首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report investigations of the morphology and molecular structure of amyloid fibrils comprised of residues 10-40 of the Alzheimer's beta-amyloid peptide (Abeta(10-40)), prepared under various solution conditions and degrees of agitation. Omission of residues 1-9 from the full-length Alzheimer's beta-amyloid peptide (Abeta(1-40)) did not prevent the peptide from forming amyloid fibrils or eliminate fibril polymorphism. These results are consistent with residues 1-9 being disordered in Abeta(1-40) fibrils, and show that fibril polymorphism is not a consequence of disorder in residues 1-9. Fibril morphology was analyzed by atomic force and electron microscopy, and secondary structure and inter-side-chain proximity were probed using solid-state NMR. Abeta(1-40) fibrils were found to be structurally compatible with Abeta(10-40): Abeta(1-40) fibril fragments were used to seed the growth of Abeta(10-40) fibrils, with propagation of fibril morphology and molecular structure. In addition, comparison of lyophilized and hydrated fibril samples revealed no effect of hydration on molecular structure, indicating that Abeta(10-40) fibrils are unlikely to contain bulk water.  相似文献   

2.
Recent studies suggest that both soluble oligomers and insoluble fibrils have toxic effects in cell cultures, raising the interest in determining the first steps of the assembly process. We have determined the aggregation mechanisms of Abeta(16-22) dimer using the activation-relaxation technique and an approximate free energy model. Consistent with the NMR solid-state analysis, the dimer is predicted to prefer an antiparallel beta sheet structure with the expected registry of intermolecular hydrogen bonds. The simulations, however, locate three other antiparallel minima with nonnative beta sheet registries and one parallel beta sheet structure, slightly destabilized with respect to the ground state. This result is significant because it can explain the observed dependency of beta sheet registry on pH conditions. We also find that assembly of Abeta(16-22) into dimers follows multiple routes, but alpha-helical intermediates are not obligatory. This indicates that destabilization of alpha-helical intermediates is unlikely to abolish oligomerization of Abeta peptides.  相似文献   

3.
Understanding the role of the L/D-stereospecificity of amino acids is important in obtaining further insight into the mechanism of the formation of amyloid fibrils. Beta(2)-microglobulin is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. A 22-residue peptide of beta(2)-microglobulin, Ser20-Lys41 (L-K3 peptide), obtained by digestion with Acromobacter protease I, formed amyloid-like fibrils in 50% (v/v) 2,2,2-trifluoroethanol and 10 mM HCl at 25 degrees C, as confirmed by thioflavin T fluorescence, circular dichroism spectra, and atomic force microscopy images. A synthetic K3 peptide composed of D-amino acids (D-K3 peptide) formed similar fibrils but with opposite chirality as indicated by circular dichroism spectra. A mixture of L-K3 and D-K3 peptides also formed fibrils, although the L- and D-amino acid composition of each fibril is unknown. To examine the possible cross-reactivity between L- and D-enantiomers, we carried out seeding experiments in which preformed seeds were extended by monomers. The results revealed that only the homologous extensions proceed smoothly, i.e., the growth of L-seeds by L-monomers or D-seeds by D-monomers. The results suggest that, while the fibrils derived from L- and D-peptides form in a similar manner but with opposite stereochemistry, a cross-reaction between them is prevented because the geometry of the mixed sheet cannot satisfy dominant factors for beta-sheet stabilization.  相似文献   

