold) in SR-BI transfected RAW macrophages in association with increased SR-BI protein levels. Treatment of macrophages with 8-bromo-cAMP (cAMP) resulted in a 4.1-fold increase in ABC1 mRNA level and also increased cholesterol efflux to HDL (2.2-fold) and apoA-I (5.5-fold). However, in SR-BI transfected RAW cells, cAMP treatment produced a much smaller increment in cholesterol efflux to HDL (1.1-fold) or apoA-I (3.3-fold) compared with control cells. In macrophages loaded with cholesterol by acetyl-LDL treatment, SR-BI overexpression did not increase cholesterol efflux to HDL but did inhibit cAMP-mediated cholesterol efflux to apoA-I or HDL. SR-BI neutralizing antibody led to a dose- and time-dependent increase of cAMP-mediated cholesterol efflux in both SR-BI transfected and control cells, indicating that SR-BI inhibits ABC1-mediated cholesterol efflux even at low SR-BI expression level. Transfection of a murine ABC1 cDNA into 293 cells led to a 2.3-fold increase of cholesterol efflux to apoA-I, whereas co-transfection of SR-BI with ABC1 blocked this increase in cholesterol efflux. SR-BI and ABC1 appear to have distinct and competing roles in mediating cholesterol flux between HDL and macrophages. In nonpolarized cells, SR-BI promotes the reuptake of cholesterol actively effluxed by ABC1, creating a futile cycle.  相似文献   

2.
To examine the role that lipoprotein charge plays in cholesterol metabolism in vivo, we characterized the effects of an intravenous injection of 40 micromol of an uncharged phospholipid (phosphatidylcholine, PC) or an anionic phospholipid (phosphatidylinositol, PI) into fasted rabbits. PC injection had a negligible effect on lipoprotein charge and composition, similar to that observed in a saline-injected animal. In contrast, PI injection caused a significant increase in the net negative surface charge of all lipoproteins after only 10 min, followed by a gradual return to normal by 24 h. Lipoprotein compositional analysis showed that PI caused a significant increase of cholesteryl ester (CE) and cholesterol (FC) in the VLDL pool by 3 h, with no changes in VLDL-triglyceride content. While the bulk of the plasma CE was located in the HDL pool in the PC-injected animals, in the PI animals, VLDL became the major CE storage compartment. No major changes in the levels or composition of HDL or LDL were evident over the 24-h turnover period. Co-injection of [(3)H]FC revealed a 30-fold greater rate of clearance of the labeled cholesterol from the PI-injected rabbit plasma. In addition, the rate of cholesterol esterification by lecithin:cholesterol acyltransferase was almost completely inhibited in the PI animals. In summary, a bolus injection of PI into rabbits appears to enhance the mobilization of cellular sterol and promote a rapid clearance of both FC and CE from the plasma compartment. The data show that lipoprotein charge can affect cholesterol transport and that this process can be selectively manipulated.  相似文献   

3.
Scavenger receptor class B, type I (SR-BI) shows a variety of effects on cellular cholesterol metabolism, including increased selective uptake of high density lipoprotein (HDL) cholesteryl ester, stimulation of free cholesterol (FC) efflux from cells to HDL and phospholipid vesicles, and changes in the distribution of plasma membrane FC as evidenced by increased susceptibility to exogenous cholesterol oxidase. Previous studies showed that these multiple effects require the extracellular domain of SR-BI, but not the transmembrane and cytoplasmic domains. To test whether 1) the extracellular domain of SR-BI mediates multiple activities by virtue of discrete functional subdomains, or 2) the multiple activities are, in fact, secondary to and driven by changes in cholesterol flux, the extracellular domain of SR-BI was subjected to insertional mutagenesis by strategically placing an epitope tag into nine sites. These experiments identified four classes of mutants with disruptions at different levels of function. Class 4 mutants showed a clear separation of function between HDL binding, HDL cholesteryl ester uptake, and HDL-dependent FC efflux on one hand and FC efflux to small unilamellar vesicles and an increased cholesterol oxidase-sensitive pool of membrane FC on the other. Selective disruption of the latter two functions provides evidence for multiple functional subdomains in the extracellular receptor domain. Furthermore, these findings uncover a difference in the SR-BI-mediated efflux pathways for FC transfer to HDL acceptors versus phospholipid vesicles. The loss of the cholesterol oxidase-sensitive FC pool and FC efflux to small unilamellar vesicle acceptors in Class 4 mutants suggests that these activities may be mechanistically related.  相似文献   

