首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In rat heart slices carnitine transport occurs in an exchange process with deoxycarnitine. This has been demonstrated in double labelling experiments allowing a preloading of either 3H-carnitine or 14C-deoxycarnitine, the immediated precursor of carnitine. The stoichiometry of the carnitine/deoxycarnitine exchange resulted close to one in both directions. The relative kinetics supports the assumption that the process is mediated by a membrane bound protein. The results may rationalize the circumstance that carnitine is taken up by myocardium against a concentration gradient. The meaning of the carnitine/deoxycarnitine exchange is discussed.  相似文献   

2.
Influx and efflux measurements of carnitine with submitochondrial particles lead to the conclusion that carnitine can cross the inner mitochondrial membrane by either facilitated diffusion or more rapidly by a carnitine-carnitine exchange. Both, the facilitated diffusion and the exchange are inhibited by N-ethylmaleimide or mersalyl at low concentrations. Reconstituted particles prepared from liposomes and either submitochondrial particles or an octyl β-glucoside-solubilized preparation were active in catalyzing carnitine-carnitine exchange.  相似文献   

3.
The thiol groups of the vesicular protein of bovine adrenal medulla were allowed to react with the bifunctional thiol reagent bis-(N-maleimidomethyl) ether and with the monofunctional thiol reagent N-ethylmaleimide, and the ATP-dependent and -independent catecholamine fluxes of the modified preparations were studied. 1. During the initial phase of the reaction bis-(N-maleimidomethyl) ether blocks twice as many thiol groups as does N-ethylmaleimide at equimolar concentrations. 2. Labelling of the bis-(N-maleimidomethyl) ether-protein compound with [(14)C]-cysteine shows that 70-80% of the blocked thiol groups are interconnected by the bifunctional thiol reagent. 3. At a low extent of reaction (1.5mol of thiol groups/10(6)g of protein) the catecholamine efflux is diminished. If more than 2mol of thiol groups/10(6)g of protein are blocked, the efflux is enhanced whichever thiol reagent is applied. 4. If 2-4mol of thiol groups/10(6)g of protein are blocked the inhibition of the catecholamine influx increases linearly with the proportion of the thiol groups blocked. 5. ATP protects the catecholamine influx and the adenosine triphosphatase activity against bis-(N-maleimidomethyl) ether poisoning somewhat less effectively than against N-ethylmaleimide poisoning.  相似文献   

4.
Effects of six thiol reagents with different physico-chemical properties were tested on the Na+-dependent 45Ca2+ transport into the rat brain microsomal membrane vesicles. The mercurials p-chlormercuribenzoate and Mersalyl effectively inhibited 45Ca2+ uptake with IC50 values in the order of 10(-4) mol X l-1 in the medium. N-ethylmaleimide and its more lipophilic analog N-(4-(2-benzoxazolyl)phenyl)maleimide were much less effective at the same concentrations. 2,2'-dithiodipyridine markedly reduced 45Ca2+ uptake already at concentrations below 10(-4) mol X l-1, whereas 5,5'-dithiobis-2-nitrobenzoate in a concentration range 10(-6)-10(-3) mol X l-1 was a weak inhibitor. Inhibitory effects of the most potent inhibitors p-chlormercuribenzoate and 2,2'-dithiodipyridine were readily reversed by 1 mmol X l-1 dithiothreitol. The results suggest that free SH groups of membrane polypeptides are involved in the functioning of the Na+-Ca2+ exchanger in the nerve tissue cell membranes.  相似文献   

