首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein kinase associated with purified herpes simplex virus 1 and 2 virions partitioned with the capsid-tegument structures and was not solubilized by non-ionic detergents and low, non-inhibitory concentrations of urea. The enzyme required Mg2+ or Mn2+ and utilized ATP or GTP. The activity was enhanced by non-ionic detergents and by Na+ even in the presence of high concentrations of of Mg2+, but not by cyclic nucleotides. The enzyme associated with capsid-tegument structures phosphorylated virion polypeptides only; exogenously added substrates (acidic and basic histones, casein, phosphovitin, protamine, and bovine serum albumin) were not phosphorylated. The major phosphorylated species were virion polypeptides (VP) 1-2, 4, 11-12, 13-14, 18.7, 18.8 and 23. VP 18.7 and VP 18.8 have not been previously detected, but may be phosphorylated forms of polypeptides co-migrating with VP 19. Of the remainder, only VP 23 has been previously identified as a capsid protein; the others are constituents of the tegument or of the under surface of the virion envelope. The distribution of the phosphate bound to viral polypeptides varied depending on the Mg2+ concentration and pH. In the absence of dithiothreitol, in vitro phosphate exchange was demonstrable in VP 23 and to a lesser extent in two other polypeptides on sequential phosphorylation frist with saturating amounts off unlabeled ATP and then with [gamma-32P]ATP. Analysis of the virion polypeptides specified by herpes simplex virus 1 X herpes simplex virus 2 recombinants indicates that the genes specifying the polypeptides which serve as a substrate for the protein kinase map in the unique sequences near the left and right reinterated DNA sequences of the L component.  相似文献   

2.
A Sen 《Journal of virology》1981,39(2):612-624
The low-molecular-weight (LMW) protein kinase associated with high-titer murine sarcoma virions have been extensively purified by ammonium sulfate fractionation. Bio-Gel P-100 gel filtration, DEAE-cellulose and carboxymethyl cellulose chromatography. The purified enzyme migrates as a 16K polypeptide in polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme catalyzes phosphotransfer with ATP as a phosphate donor to various exogenously added proteins as acceptors; it requires Mg2+ and is independent of cyclic AMP. The enzyme preparation catalyzes a low level of phosphorylation in the absence of any exogenously added substrate and forms phosphotyrosine. However, in the presence of acceptor protein molecules including total soluble cytoplasmic proteins of murine sarcoma virus-transformed mouse cells, the phosphorylated end products contain predominantly phosphoserine. The virion-associated enzyme also shows a preference for phosphorylating certain polypeptides in the soluble cytoplasmic extracts of murine sarcoma virus-transformed cells.  相似文献   

3.
Partial acid hydrolysates of the [(32)P]phosphate- or [(3)H]serine-labeled proteins of purified vesicular stomatitis, rabies, Lagos bat, Mokola, or spring viremia of carp virions and of purified intracellular nucleocapsids of these viruses have been analyzed by paper electrophoresis for the presence of phosphorylated amino acids. Both phosphoserine and phosphothreonine, with the former predominant, were present in virion and nucleocapsid preparations that contained phosphoproteins. An exception was the fish rhabdovirus, which contained only phosphoserine. When vesicular stomatitis or rabies virus proteins were phosphorylated in a cell-free system by the virion-associated protein kinase and analyzed for the presence of phosphorylated amino acid residues, phosphoserine was again found to be more abundant than phosphothreonine. After in vitro protein phosphorylation, another phospho-compound, possibly a third phosphoamino acid, was detected in the partial acid hydrolysates of these viruses.  相似文献   

4.
The protein kinase associated with virions of frog virus 3 was purified to apparent homogeneity by ion exchange chromatography and gel filtration. The enzyme protein appeared as a single polypeptide of molecular weight 50,000 to 55,000 as determined by gel filtration, glycerol gradient sedimentation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and comprised approximately 0.4% of the total virion protein. The activity was classified as a cyclic nucleotide-independent protein kinase as it was not effected by cyclic adenosine 3':5'-monophosphate, cyclic guanosine 3':5'-monophosphate, or inhibited by a cyclic nucleotide-dependent protein kinase inhibitor protein, and utilized GTP as well as ATP as a phosphate donor. The greatest rates of phosphorylation were obtained with acidic phosphoprotein substrates such as casein or phosvitin, although potential physiological substrates for this activity included specific virion polypeptides of frog virus.  相似文献   