4.
Hasegawa K  Yamaguchi I  Omata S  Gejyo F  Naiki H 《Biochemistry》1999,38(47):15514-15521
We analyzed the interaction of two kinds of amyloid beta-peptides (A beta), i.e., A beta(1-42) and A beta(1-40), in the kinetics of beta-amyloid fibril (fA beta) formation in vitro, based on a nucleation-dependent polymerization model using fluorescence spectroscopy with thioflavin T. When 25 microM A beta(1-42) was incubated with increasing concentrations of amyloidogenic A beta(1-40), the time to proceed to equilibrium was extended dose-dependently. A similar inhibitory effect was observed when 45 microM A beta(1-40) was incubated with increasing concentrations of A beta(1-42). On the other hand, when 50 microM of nonamyloidogenic A beta(1-40) was incubated with A beta(1-42) at a molar ratio of 10:1 or 5:1, A beta(1-42) initiated fA beta formation from A beta(1-40). The lag time of the reaction shortened in a concentration-dependent manner, with A beta(1-42). We next examined the seeding effect of fA beta formed from A beta(1-42) (fA beta(1-42)) on nonamyloidogenic A beta(1-40). When 50 microM of nonamyloidogenic A beta(1-40) was incubated with 10 or 20 microg/mL (2.2 or 4.4 microM) of fA beta(1-42), the fluorescence showed a sigmoidal increase. The lag time of the reaction was shortened by fA beta(1-42) in a concentration-dependent manner. However, the time to proceed to equilibrium was much longer than when an equal concentration of fA beta formed from A beta(1-40) (fA beta(1-40)) was added to A beta(1-40). The fluorescence increased hyperbolically without a lag phase when 25 microM A beta(1-42) was incubated with 10 or 20 microg/mL (2.3 or 4.6 microM) of fA beta(1-40), and proceeded to equilibrium more rapidly than without fA beta(1-40). An electron microscopic study indicated that the morphology of fA beta formed is governed by the major component of fresh A beta peptides in the reaction mixture, not by the morphology of preexisting fibrils. These results may indicate the central role of A beta(1-42) for fA beta deposition in vivo, among the different coexisting A beta species.  相似文献   

5.
A region near the C-terminus of human acetylcholinesterase (AChE) is weakly homologous with the N-terminus of the Alzheimer's disease amyloid-beta peptide. We report that a 14-amino acid synthetic polypeptide whose sequence corresponds to residues 586-599 of the human synaptic or T form of AChE assembles into amyloid fibrils under physiological conditions. The fibrils have all the classical characteristics of amyloid: they have a diameter of 6-7 nm and bind both Congo red and thioflavin-T. Furthermore, the kinetics of assembly indicate that fibril formation proceeds via a two-step nucleation-dependent polymerization pathway, and a transition in the peptide conformation from random coil to beta-sheet is observed during fibril formation using far-UV circular dichroism spectroscopy. We also show that the peptide in aggregated fibrillar form has a toxic effect upon PC-12 cells in vitro. AChE normally resides mainly on cholinergic neuronal membranes, but is abnormally localized to senile plaques in Alzheimer's disease. Recently, an in vitro interaction between AChE and A beta, the principal constituent of the amyloid fibrils in senile plaques, has been documented. The presence of a fibrillogenic region within AChE may be relevant to the interaction of AChE with amyloid fibrils formed by Abeta.  相似文献   

6.
beta-Amyloid protein (beta-A/4) is the major protein component of Alzheimer disease-related senile plaques and has been postulated to be a significant contributing factor in the onset and/or progression of the disease. In the senile plaque, beta-A/4 appears as bundles of amyloid fibrils. The biological activity of beta-A/4 may be related to its state of aggregation. In this work, self-assembly, fibril formation, and interfibrillary aggregation of beta(1-28), a synthetic peptide homologous with the amino-terminal fragment of beta-A/4, were investigated. The predominant form of beta(1-28) detected by size-exclusion chromatography and polyacrylamide gel electrophoresis was apparently a tetramer which does not bind Congo red. Aggregates containing cross-beta sheet structures which bind Congo red and thioflavin T were observed at concentrations of approximately 0.3 mg/ml or greater. Concentrations of 0.5-1 mg/ml were necessary for aggregation into fibrils to be detectable by classical or quasielastic light scattering. Both fibril elongation and fibril-fibril aggregation occur over the time scale investigated. The kinetics of aggregation were much faster at physiological salt concentrations than at lower ionic strength. Ionic strength also appeared to influence the morphology of the fibril aggregates. The data indicate that sample preparation method and sample history influence fibril size and number density.  相似文献   