5.
The transport function of the purified and reconstituted carnitine carrier from rat liver mitochondria was correlated to modification of its SH-groups by various reagents. The exchange activity and the unidirectional transport, both catalyzed by the carnitine carrier, were effectively inhibited by N-ethylmaleimide and submicromolar concentrations of mercurial reagents, e.g., mersalyl and p-(chloromercuri)benzenesulfonate. When 1 microM HgCl2 or higher concentrations of the above mentioned mercurials were added, another transport mode of the carrier was induced. After this treatment, the reconstituted carnitine carrier catalyzed unidirectional substrate-efflux and -influx with significantly reduced substrate specificity. Control experiments in liposomes without carrier or with inactivated carrier protein proved the dependence of this transport activity on the presence of active carnitine carrier. The mercurial-induced uniport correlated with inhibition of the 'physiological' functions of the carrier, i.e., exchange and substrate specific unidirectional transport. The effect of consecutive additions of various reagents including N-ethylmaleimide, mercurials, Cu(2+)-phenanthroline and diamide on the transport function revealed the presence of at least two different classes of SH-groups. N-Ethylmaleimide blocked the carrier activity by binding to SH-groups of one of these classes. At least one of these SH-groups could be oxidized by the reagents forming S-S bridges. Besides binding to the class of SH-groups to which N-ethylmaleimide binds, mercurials also reacted with SH-groups of the other class. Modification of the latter led to the induction of the efflux-type of carrier activity characterized by loss of substrate specificity.  相似文献   

6.
The carnitine-acylcarnitine translocase facilitates carnitine and acylcarnitine transport into the mitochondrial matrix during beta-oxidation. Our results demonstrate that chymotrypsin can activate the maximal velocity of N-ethylmaleimide (NEM)-sensitive carnitine or palmitoylcarnitine exchange 7-fold, while doubling the affinity of the translocase for carnitine. Chymotrypsin activation is strictly dependent on the presence of free or short-chain acylcarnitine in the proteolysis medium, the extent of activation decreasing as the acylcarnitine chain length in the proteolysis medium increases. Chymotrypsin treatment decreases the apparent I50 value (inhibitor concentration required to give half-maximal inhibition) of the translocase for inhibition by NEM only under conditions which produce translocase activation. Modification of submitochondrial particle membranes by chymotrypsin does not result in gross ultrastructural changes or in an increase in the passive permeability of these membranes to carnitine. The data suggest that carnitine binding produces a change in translocase conformation which allows chymotrypsin modification to occur. This modification alters the kinetic and inhibitor-binding properties of the translocase.  相似文献   

7.
Liver and testis slices convert 6-N-trimethyl-lysine into 4-N-trimethylaminobutyrate and carnitine. Adipose, skeletal muscle, heart, or kidney tissues metabolize trimethyl-lysine into trimethylaminobutyrate but not into carnitine. Trimethylaminobutyrate hydroxylation, forming carnitine, occurs in liver and to a minor degree in testis. Liver is the primary site of carnitine biosynthesis in the rat.  相似文献   

8.
The purpose of this study was to investigate the effects exerted by thiol-modifying reagents on themitochondrial sulfonylurea receptor. The thiol-oxidizing agents (timerosal and 5, 5'-dithio-bis(2-nitrobenzoic acid)) were found to produce a large inhibition (70% to 80%) of specific binding of [(3)H]glibenclamide to the beef heart mitochondrial membrane. Similar effects were observed with membrane permeable (N-ethylmaleimide) and non-permeable (mersalyl) thiol modifying agents. Glibenclamide binding was also decreased by oxidizing agents (hydrogen peroxide) but not by reducing agents (reduced gluthatione, dithiothreitol and the 2,3-dihydroxy-1,4-dithiolbutane). The results suggest that intact thiol groups, facing the mitochondrial matrix, are essential for glibenclamide binding to the mitochondrial sulfonylurea receptor.  相似文献   