5.
Influenza A2 virions were found to contain protein kinase activity which was stimulated, like in other virion-associated kinases, with Mg++ and Nonidet-P 40 but not with cyclic AMP. The kinase phosphorylated only the NP-protein fraction of the influenza virions in the in vitro reaction. In contrast, none of the influenza virion proteins were phosphorylated significantly during the process of virus production in infected chorioallantoic membranes. The in vitro and in vivo phosphorylations of influenza viral proteins were compared with those of Sendai virus (HVJ).  相似文献   

6.
Phosphorylation of the proteins of human cytomegalovirus (CMV) virions, noninfectious enveloped particles (NIEPs), and dense bodies was investigated. Analyses of particles phosphorylated in vivo showed the following. Virions contain three predominant phosphoproteins (i.e., basic phosphoprotein and upper and lower matrix proteins) and at least nine minor phosphorylated species. NIEPs contain all of these and one additional major species, the assembly protein. Dense bodies contain only one (i.e., lower matrix) of the predominant and four of the minor virion phosphoproteins. Two-dimensional (charge-size) separations in denaturing polyacrylamide gels showed that the relative net charges of the predominant phosphorylated species ranged from the basic phosphoprotein to the more neutral upper matrix protein. In vitro assays showed that purified virions of human CMV have an associated protein kinase activity. The activity was detected only after disrupting the envelope; it had a pH optimum of approximately 9 to 9.5 and required a divalent cation, preferring magnesium to manganese. In vitro, this activity catalyzed phosphorylation of the virion proteins observed to be phosphorylated in vivo. Peptide comparisons indicated that the sites phosphorylated in vitro are a subset of those phosphorylated in vivo, underscoring the probable biological relevance of the kinase activity. Casein, phosvitin, and to a minor extent lysine-rich histones served as exogenous phosphate acceptors. Arginine-rich and lysine-rich histones and protamine sulfate, as well as the polyamines spermine and spermidine, stimulated incorporation of phosphate into the endogenous viral proteins. Virions of all human and simian CMV strains tested showed this activity. Analyses of other virus particles, including three intracellular capsid forms (i.e., A, B, and C capsids), NIEPs, and dense bodies, indicated that the active enzyme was not present in the capsid. Rate-velocity sedimentation of disrupted virions separated the protein kinase activity into two fractions: one that phosphorylated exogenous casein and another that phosphorylated primarily the endogenous virion proteins.  相似文献   

7.
Protein kinase activity was detected in immunoprecipitates of human cytomegalovirus virions and infected cells by using a monoclonal antibody directed against an abundant 68,000-dalton virion structural protein. Purification of this protein by electrophoresis confirmed that the kinase activity was associated with this protein. The kinase activity was dependent on divalent cations (Mg2+, Mn2+) and cyclic nucleotide independent and exhibited optimal activity at pH 7 to 8. The kinase phosphorylated threonine and serine but not tyrosine.  相似文献   

8.
9.
Virion-Bound Protein Kinase in Semliki Forest and Sindbis Viruses   总被引:12,自引:11,他引:1       下载免费PDF全文
Semliki forest virus and Sindbis virus (Alphaviruses belonging to the togavirus group) grown in BHK-21 cells possessed very low levels of virion-associated protein kinase activity. For comparison, vesicular stomatitis virus, also grown in BHK-21 cells, contained a virion-bound protein kinase which had a specific activity 80 times greater than that of the Alphaviruses. The Alphavirus protein kinase was unmasked by the nonionic detergent Nonidet P-40 but was not activated by cyclic nucleotides. Phosvitin was the best exogenous phosphate acceptor for assaying the viral enzyme in vitro. Phosphoprotein phosphatase activity was also detected in the Alphaviruses. Both in vivo and in vitro, all of the viral structural polypeptides were phosphorylated, and the phosphorylated amino acids were found to be serine and threonine. The viral nucleocapsid protein was about four times more efficient as a phosphate acceptor than were the envelope proteins. From 33 to 50% of the total protein kinase was bound to the viral nucleocapsid, and the specific activity of this enzyme was 4 to 10 times greater than that associated with the viral envelope.  相似文献   

10.
Protein Kinase and Phosphoproteins of Vesicular Stomatitis Virus   总被引:28,自引:25,他引:3       下载免费PDF全文
Protein kinases of similar but not identical activity were found associated with vesicular stomatitis (VS) virions grown in mouse L cells, primary chicken embryo (CE) cells, and BHK-21 cells, as well as being present in VS virions grown in HeLa and Aedes albopictus cells. The virion kinase preferentially phosphorylated the nucleocapsid NS protein in vitro and to a lesser extent the envelope M protein. Other virion proteins were phosphorylated in vitro only after drastic detergent treatment. Partial evidence that the virion kinase is of cellular origin was obtained by finding reduced enzyme activity in virions released from cells pretreated with actinomycin D and cycloheximide. Selective detergent and detergent-salt fractionation of VS virions revealed that the kinase activity was present in the envelope but not the spikes. The virion kinase activity in a Triton-salt-solubilized envelope fraction could be separated from M and G proteins and partially purified by phosphocellulose column chromatography. Virions released from L, CE, and BHK-21 cells infected in the presence of [(32)P]orthophosphate were labeled almost exclusively in the NS protein. Both soluble and nucleocapsid-associated NS phosphoprotein were present in cytoplasmic extracts of VS viral-infected L cells. The origin and function of the NS phosphoprotein remain to be elucidated.  相似文献   