7.
Despite significant progress in the elucidation of the genetic basis of early-onset familial Alzheimer's disease (AD), the etiology of sporadic cases remains elusive. Although certain genetic loci play a role in conferring susceptibility in some sporadic AD cases, it is likely that the etiology is multifactorial; hence, the majority of cases cannot be attributed to genetic factors alone, indicating that environmental factors may modulate the onset and/or progression of the disease. Head injury and infectious agents are environmental factors that have been periodically implicated, but no plausible mechanisms have been clearly identified. With regard to infectious agents, speculation has often centered on the neurotropic herpes viruses, with herpes simplex virus 1 (HSV1) considered a likely candidate. We report that an internal sequence of HSV1 glycoprotein B (gB) is homologous to the carboxyl-terminal region of the A beta peptide that accumulates in diffuse and neuritic plaques in AD. Synthetic peptides were generated and the biophysical and biological properties of the viral peptide compared to those of A beta. Here we show that this gB fragment forms beta-pleated sheets, self-assembles into fibrils that are thioflavin-positive and ultrastructurally indistinguishable from A beta, accelerates the formation of A beta fibrils in vitro, and is toxic to primary cortical neurons at doses comparable to those of A beta. These findings suggest a possible role for this infectious agent in the pathophysiology of sporadic cases of AD.  相似文献   

8.
Beta(2)-microglobulin (beta(2)m) is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. Although full-length beta(2)m readily forms amyloid fibrils in vitro by seed-dependent extension with a maximum at pH 2.5, fibril formation under physiological conditions as detected in patients has been difficult to reproduce. A 22-residue K3 peptide of beta(2)m, Ser(20)-Lys(41), obtained by digestion with Acromobacter protease I, forms amyloid fibrils without seeding. To obtain further insight into the mechanism of fibril formation, we studied the pH dependence of fibril formation of the K3 peptide and its morphology using a ThT fluorescence assay and electron microscopy, respectively. K3 peptide formed amyloid fibrils over a wide range of pH values with an optimum around pH 7 and contrasted with the pH profile of the seed-dependent extension reaction of full-length beta(2)m. This suggests that once the rigid native-fold of beta(2)m is unfolded and additional factors triggering the nucleation process are provided, full-length beta(2)m discloses an intrinsic potential to form amyloid fibrils at neutral pH. The fibril formation was strongly promoted by dimerization of K3 through Cys(25). The morphology of the fibrils varied depending on the fibril formation conditions and the presence or absence of a disulfide bond. Various fibrils had the potential to seed fibril formation of full-length beta(2)m accompanied with a characteristic lag phase, suggesting that the internal structures are similar.  相似文献   

9.
The 39-42 amino acid long, amphipathic amyloid-beta peptide (Abeta) is one of the key components involved in Alzheimer's disease (AD). In the neuropathology of AD, Abeta presumably exerts its neurotoxic action via interactions with neuronal membranes. In our studies a combination of 31P MAS NMR (magic angle spinning nuclear magnetic resonance) and CD (circular dichroism) spectroscopy suggest fundamental differences in the functional organization of supramolecular Abeta(1-40) membrane assemblies for two different scenarios with potential implication in AD: Abeta peptide can either be firmly anchored in a membrane upon proteolytic cleavage, thereby being prevented against release and aggregation, or it can have fundamentally adverse effects when bound to membrane surfaces by undergoing accelerated aggregation, causing neuronal apoptotic cell death. Acidic lipids can prevent release of membrane inserted Abeta(1-40) by stabilizing its hydrophobic transmembrane C-terminal part (residue 29-40) in an alpha-helical conformation via an electrostatic anchor between its basic Lys28 residue and the negatively charged membrane interface. However, if Abeta(1-40) is released as a soluble monomer, charged membranes act as two-dimensional aggregation-templates where an increasing amount of charged lipids (possible pathological degradation products) causes a dramatic accumulation of surface-associated Abeta(1-40) peptide followed by accelerated aggregation into toxic structures. These results suggest that two different molecular mechanisms of peptide-membrane assemblies are involved in Abeta's pathophysiology with the finely balanced type of Abeta-lipid interactions against release of Abeta from neuronal membranes being overcompensated by an Abeta-membrane assembly which causes toxic beta-structured aggregates in AD. Therefore, pathological interactions of Abeta peptide with neuronal membranes might not only depend on the oligomerization state of the peptide, but also the type and nature of the supramolecular Abeta-membrane assemblies inherited from Abeta's origin.  相似文献   