4.
Cellular cholesterol efflux.   总被引:5,自引:0,他引:5  
Efflux of free cholesterol (FC) continues even when cellular FC mass is unchanged. This reflects a recirculation of preformed FC between cells and extracellular fluids which has multiple functions in cell biology including receptor recycling and signaling as well as cellular FC homeostasis. Total FC efflux is heterogeneous. Simple diffusion to mature high density lipoprotein (HDL), mainly via albumin as intermediate, initiates FC net transport driven by plasma lecithin:cholesterol acyltransferase activity. A second major efflux component reflects protein-facilitated transport from cell surface domains (caveolae, rafts) driven by FC binding to lipid-poor, pre-beta-migrating HDL (pre-beta-HDL). Facilitated efflux from caveolae, unlike simple diffusion, is highly regulated. Neither ABC1 (the protein defective in Tangier disease) nor other ATP-dependent transporters now appear likely to contribute directly to FC efflux. Their role is limited to the initial formation of a particle precursor to circulating pre-beta-HDL, which recycles without further lipid input from ATP-dependent transporter proteins. Lipid-free apolipoprotein A-I, previously considered a surrogate for pre-beta-HDL, has a reactivity much lower than that of native lipoprotein FC acceptors.  相似文献   

5.
Previous studies have shown that scavenger receptor BI (SR-BI) stimulates the bidirectional flux of free cholesterol (FC) between HDL and SR-BI-expressing cells. A major component of the enhanced FC flux appears to occur independently of HDL binding to SR-BI and may be due to changes in membrane lipid domains resulting from SR-BI expression (1). In the present study, the impact of SR-BI on cellular cholesterol metabolism was determined by examining SR-BI-mediated changes in cellular cholesterol mass, the esterification of HDL-derived FC, and changes in membrane lipid pools. Growth of SR-BI-expressing cells in medium containing HDL led to increased cellular cholesterol mass, most of which accumulated as ester. The esterification of HDL-derived FC was enhanced by SR-BI-expression to a far greater extent than the SR-BI mediated increase in FC uptake, suggesting an SR-BI-mediated effect on cholesterol utilization in the cell. This observation was tested by comparing FC esterification rates in SR-BI positive and negative cells when equivalent amounts of extracellular FC were taken up via cyclodextrins or apolipoprotein AI/phospholipid disks, neither of which contained cholesteryl ester. Under these conditions, SR-BI did not preferentially stimulate cholesterol esterification. These results indicate that the enhanced esterification of HDL-derived FC in SR-BI-expressing cells is due to the expanded pool of cellular FC and not to a specific effect of SR-BI on cholesterol utilization. Two approaches were used to test the effects of SR-BI expression on membrane lipid organization. In the first, the sensitivity of cellular FC to exogenous cholesterol oxidase was tested under conditions in which there is a preferential oxidation of caveolar cholesterol. SR-BI-expression was found to greatly increase the fraction of cellular cholesterol available to the oxidase as compared to either vector-transfected cells or cells expressing the related class B scavenger receptor CD36. These results suggest that SR-BI expression alters the distribution of membrane-free cholesterol to a caveolar fraction or alters the accessibility of this membrane fraction to exogenous cholesterol oxidase. In the second approach, the efflux of cellular FC to high concentrations of cyclodextrins was monitored under conditions where desorption of FC from the plasma membrane is rate limiting for efflux. SR-BI-expressing cells showed a shift in the distribution of FC between two kinetic pools with more FC in the fast pool and less in the slow pool. These data support a model in which SR-BI expression leads to a redistribution of cholesterol to membrane domains that serve to facilitate the flux of FC between cells and lipoproteins.  相似文献   