11.
Protein kinase from avian myeloblastosis virus.   总被引:4,自引:3,他引:1       下载免费PDF全文
  相似文献   

12.
Influenza A2 virions were found to contain protein kinase activity which was stimulated, like in other virion-associated kinases, with Mg++ and Nonidet-P 40 but not with cyclic AMP. The kinase phosphorylated only the NP-protein fraction of the influenza virions in the in vitro reaction. In contrast, none of the influenza virion proteins were phosphorylated significantly during the process of virus production in infected chorioallantoic membranes, The in vitro and in vivo phosphorylations of influenza viral proteins were compared with those of Sendai virus (HVJ).  相似文献   

13.
Plant viruses encode movement proteins (MPs) to facilitate transport of their genomes from infected into neighboring healthy cells through plasmodesmata. Growing evidence suggests that specific phosphorylation events can regulate MP functions. The coat protein (CP) of potato virus A (PVA; genus Potyvirus) is a multifunctional protein involved both in virion assembly and virus movement. Labeling of PVA-infected tobacco leaves with [(33)P]orthophosphate demonstrated that PVA CP is phosphorylated in vivo. Competition assays established that PVA CP and the well characterized 30-kDa MP of tobacco mosaic virus (genus Tobamovirus) are phosphorylated in vitro by the same Ser/Thr kinase activity from tobacco leaves. This activity exhibits a strong preference for Mn(2+) over Mg(2+), can be inhibited by micromolar concentrations of Zn(2+) and Cd(2+), and is not Ca(2+)-dependent. Tryptic phosphopeptide mapping revealed that PVA CP was phosphorylated by this protein kinase activity on multiple sites. In contrast, PVA CP was not phosphorylated when packaged into virions, suggesting that the phosphorylation sites are located within the RNA binding domain and not exposed on the surface of the virion. Furthermore, two independent experimental approaches demonstrated that the RNA binding function of PVA CP is strongly inhibited by phosphorylation. From these findings, we suggest that protein phosphorylation represents a possible mechanism regulating formation and/or stability of viral ribonucleoproteins in planta.  相似文献   

14.
DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, Mr = 32,000) is a major endogenous cytosolic substrate for dopamine- and cyclic AMP-stimulated protein phosphorylation in neurons of the basal ganglia of mammalian brain. It shares many properties with phosphatase inhibitor 1, a substrate for cyclic AMP-dependent protein kinase, and with G-substrate, a substrate for cyclic GMP-dependent protein kinase. We have, therefore, undertaken an analysis of the amino acid sequence around the site at which purified DARPP-32 is phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase. The results indicate that DARPP-32 is phosphorylated at a single threonine residue contained in the sequence Arg-Arg-Arg-Pro-Thr(P)-Pro-Ala-Met-Leu-Phe-Arg. This sequence was obtained by automated solid phase sequencing of two overlapping tryptic phosphopeptides and one overlapping chymotryptic phosphopeptide which were purified by reverse-phase high-performance liquid chromatography. A 9-amino acid sequence containing the phosphorylatable threonine residue in DARPP-32 shares 8 identical residues with a sequence containing the phosphorylatable threonine residue in phosphatase inhibitor 1, and shares 5 identical residues with the two identical sequences surrounding the 2 phosphorylatable threonine residues in G-substrate. These observations support the view that DARPP-32, inhibitor 1, and G-substrate are members of a family of regulatory proteins which are involved in the control of protein phosphatase activity by both cyclic AMP and cyclic GMP, but which differ in their cellular and tissue distributions.  相似文献   