10.
Fibrillar protein aggregates contribute to the pathology of a number of disease states. To facilitate structural studies of these amyloid fibrils by solid-state NMR, efficient methods for the production of milligram quantities of isotopically labeled peptide are necessary. Bacterial expression of recombinant amyloid proteins and peptides allows uniform isotopic labeling, as well as other patterns of isotope incorporation. However, large-scale production of recombinant amyloidogenic peptides has proven particularly difficult, due to their inherent propensity for aggregation and the associated toxicity of fibrillar material. Yields of recombinant protein are further reduced by the small molecular weights of short amyloidogenic fragments. Here, we report high-yield expression and purification of a peptide comprising residues 11-26 of the Alzheimer's beta-amyloid protein (Abeta(11-26)), with homoserine lactone replacing serine at residue 26. Expression in inclusion bodies as a ketosteroid isomerase fusion protein and subsequent purification under denaturing conditions allows production of milligram quantities of uniformly labeled (13)C- and (15)N-labeled peptide, which forms amyloid fibrils suitable for solid-state NMR spectroscopy. Initial structural data obtained by atomic force microscopy, electron microscopy, and solid-state NMR measurements of Abeta(11-26) fibrils are also presented.  相似文献   

11.
beta-Amyloid peptide (A beta), a normal constituent of neuronal and non-neuronal cells, has been proven to be the major component of extracellular plaque of Alzheimer's disease. Interactions between A beta and neuronal membranes have been postulated to play an important role in the neuropathology of Alzheimer's disease. Here we show that A beta is able to insert into lipid bilayer. The membrane insertion ability of A beta is critically controlled by the ratio of cholesterol to phospholipids. In a low concentration of cholesterol A beta prefers to stay in membrane surface region mainly in a beta-sheet structure. In contrast, as the ratio of cholesterol to phospholipids rises above 30 mol%, A beta can insert spontaneously into lipid bilayer by its C terminus. During membrane insertion A beta generates about 60% alpha-helix and removes almost all beta-sheet structure. Fibril formation experiments show that such membrane insertion can reduce fibril formation. Our findings reveal a possible pathway by which A beta prevents itself from aggregation and fibril formation by membrane insertion.  相似文献   

12.
The amyloid fibril field is briefly described, with some stress put on differences between various proteins and possible role for domain swapping. In the main body of the text, first, a short review is given of the folding properties of both human stefins, alpha/beta-type globular proteins of 53% identity with a known three-dimensional fold. Second, in vitro study of amyloid fibril formation by human stefin B (type I cystatin) is described. Solvents of pH 4.8 and pH 3.3 with and without 2,2,2-trifluoroethanol (TFE) were probed, as it has been shown previously that stefin B forms acid intermediates, a native-like and molten globule intermediate, respectively. The kinetics of fibrillation were measured by thioflavin T fluorescence and CD. At pH 3.3, the protein is initially in the molten globule state. The fibrillation is faster than at pH 4.8; however, there is more aggregation observed. On adding TFE at each pH, the fibril formation is further accelerated.  相似文献   

13.
beta-(25-35) is a synthetic derivative of beta-amyloid, the peptide that is believed to cause Alzheimer's disease. As it is highly toxic and forms fibrillar aggregates typical of beta-amyloid, it is suitable as a model for testing inhibitors of aggregation and toxicity. We demonstrate that N-methylated derivatives of beta-(25-35), which in isolation are soluble and non-toxic, can prevent the aggregation and inhibit the resulting toxicity of the wild type peptide. N-Methylation can block hydrogen bonding on the outer edge of the assembling amyloid. The peptides are assayed by Congo red and thioflavin T binding, electron microscopy, and a 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) toxicity assay on PC12 cells. One peptide (Gly(25) N-methylated) has properties similar to the wild type, whereas five have varying effects on prefolded fibrils and fibril assembly. In particular, beta-(25-35) with Gly(33) N-methylated is able to completely prevent fibril assembly and to reduce the toxicity of prefolded amyloid. With Leu(34) N-methylated, the fibril morphology is altered and the toxicity reduced. We suggest that the use of N-methylated derivatives of amyloidogenic peptides and proteins could provide a general solution to the problem of amyloid deposition and toxicity.  相似文献   