6.
Scavenger receptor BI (SR-BI) mediates the selective uptake of high-density lipoprotein (HDL) cholesteryl ester (CE), a process by which HDL CE is taken into the cell without degradation of the HDL particle. In addition, SR-BI stimulates the bi-directional flux of free cholesterol (FC) between cells and lipoproteins, an activity that may be responsible for net cholesterol efflux from peripheral cells as well as the rapid hepatic clearance of FC from plasma HDL. SR-BI also increases cellular cholesterol mass and alters cholesterol distribution in plasma membrane domains as judged by the enhanced sensitivity of membrane cholesterol to extracellular cholesterol oxidase. In contrast, CD36, a closely related class B scavenger receptor, has none of these activities despite binding HDL with high affinity. In the present study, analyses of chimeric SR-BI/CD36 receptors and domain-deleted SR-BI have been used to test the various domains of SR-BI for functional activities related to HDL CE selective uptake, bi-directional FC flux, and the alteration of membrane cholesterol mass and distribution. The results show that each of these activities localizes to the extracellular domain of SR-BI. The N-terminal cytoplasmic tail and transmembrane domains appear to play no role in these activities other than targeting the receptor to the plasma membrane. The C-terminal tail of SR-BI is dispensable for activity as well for targeting to the plasma membrane. Thus, multiple distinct functional activities are localized to the SR-BI extracellular domain.  相似文献   

7.
Scavenger receptor (SR)-BI catalyzes the selective uptake of cholesteryl ester (CE) from high density lipoprotein (HDL) by a two-step process that involves the following: 1) binding of HDL to the receptor and 2) diffusion of the CE molecules into the cell plasma membrane. We examined the effects of the size of discoidal HDL particles containing wild-type (WT) apoA-I on selective uptake of CE and efflux of cellular free (unesterified) cholesterol (FC) from COS-7 cells expressing SR-BI to determine the following: 1) the influence of apoA-I conformation on the lipid transfer process, and 2) the contribution of receptor binding-dependent processes to the overall efflux of cellular FC. Large (10 nm diameter) reconstituted HDL bound to SR-BI better (B(max) approximately 420 versus 220 ng of apoA-I/mg cell protein), delivered more CE, and promoted more FC efflux than small ( approximately 8 nm) particles. When normalized to the number of reconstituted HDL particles bound to the receptor, the efficiencies of either CE uptake or FC efflux with these particles were the same indicating that altering the conformation of WT apoA-I modulates binding to the receptor (step 1) but does not change the efficiency of the subsequent lipid transfer (step 2); this implies that binding induces an optimal alignment of the WT apoA-I.SR-BI complex so that the efficiency of lipid transfer is always the same. FC efflux to HDL is affected both by binding of HDL to SR-BI and by the ability of the receptor to perturb the packing of FC molecules in the cell plasma membrane.  相似文献   

8.
High-density lipoproteins are the putative vehicles for cholesterol removal from monocyte-derived macrophages, which are an important cell type in all stages of atherosclerosis. The role of HDL(2), an HDL subclass that accounts for most variation in plasma HDL-cholesterol concentration, in cholesterol metabolism in monocyte-derived macrophages is not known. In this study, the dose-dependent effects of HDL(2) on cellular cholesterol mass, efflux, and esterification, and on cellular cholesteryl ester (CE) hydrolysis using the mouse macrophage P388D1 cell line was investigated. HDL(2) at low concentrations (40 microg protein/ml) decreased CE content without affecting cellular free cholesterol content (FC), CE hydrolysis, or cholesterol biosynthesis. In addition, HDL(2) at low concentrations reduced cellular acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity and increased FC efflux from macrophages. Thus, HDL(2) has two potential roles in reverse cholesterol transport. In one, HDL(2) is an acceptor of macrophage FC. In the other, more novel role, HDL(2) increases the availability of macrophage FC through the inhibition of ACAT. Elucidation of the mechanism by which HDL(2) inhibits ACAT could identify new therapeutic targets that enhance the transfer of cholesterol from macrophages to the liver.  相似文献   

9.
The bidirectional surface transfer of free cholesterol (FC) between Fu5AH rat hepatoma cells and human high density lipoprotein (HDL) was studied. Cells and HDL were prelabeled with [4-14C]FC and [7-3H]FC, respectively. Influx and efflux of FC were measured simultaneously from the appearance of 3H counts in cells and 14C counts in medium. Results were analyzed by a computerized procedure which fitted sets of kinetic data to a model assuming that cell and HDL FC populations each formed a single homogeneous pool and that together the pools formed a closed system. This analysis yielded values for the first-order rate constants of FC influx and efflux (ki and ke), from which influx and efflux of FC mass (Fi and Fe) could be calculated. With normal HDL, the uptake and release of FC tracers conformed well to the above-described model; Fi and Fe were approximately equal, suggesting an exchange of FC between cells and HDL. HDL was depleted of phospholipid (PL) by treatment with either phospholipase A2 or heparin-releasable rat hepatic lipase, followed by incubation with bovine serum albumin. PL depletion of HDL had little or no effect on ki, but reduced ke, indicating that PL-deficient HDL is a relatively poor acceptor of cell cholesterol. The reduction in ke resulted in initial Fi greater than Fe and, thus, in net uptake of FC by the cells. This result explained previous results demonstrating net uptake of FC from PL-depleted HDL. In the presence of an inhibitor of acyl coenzyme A:cholesterol acyltransferase, the steady state distribution of FC mass between cells and HDL was accurately predicted by the ratio of rate constants for FC flux. This result provided additional validation for describing FC flux in terms of first-order rate constants and homogeneous cell and HDL FC pools.  相似文献   