9.
A study is presented on the effect of chemical modification of thiol groups on proton conduction by the H+-ATPase complex in 'inside out' submitochondrial particles, before and after removal of the F1 moiety, and by F0 liposomes. The results obtained show that modification with monofunctional reagents [N-ethylmaleimide, 2,2'-dithiobispyridine, mersalyl and N-(7-dimethylamino-4-methyl-coumarinyl)-maleimide] of thiol residues in membrane integral proteins of F0 results in inhibition of proton conduction. Comparison of the inhibitory effects with the binding of [14C]N-ethylmaleimide to the various F0 polypeptides indicates that the inhibition of proton conduction by thiol reagents was correlated with modification of the 25-kDa, 11-kDa and 9-kDa (N,N'-dicyclohexylcarbodiimide-binding protein) proteins. Involvement of the last component is supported by the observation that modification by thiol reagents depressed the binding of N,N'-dicyclo[14C]hexylcarbodiimide to the 9-kDa protein.  相似文献   

10.
Since 1938 mammalian succinate dehydrogenase has been thought to contain thiol groups at the active site. This hypothesis was questioned recently, because irreversible inhibition by bromopyruvate and N-ethylmaleimide appeared not to satisfy the requisite criteria for reaction at the active site. These recent observations of incomplete inactivation of succinate dehydrogenase by N-ethylmaleimide and incomplete protection by substrates can, however, be explained adequately by the presence of oxalacetate and other strong competitors of the inactivation process in the enzyme used in these studies. Substrates, competitive inhibitors, and anions which activate succinate dehydrogenase protect the enzyme from inhibition by N-ethylmaleimide. Inhibition of succinate dehydrogenase by N-ethylmaleimide involves at least two second order reactions which are pH dependent, with pKa values of 8.0 to 8.2. This pH dependence, the known reactivity of N-ethylmaleimide toward thiols, and the protection by substrate and competitive inhibitors indicate that sulfhydryl residues are required for catalytic activity and perform an essential, not secondary, role in the catalysis. Just as the presence of tightly bound oxalacetate prevents inhibition by N-ethylmaleimide, alkylation of the sulfhydryl residue(s) at the active site prevents the binding of [14C]oxalacetate. Thus, these thiol groups at the active site also may be the site of tight binding of oxalacetate during the activation-deactivation cycle.  相似文献   

11.
The efflux of l-[3H]carnitine was studied in cells from an established cell line from human heart (Girardi human heart cells, CCL 27). The cells were loaded with 4 μmol/l l-[3H]carnitine for 1 or 24 h, and the efflux of radioactivity into the medium was measured. The amount of intracellular l-[3H]carnitine retained was expressed as a function of time. The results were fitted to an exponential equation, from which efflux rate constants were computed.Increasing the extracellular concentration of butyrobetaine, l-carnitine, d-carnitine, betaine, dl-norcarnitine or 3-dimethylamino-2-hydroxypropionic acid each increased the observed efflux. This is most likely due to accelerated exchange diffusion. The substrate specificity of this accelerated exchange diffusion is different from what previously has been found in competitive uptake studies of l-carnitine. l-Carnitine was preferentially released to l-acetylcarnitine, and blocking the sulfhydryl groups with 5,5-dithiobis(2-nitrobenzoic acid) increased the efflux.  相似文献   

12.
Silver ions inhibited phosphate uptake and exchange in Escherichia coli and caused efflux of accumulated phosphate as well as of mannitol, succinate, glutamine, and proline. The effects of Ag+ were reversed by thiols and, to a lesser extent, by bromide. In the presence of N-ethylmaleimide and several uncouplers, Ag+ failed to cause phosphate efflux, but still inhibited exchange of intracellular and extracellular phosphate, indicating an interaction at more than one site. It is unlikely that Ag+ caused metabolite efflux by acting solely as an uncoupler, as an inhibitor of the respiratory chain, or as a thiol reagent.  相似文献   