14.
Caspase-activated DNase (CAD) is a key protein in the process of apoptosis that degrades DNA through the action of caspases. Its N-terminal region, the CAD domain (CAD-CD), is highly conserved among CAD family proteins and is responsible for the interaction with its inhibitor. We report here that CAD-CD spontaneously aggregates to form amyloid fibrils, without a lag time, under the conditions of low pH (below 4) and the presence of anions. Interestingly, the secondary structure of CAD-CD in the fibril state comprised not only beta-sheet but also alpha-helix, as found in CD, FTIR, and x-ray fiber diffraction experiments. Aromatic side chains have a defined orientation and are in the hydrophobic environment occurring with the CAD-CD fibrillogenesis. These findings provide new insights into the architecture of amyloid fibrils.  相似文献   

15.
The beta-amyloid (Abeta) is the major peptide constituent of neuritic plaques in Alzheimer's disease (AD) and its aggregation is believed to play a central role in the pathogenesis of the disease. Naturally occurring mutations resulting in changes in the Abeta sequence (pos. 21-23) are associated with familial AD-like diseases with extensive cerebrovascular pathology. It was proved that the mutations alter the aggregation ability of Abeta and its neurotoxicity. Among five mutations at positions 21-23 there are two mutations with distinct clinical characteristics and potentially distinct pathogenic mechanism-the Italian (E22K) and the Flemish (A21G) mutations. In our studies we have examined the structures of the 11-28 fragment of the Italian and Flemish Abeta variants. The fragment was chosen because it has been shown to be the most important for amyloid fibril formation. The detailed structure of both variants Abeta(11-28) was determined using CD, 2D NMR, and molecular dynamics techniques under water-SDS micelle conditions. The NMR analysis revealed two distinct sets of proton resonances for the peptides. The studies of both peptides pointed out the existence of well-defined alpha-helical conformation in the Italian mutant, whereas the Flemish was found to be unstructured with the possibility of a bent structure in the central part of the peptide.  相似文献   

16.
The effects of oligopeptides on the secondary structures of Abeta and NAC, a fragment of alpha-synuclein protein, were studied by circular dichroism (CD) spectra. The effects of oligopeptides on the amyloid fibril formation were also studied by fluorescence spectra due to thioflavine-T. The oligopeptides were composed of a fragment of Abeta or NAC and were interposed by acidic or basic amino acid residues. The peptide, Ac-ELVFFAKK-NH2, which involved a fragment Leu-Val-Phe-Phe-Ala at Abeta(17-21), had no effect on the secondary structures of Abeta(1-28) in 60% or 90% trifluoroethanol (TFE) solutions at both pH 3.2 and pH 7.2. However, it showed pronounced effects on the secondary structure of Abeta(1-28) at pH 5.4. The Ac-ELVFFAKK-NH2 reduced the alpha-helical content, while it increased the beta-sheet content of Abeta(1-28). In phosphate buffer solutions at pH 7.0, Ac-ELVFFAKK-NH2 had little effect on the secondary structures of Abeta(1-28). However, it accelerated amyloid fibril formation when monitored by fluorescence spectra due to thioflavine-T. On the other hand, LPFFD, a peptide known as a beta-sheet breaker, caused neither an appreciable extent of change in the secondary structure nor amyloid fibril formation in the same buffer solution. The peptide, Ac-ETVK-NH2, which involved a fragment Thr-Val at NAC(21-22), had no effect on the secondary structure of NAC in 90% TFE and in isotonic phosphate buffer. However, Ac-ETVK-NH2 in water with small amounts of NaN3 and hexafluoroisopropanol greatly increased the beta-sheet content of NAC after standing the solution for more than 1 week. Interestingly, in this solution. Ac-ETVK-NH2, accelerated the fibril formation of NAC. It was concluded that an oligopeptide that involves a fragment of amyloidogenic proteins could be a trigger for the formation of amyloid plaques of the proteins even when it had little effect on the secondary structures of the proteins as monitored by CD spectra for a short incubation time.  相似文献   