10.
The ATP-binding cassette transporter A1 (ABCA1) mediates the efflux of cellular unesterified cholesterol and phospholipid to lipid-poor apolipoprotein A-I. Chymase, a protease secreted by mast cells, selectively cleaves pre-beta-migrating particles from high density lipoprotein (HDL)(3) and reduces the efflux of cholesterol from macrophages. To evaluate whether this effect is the result of reduction of ABCA1-dependent or -independent pathways of cholesterol efflux, in this study we examined the efflux of cholesterol to preparations of chymase-treated HDL(3) in two types of cell: 1) in J774 murine macrophages endogenously expressing low levels of scavenger receptor class B, type I (SR-BI), and high levels of ABCA1 upon treatment with cAMP; and 2) in Fu5AH rat hepatoma cells endogenously expressing high levels of the SR-BI and low levels of ABCA1. Treatment of HDL(3) with the human chymase resulted in rapid depletion of pre-beta-HDL and a concomitant decrease in the efflux of cholesterol and phospholipid (2-fold and 3-fold, respectively) from the ABCA1-expressing J774 cells. In contrast, efflux of free cholesterol from Fu5AH to chymase-treated and to untreated HDL(3) was similar. Incubation of HDL(3) with phospholipid transfer protein led to an increase in pre-beta-HDL contents as well as in ABCA1-mediated cholesterol efflux. A decreased cholesterol efflux to untreated HDL(3) but not to chymase-treated HDL(3) was observed in ABCA1-expressing J774 with probucol, an inhibitor of cholesterol efflux to lipid-poor apoA-I. Similar results were obtained using brefeldin and gliburide, two inhibitors of ABCA1-mediated efflux. These results indicate that chymase treatment of HDL(3) specifically impairs the ABCA1-dependent pathway without influencing either aqueous or SR-BI-facilitated diffusion and that this effect is caused by depletion of lipid-poor pre-beta-migrating particles in HDL(3). Our results are compatible with the view that HDL(3) promotes ABCA1-mediated lipid efflux entirely through its lipid-poor fraction with pre-beta mobility.  相似文献   

11.
In the present study apolipoprotein-mediated free cholesterol (FC) efflux was studied in J774 macrophages having normal cholesterol levels using an experimental design in which efflux occurs in the absence of contributions from cholesteryl ester hydrolysis. The results show that cAMP induces both saturable apolipoprotein (apo) A-I-mediated FC efflux and saturable apo A-I cell-surface binding, suggesting a link between these processes. However, the EC50 for efflux was 5-7-fold lower than the Kd for binding in both control and cAMP-stimulated cells. This dissociation between apo A-I binding and FC efflux was also seen in cells treated for 1 h with probucol which completely blocked FC efflux without affecting apo A-I specific binding. Thus, cAMP-stimulated FC efflux involves probucol-sensitive processes distinct from apo A-I binding to its putative cell surface receptor. FC efflux was also dramatically stimulated in elicited mouse peritoneal macrophages, suggesting that cAMP-regulated apolipoprotein-mediated FC efflux may be important in cholesterol homeostasis in normal macrophages. The presence of a cAMP-inducible cell protein that interacts with lipid-free apo A-I was investigated by chemical cross-linking of 125I-apo A-I with J774 cell surface proteins which revealed a Mr 200 kDa component when the cells were treated with cAMP.  相似文献   