13.
Succinate dehydrogenase is composed of two subunits, one of molecular weight 70,000, containing FAD in covalent linkage to a histidyl residue of the polypeptide chain, the other subunit of molecular weight 30,000. The fact that substrate, substrate analogs, and oxalacetate prevent inactivation of the enzyme by thiol-specific agents indicates that a thiol group must be present in close proximity to the flavin. Comparison of the incorporation of radioactivity into each subunit in the presence and absence of succinate or malonate shows that both substrate and competitive inhibitors protect a sulfhydryl group of the 70,000-molecular weight subunit. This indicates that a thiol group of the flavoprotein subunit is part of the active site. Similar investigations using oxalacetate as a protecting agent indicate that the tight binding of oxalacetate to the deactivated enzyme also occurs in the flavoprotein subunit, and may involve the same thiol group which is protected by succinate from alkylation by N-ethylmaleimide. It is clear, therefore, that not only the flavin site but also an essential thiol residue are located in the 70,000-molecular weight subunit. A second thiol group, located in the 30,000-molecular weight subunit, also binds N-ethylmaleimide covalently under similar conditions, without being part of the active site. Succinate, malonate, and oxalacetate do not influence the binding of this inhibitor to the thiol group of the lower molecular weight subunit. Using maleimide derivatives of nitroxide-type spin labels, it has been possible to demonstrate the presence of two types of thiol groups in the enzyme which form covalent derivatives with the spin probe. When the enzyme is treated with an equimolar quantity of the spin probe, a largely isotropic electron spin resonance spectrum is obtained, indicating a high probe mobility. When this site is first blocked by treating the enzyme with an equimolar quantity of N-ethylmaleimide, followed by an equimolar amount of spin label, the label is strongly immobilized with a splitting of 64 gauss. It is suggested that the sulfhydryl group which is involved in the immobilized species is at the active site.  相似文献   

14.
L-carnitine deficiency in heart and skeletal muscle was induced by intraperitoneal injection of D-carnitine into starved or fed rats. Carnitine levels in kidney were slightly lowered, but liver, brain and plasma were unaffected. L-carnitine deficient hearts were unable to maintain normal cardiac function when perfused in an isolated working heart apparatus with palmitate as the only perfused substrate. These findings indicate that tissue levels of carnitine in heart and skeletal muscle are maintained in vivo by an exchange transport mechanism. It is postulated that the depletion of L-carnitine from these tissues occurs by an exchange of the D- and L-isomer across the cell membrane. The technique may be useful for estimating the levels of carnitine required for fatty acid oxidation and normal cardiac and skeletal muscle function; however, interpretation of such tests may be complicated by the inhibitory effects of the D-isomer upon carnitine transferase enzymes.  相似文献   

15.
S Nobile  J Deshusses 《Biochimie》1988,70(10):1411-1416
An Agrobacterium sp. isolated from soil is able to use gamma-butyrobetaine as its sole source of carbon and nitrogen. The involvement of thiol groups for active transport of gamma-butyrobetaine was investigated by use of the thiol alkylating reagent N-ethylmaleimide (NEM) and the dithiol specific reagent phenylarsine oxide (PAO). Both reagents strongly inhibited gamma-butyrobetaine uptake, but also induced the release of the accumulated substrate, suggesting that the transport system either contains a dithiol-dependent protein or that a small thiol-containing molecule is implicated in the uptake phenomenon.  相似文献   

16.
The properties of two carnitine acyltransferases (CPT) purified from bovine liver are compared to confirm that they are different proteins. The soluble CPT and the inner CPT from mitochondria differ in subunit Mr, native Mr, pI and reactivity with thiol reagents. All eight free thiol groups in soluble CPT react with 5,5'-dithiobis-(2-nitrobenzoate) in the absence of any unfolding reagent, and activity is gradually lost. The inner CPT activity is completely stable in the presence of 5,5'-dithiobis-(2-nitrobenzoate), and only one thiol group per molecule of subunit is modified in the native enzyme. Antisera to each enzyme inhibit that enzyme, but do not cross-react. CPT activity in subcellular fractions can now be identified by titration with these antibodies. The soluble CPT from bovine liver is probably peroxisomal in origin, but, although antigenically similar, it differs from the peroxisomal carnitine octanoyltransferase found in rat and mouse liver in its specificity for the longer-chain acyl-CoA substrates.  相似文献   