17.
We report solid state nuclear magnetic resonance (NMR) measurements that probe the supramolecular organization of beta-sheets in the cross-beta motif of amyloid fibrils formed by residues 11-25 of the beta-amyloid peptide associated with Alzheimer's disease (Abeta(11-25)). Fibrils were prepared at pH 7.4 and pH 2.4. The solid state NMR data indicate that the central hydrophobic segment of Abeta(11-25) (sequence LVFFA) adopts a beta-strand conformation and participates in antiparallel beta-sheets at both pH values, but that the registry of intermolecular hydrogen bonds is pH-dependent. Moreover, both registries determined for Abeta(11-25) fibrils are different from the hydrogen bond registry in the antiparallel beta-sheets of Abeta(16-22) fibrils at pH 7.4 determined in earlier solid state NMR studies. In all three cases, the hydrogen bond registry is highly ordered, with no detectable "registry-shift" defects. These results suggest that the supramolecular organization of beta-sheets in amyloid fibrils is determined by a sensitive balance of multiple side-chain-side-chain interactions. Recent structural models for Abeta(11-25) fibrils based on X-ray fiber diffraction data are inconsistent with the solid state NMR data at both pH values.  相似文献   

18.
Fibrillation of a human calcitonin mutant (hCT) at the position of Asp(15) (D15N-hCT) was examined to reveal the effect of the electrostatic interaction of Asp(15) with charged side chains. The secondary structures of fibrils and soluble monomers in the site-specific (13)C-labeled D15N-hCTs were determined using (13)C cross-polarization magic angle spinning and dipolar decoupled magic angle spinning NMR approaches, sensitive to detect (13)C signals from the fibril and the soluble monomer, respectively. The local conformations and structures of D15N-hCT fibrils at pH 7.5 and 3.2 were found to be similar to each other and those of hCT at pH 3.3 and were interpreted as a mixture of antiparallel and parallel beta-sheets, whereas they were different from the hCT fibril at pH 7.5 whose structure is proposed to be antiparallel beta-sheets. Thus the negatively charged Asp(15) in the hCT molecule turned out to play an essential role in determining the structures and orientations of the hCT molecules. Fibrillation kinetics of D15N-hCT was analyzed using a two-step autocatalytic reaction mechanism. The results indicated that the replacement of Asp(15) with Asn(15) did not reduce the rate constants of the fibril formation but rather increased the rate constants at neutral pH.  相似文献   

19.
The N-terminal fragment 1-29 of horse heart apomyoglobin (apoMb(1-29)) is highly prone to form amyloid-like fibrils at low pH. Fibrillogenesis at pH 2.0 occurs following a nucleation-dependent growth mechanism, as evidenced by the thioflavin T (ThT) assay. Transmission electron microscopy (TEM) confirms the presence of regular amyloid-like fibrils and far-UV circular dichroism (CD) spectra indicate the acquisition of a high content of beta-sheet structure. ThT assay, TEM and CD highlight fast and complete disaggregation of the fibrils, if the pH of a suspension of mature fibrils is increased to 8.3. It is of interest that amyloid-like fibrils form again if the pH of the solution is brought back to 2.0. While apoMb(1-29) fibrils obtained at pH 2.0 are resistant to proteolysis by pepsin, the disaggregated fibrils are easily cleaved at pH 8.3 by trypsin and V8 protease, and some of the resulting fragments aggregate very quickly in the proteolysis mixture, forming amyloid-like fibrils. We show that the increase of amyloidogenicity of apoMb(1-29) following acidification or proteolysis at pH 8.3 can be attributed to the decrease of the peptide net charge following these alterations. The results observed here for apoMb(1-29) provide an experimental basis for explaining the effect of charge and pH on amyloid fibril formation by both unfolded and folded protein systems.  相似文献   

20.
The 29-residue peptide hormone glucagon forms amyloid fibrils within a few hours at low pH. In this study, we use glucagon as a model system to investigate fibril formation by liquid-state 1H-NMR spectroscopy One-dimensional, correlation, and diffusion experiments monitoring the fibril formation process provide insight into the early stages of the pathway on which the molecules aggregate to fibrils. In conjunction with these techniques, exchange experiments give information about the end-state conformation. Within the limits of detection, there are no signs of larger oligomeric intermediates in the course of the fibril formation process. Kinetic information is extracted from the time course of the residual free glucagon signal decay. This suggests that glucagon amyloids form by a nucleated growth mechanism in which trimers (rather than monomers) of glucagon interact directly with the growing fibrils rather than with each other. The results of proton/deuterium exchange experiments on mature fibrils with subsequent dissolution show that the N-terminal of glucagon is the least amenable to exchange, which indicates that this part is strongly involved in the intermolecular bonds of the fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号