12.
In addition to its effect on high density lipoprotein (HDL) cholesteryl ester (CE) uptake, scavenger receptor BI (SR-BI) was recently reported to stimulate free cholesterol (FC) flux from Chinese hamster ovary (CHO) cells stably expressing mouse SR-BI, a novel function of SR-BI that may play a role in cholesterol removal from the vessel wall where the receptor can be found. It is possible that SR-BI stimulates flux simply by tethering acceptor HDL particles in close apposition to the cell surface thereby facilitating the movement of cholesterol between the plasma membrane and HDL. To test this, we used transiently transfected cells and compared the closely related class B scavenger receptors mouse SR-BI and rat CD36 for their ability to stimulate cholesterol efflux as both receptors bind HDL with high affinity. The results showed that, although acceptor binding to SR-BI may contribute to efflux to a modest extent, the major stimulation of FC efflux occurs independently of acceptor binding to cell surface receptors. Instead our data indicate that SR-BI mediates alterations to membrane FC domains which provoke enhanced bidirectional FC flux between cells and extracellular acceptors.  相似文献   

13.
Endothelial lipase (EL) changes structural and functional properties of high-density lipoprotein (HDL). HDL is a relevant modulator of endothelial nitric oxide synthase (eNOS) activity, but the effect of EL on HDL induced eNOS-activation has not yet been investigated. Here, we examined the impact of EL-modified HDL (EL-HDL) on eNOS activity, subcellular trafficking, and eNOS- dependent vasorelaxation. EL-HDL and empty virus (EV)-HDL as control were isolated from human serum incubated with EL-overexpressing or EV infected HepG2 cells. EL-HDL exhibited higher capacity to induce eNOS phosphorylation at Ser1177 and eNOS activity in EA.hy 926 cells, as well as eNOS-dependent vasorelaxation of mouse aortic rings compared to control HDL. As revealed by confocal and structured illumination-microscopy EL-HDL-driven induction of eNOS was accompanied by an increased eNOS-GFP targeting to the plasma membrane and a lower eNOS-GFP colocalization with Golgi and mitochondria. Widefield microscopy of filipin stained cells revealed that EL-HDL lowered cellular free cholesterol (FC) and as found by thin-layer chromatography increased cellular cholesterol ester (CE) content. Additionally, cholesterol efflux capacity, acyl-coenzyme A: cholesterol acyltransferase activity, and HDL particle uptake were comparable between EL-HDL and control HDL. In conclusion, EL increases eNOS activating capacity of HDL, a phenomenon accompanied by an enrichment of the plasma membrane eNOS pool, a decreased cell membrane FC and increased cellular CE content.  相似文献   

14.
In mammalian cells scavenger receptor class B, type I (SR-BI), mediates the selective uptake of high density lipoprotein (HDL) cholesteryl ester into hepatic and steroidogenic cells. In addition, SR-BI has a variety of effects on plasma membrane properties including stimulation of the bidirectional flux of free cholesterol (FC) between cells and HDL and changes in the organization of plasma membrane FC as indicated by increased susceptibility to exogenous cholesterol oxidase. Recent studies in SR-BI-deficient mice and in SR-BI-expressing Sf9 insect cells showed that SR-BI has significant effects on plasma membrane ultrastructure. The present study was designed to test the range of SR-BI effects in Sf9 insect cells that typically have very low cholesterol content and a different phospholipid profile compared with mammalian cells. The results showed that, as in mammalian cells, SR-BI expression increased HDL cholesteryl ester selective uptake, cellular cholesterol mass, FC efflux to HDL, and the sensitivity of membrane FC to cholesterol oxidase. These activities were diminished or absent upon expression of the related scavenger receptor CD36. Thus, SR-BI has fundamental effects on cholesterol flux and membrane properties that occur in cells of evolutionarily divergent origins. Profiling of phospholipid species by electrospray ionization mass spectrometry showed that scavenger receptor expression led to the accumulation of phosphatidylcholine species with longer mono- or polyunsaturated acyl chains. These changes would be expected to decrease phosphatidylcholine/cholesterol interactions and thereby enhance cholesterol desorption from the membrane. Scavenger receptor-mediated changes in membrane phosphatidylcholine may contribute to the increased flux of cholesterol and other lipids elicited by these receptors.  相似文献   