17.
Aspartate transaminase (EC 2.6.1.1) from chicken heart cytosol contains 4 thiol groups per subunit. Two of them are fully buried. One exposed SH group is readily modified by iodoacetamide, N-ethylmaleimide, tetranitromethane, 5,5′-dithio-bis(2-nitrobenzoate), 4,4′-dipyridyl disulfide and p-mercuribenzoate. A further SH group is semi-buried: while inaccessible for alkylating reagents and disulfides, it can be blocked by p-mercuribenzoate at pH about 5 (but not at pH 8). Treatment of the enzyme with tetranitromethane in the absence of substrates leads to nitration of maximally 0.8 tyrosine residue per subunit; in the presence of amino and keto substrate 1.65 eq of nitrotyrosine is formed, with a moderate decrease of enzymic activity.  相似文献   

18.
Previously it has been shown that the mitochondrial inner membrane anion channel is reversibly inhibited by matrix Mg2+, matrix H+ and cationic amphiphiles such as propranolol. Furthermore, the IC50 values for both Mg2+ and cationic amphiphiles are dependent on matrix pH. It is now shown that pretreatment of mitochondria with N-ethylmaleimide, mersalyl and p-chloromercuribenzenesulfonate increases the IC50 values of these inhibitors. The effect of the mercurials is most evident when cysteine or thioglycolate is added to the assay medium to reverse their previously reported inhibitory effect (Beavis, A.D. (1989) Eur. J. Biochem. 185, 511-519). Although the IC50 values for Mg2+ and propranolol are shifted they remain pH dependent. Mersalyl is shown to inhibit transport even in N-ethylmaleimide-treated mitochondria indicating that N-ethylmaleimide does not react at the inhibitory mercurial site. However, the effects of N-ethylmaleimide and mersalyl on the IC50 for H+ are not additive which suggests that mercurials and N-ethylmaleimide react at the same 'regulatory' site. It is suggested that modification of this latter site exerts an effect on the binding of Mg2+, H+ and propranolol by inducing a conformational change. It is also suggested that a physiological regulator may exist which has a similar effect in vivo.  相似文献   

19.
Many of the effects of carnitine are ascribed to its antioxidant properties. The aim of this study was to evaluate the antioxidant properties of carnitine in vitro. Carnitine was found to decolorize ABTS•+, and to protect fluorescein against bleaching induced by AAPH-derived peroxyl radicals and peroxynitrite, thiol groups against oxidation induced by hydrogen peroxide, peroxyl radicals, hypochlorite and peroxynitrite, and erythrocytes against hemolysis induced by peroxyl radicals and hypochlorite. These results show that carnitine has a direct antioxidant action against physiologically relevant oxidants.  相似文献   

20.
Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria.   总被引:2,自引:2,他引:0       下载免费PDF全文
Addition of Ruthenium Red to energized rat liver mitochondria that have previously accumulated Ca2+ and phosphate from the external medium induces a parallel efflux of both these ions. Mersalyl or dithioerythritol, which decrease Ruthenium Red-insensitive Ca2+ efflux, also decrease phosphate efflux to the same extent. Conversely diazenedicarboxylic acid bis(NN-dimethylamide) (DDBA), which increases the Ruthenium Red-induced Ca2+ efflux concurrently increases phosphate release. Dithioerythritol and DDBA, reducing and oxidizing agents of thiol groups respectively, modify Ca2+ and Pi efflux without penetrating the mitochondrial inner membrane. Under all the adopted conditions the membrane potential is preserved. The release of resting respiration and the parallel efflux of Mg2+ and adenine nucleotides, events closely correlated to Ca2+ cycling, are equally prevented either by mersalyl, which inhibits phosphate transport, or dithioerythritol; DDBA has the opposite effect. These findings and the observation that suggest that Ca2+ and phosphate transport in energized liver mitochondria are closely related and dependent on the redox state of membrane-bound thiol groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号