15.
Lipid and cholesterol metabolism in the postprandial phase is associated with both quantitative and qualitative remodeling of HDL particle subspecies that may influence their anti-atherogenic functions in the reverse cholesterol transport pathway. We evaluated the capacity of whole plasma or isolated HDL particles to mediate cellular free cholesterol (FC) efflux, cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester (CE) transfer, and selective hepatic CE uptake during the postprandial phase in subjects displaying type IIB hyperlipidemia (n = 16). Postprandial, large HDL2 displayed an enhanced capacity to mediate FC efflux via both scavenger receptor class B type I (SR-BI)-dependent (+12%; P < 0.02) and ATP binding cassette transporter G1 (ABCG1)-dependent (+31%; P < 0.008) pathways in in vitro cell systems. In addition, the capacity of whole postprandial plasma (4 h and 8 h postprandially) to mediate cellular FC efflux via the ABCA1-dependent pathway was significantly increased (+19%; P < 0.0003). Concomitantly, postprandial lipemia was associated with elevated endogenous CE transfer rates from HDL2 to apoB lipoproteins and with attenuated capacity (−17%; P < 0.02) of total HDL to deliver CE to hepatic cells. Postprandial lipemia enhanced SR-BI and ABCG1-dependent efflux to large HDL2 particles. However, postprandial lipemia is equally associated with deleterious features by enhancing formation of CE-enriched, triglyceride-rich lipoprotein particles through the action of CETP and by reducing the direct return of HDL-CE to the liver.  相似文献   

16.
Free cholesterol (FC) has been reported to efflux from cells through caveolae, which are 50-100 nm plasma membrane pits. The 22 kDa protein caveolin-1 is concentrated in caveolae and is required for their formation. The HDL scavenger receptor BI (SR-BI), which stimulates both FC efflux and selective uptake of HDL-derived cholesteryl ester (CE), has been reported to be concentrated in caveolae, suggesting that this localization facilitates flux of FC and CE across the membrane. However, we found that overexpression of caveolin-1 in Fischer rat thyroid (FRT) cells, which lack caveolin-1 and caveolae, or HEK 293 cells, which normally express very low levels of caveolin-1, did not affect FC efflux to HDL or liposomes. Transient expression of SR-B1 did not affect this result. Similarly, caveolin-1 expression did not affect selective uptake of CE from labeled HDL particles in FRT or HEK 293 cells transfected with SR-BI. We conclude that basal and SR-BI-stimulated FC efflux to HDL and liposomes and SR-BI-mediated selective uptake of HDL CE are not affected by caveolin-1 expression in HEK 293 or FRT cells.  相似文献   

17.
Scavenger receptor class B type I (SR-BI) mediates selective uptake of cholesteryl esters from HDL as well as efflux of cellular free cholesterol to HDL. It is unclear whether the receptor is involved in intestinal cholesterol absorption. We addressed this issue by studying [3H]cholesterol flux in differentiated CaCo-2 cells incubated at their apical side with mixed taurocholate/phosphatidylcholine/cholesterol micelles. Biotinylation and HDL binding experiments showed predominant apical expression of endogenous and overexpressed SR-BI. Mixed micellar cholesterol saturation affected the magnitude and direction of cholesterol flux with significant net uptake only from supersaturated micelles and net efflux from unsaturated micelles. Incubation with micelles that depleted cellular cholesterol resulted in a decrease of SR-BI protein, whereas incubation with cholesterol-loading micelles resulted in a significant increase of SR-BI protein. Apical cholesterol uptake by CaCo-2 cells was increased in the presence of a SR-BI-blocking antibody and by partial inhibition of SR-BI expression with small inhibitory RNA. Adenovirus-mediated overexpression of apical SR-BI did not affect cholesterol uptake but stimulated apical cholesterol efflux, even to supersaturated mixed micelles. Partial inhibition of SR-BI with small inhibitory RNA reduced apical cholesterol efflux. Our data argue against a direct role for SR-BI in micellar cholesterol uptake. However, SR-BI might be involved in cholesterol absorption by facilitating cholesterol efflux to micelles.  相似文献   

18.
ApoE synthesis and secretion, as a function of cellular cholesterol content and cholesterol efflux, was studied in thioglycolate-elicited mouse peritoneal macrophages. As expected, loading elicited macrophages with cholesterol induced a 5-fold increase in apoE secretion and a 2.5-fold increase in cellular apoE content over a 5-h period. Treatment of cholesterol-loaded cells with HDL3 further increased apoE secretion 1.7-fold and decreased cellular cholesterol by 20%. Treatment of cholesterol-loaded cells with HDL3 and SAH 58.035 (an ACAT inhibitor) increased apoE secretion 2.4-fold and decreased cellular cholesterol content by 35%. Treatment of the cells with the ACAT inhibitor alone suppressed apoE secretion by 40% but did not change cellular cholesterol content. Northern blot analysis of RNA indicated that cholesterol loading increased apoE mRNA 2-fold. ApoE mRNA levels were not further affected by treatment with HDL3 and/or the ACAT inhibitor. Cholesterol-loaded cells, in the absence of HDL3, secreted apoE into the media in two fractions as determined by column chromatography: a large molecular weight complex, (larger than HDL), and an essentially lipid-free protein. In the presence of HDL3, the cells secreted apoE in three fractions: a large molecular weight complex, an essentially lipid-free protein, and over 50% of apoE associated with HDL. In the process, HDL3 became larger and eluted in a position identical to that of HDL2. A small amount of HDL3-derived material was also transformed to an LDL-size particle. Incubation of HDL3 in the absence of cholesterol-loaded cells did not produce these changes. It is concluded that cholesterol-loading increases apoE mRNA content and apoE synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
  • 1.1. Human endothelial cells (EA.hy 926 line) were loaded with cholesterol, using cationized LDL, and the effect of lecithin:cholesterol acyltransferase (LCAT) on cellular cholesterol efflux mediated by high density lipoproteins (HDL) was measured subsequently.
  • 2.2. In plasma, lecithin:cholesterol acyltransferase (LCAT) converts unesterified HDL cholesterol into cholesteryl esters, thereby maintaining the low UC/PL ratio of HDL. It was tested if further decrease in UC/PL ratio of HDL by LCAT influences cellular cholesterol efflux in vitro.
  • 3.3. Efflux was measured as the decrease of cellular cholesterol after 24 hr of incubation with various concentrations of HDL in the presence and absence of LCAT. LCAT from human plasma (about 3000-fold purified) was added to the cell culture, resulting in activity levels in the culture media of 60–70% of human serum.
  • 4.4. Although LCAT had a profound effect on HDL structure (UC/TC and UC/PL ratio's decreased), the enzyme did not enhance efflux of cellular cholesterol, using a wide range of HDL concentrations (0.05–2.00 mg HDL protein/ml).
  • 5.5. The data indicate that the extremely low unesterified cholesterol content of HDL, induced by LCAT, does not enhance efflux of cholesterol from loaded EA.hy 926 cells. It is concluded that the HDL composition (as isolated from plasma by ultracentrifugation) is optimal for uptake of cellular cholesterol.
  相似文献   

20.
Serum amyloid A (SAA) is an acute phase protein whose expression is markedly up-regulated during inflammation and infection. The physiological function of SAA is unclear. In this study, we reported that SAA promotes cellular cholesterol efflux mediated by scavenger receptor B-I (SR-BI). In Chinese hamster ovary cells, SAA promoted cellular cholesterol efflux in an SR-BI-dependent manner, whereas apoA-I did not. Similarly, SAA, but not apoA-I, promoted cholesterol efflux from HepG2 cells in an SR-BI-dependent manner as shown by using the SR-BI inhibitor BLT-1. When SAA was overexpressed in HepG2 cells using adenovirus-mediated gene transfer, the endogenously expressed SAA promoted SR-BI-dependent efflux. To assess the effect of SAA on SR-BI-mediated efflux to high density lipoprotein (HDL), we compared normal HDL, acute phase HDL (AP-HDL, prepared from mice injected with lipopolysaccharide), and AdSAA-HDL (HDL prepared from mice overexpressing SAA). Both AP-HDL and AdSAA-HDL promoted 2-fold greater cholesterol efflux than normal HDL. Lipid-free SAA was shown to also stimulate ABCA1-dependent cholesterol efflux in fibroblasts, in line with an earlier report (Stonik, J. A., Remaley, A. T., Demosky, S. J., Neufeld, E. B., Bocharov, A., and Brewer, H. B. (2004) Biochem. Biophys. Res. Commun. 321, 936-941). When added to cells together, SAA and HDL exerted a synergistic effect in promoting ABCA1-dependent efflux, suggesting that SAA may remodel HDL in a manner that releases apoA-I or other efficient ABCA1 ligands from HDL. SAA also facilitated efflux by a process that was independent of SR-BI and ABCA1. We conclude that the acute phase protein SAA plays an important role in HDL cholesterol metabolism by promoting cellular cholesterol efflux through a number of different efflux pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号