15.
Two protein kinase activities were fractionated from purified virions of avian myeloblastosis virus. Distinguishing characteristics of these two protein kinases included: (i) their binding properties during purification by ion-exchange chromatography; (ii) their estimated molecular weights; and (iii) their phosphoacceptor protein specificities. The protein kinase that bound to the anion exchanger DEAE-cellulose (pH 7.2) had an estimated molecular weight of 60,000 to 64,000 and preferred basic phosphoacceptor proteins. The protein kinase that bound to the cation exchanger phosphocellulose (pH 7.2) had an estimated molecular weight of 42,000 to 46,000 and preferred acidic phosphoacceptor proteins. The protein kinase preferring basic phosphoacceptor proteins was further purified and characterized. Optimal transfer of phosphate catalyzed by this enzyme required a divalent metal ion, a sulfhydryl-reducing agent, and ATP as phosphate donor. GTP was not an effective phosphate donor at concentrations comparable to ATP; and the cyclic nucleotides cyclic AMP and cyclic GMP neither stimulated nor inhibited protein phosphorylation by the protein kinase. The specificity of the protein kinase for basic phosphoacceptor proteins extended to proteins from avian myeloblastosis virus, in that the neutral to basic virion proteins p12, p19, and p27 served as phosphate acceptors. In addition, the protein kinase also appeared to phosphorylate itself. The role(s) of this virion-associated protein kinase is discussed.  相似文献   

16.
More than 40 protein species including RNA polymerase were found to be phosphorylated in Escherichia coli on analyses of 32P-labeled cell lysates by single and two-dimensional gel electrophoresis and autoradiography. The protein species and the level of phosphorylation varied depending on the cell growth phase. With [gamma-32P]ATP as a substrate, cell lysates phosphorylated endogenous proteins in vitro which were predominantly phosphorylated in vivo. Both serine and threonine were the major phosphate acceptors in whole cell lysates. Starting from a partially purified RNA polymerase preparation with the protein phosphorylation activity and using an E. coli protein with an apparent Mr = 90K (K represents X 1000) as the substrate, we purified a protein kinase with a native Mr approximately 120K to apparent homogeneity. The protein kinase is either a heterodimer of 61K and 66K polypeptides or a homodimer of one of these polypeptides. We also isolated a 100K protein with self-phosphorylation activity.  相似文献   

17.
1. Various proteins isolated from bovine tracheal smooth muscle were examined as phosphate acceptor substrates for a cyclic AMP-dependent protein kinase isolated from the same tissue. A fraction prepared in a manner similar to that of skeletal muscle troponin was the best substrate of the presumptive contractile proteins isolate. Actomyosin and tropomyosin were relatively poor substrates. 2. An assay was developed for the rapid detection in a large number of samples of the muscle specific substrate for the protein kinase on which we reported previously. 3. Using this assay, the muscle specific substrate found in bovine tracheal smooth muscle was partially purified resulting in a preparation which when resolved by polyacrylamide gel electrophoresis showed a single peak of 32P incorporated, and which could be further characterized. 4. Our findings suggest that the substrate contains a protein subunit of molecular weight 19 000, which can be phosphorylated at serine and threonine residues, in the presence of cyclic AMP and protein kinase. The phosphate is in a covalent ester linkage with these residues. 5. A phosphoprotein phosphatase was isolated from the bovine tracheal smooth muscle. 6. Bovine tracheal smooth muscle contains cyclic AMP dependent protein kinase and phosphoprotein phospahatase activity as well as the muscle specific substrate, suggesting that these elements may be part of a mechanism which regulates smooth muscle tone.  相似文献   

18.
Phosphoenolpyruvate-dependent protein kinase activity has been demonstrated in the soluble fraction of rat skeletal muscle. The reaction was not due to the formation of ATP in the incubation mixture. Cyclic AMP, calcium, ATP and a number of phosphate acceptor proteins did not stimulate the reaction. One 32P-labelled protein (Mr 25000) was observed on SDS gels. The phosphorylated protein contained acid stable phosphoserine as a major phosphorylated amino acid. The phosphorylation reaction in crude extracts was not directly proportional to the amount of protein, but typical of a two-component system; i.e., kinase and substrate. The chromatography of soluble proteins on Ultrogel AcA44 separated the phosphate acceptor protein(s) from the phosphoenolpyruvate-dependent protein kinase activity.  相似文献   

19.
The matrix protein from avian myeloblastosis virus and the Rous sarcoma virus, Prague C strain, is a phosphoprotein. A comparison of the amino acid sequences shows these phosphoproteins are very similar. The sites of phosphorylation of the matrix protein purified from virions are identified as serine residues 68 and 106. Treatment with purified rabbit skeletal-muscle protein phosphatase 1 or 2A, selectively releases phosphate from serine 68, while alkali treatment releases phosphate from both sites. When analyzed as a substrate for six different protein kinases, only the Ca2+/phospholipid-dependent protein kinase modifies the matrix protein. The serine residues phosphorylated in vivo are identical to those phosphorylated in vitro by this protein kinase. The role of these phosphorylation events in viral production is discussed.  相似文献   

20.
Sarcolemmal membranes isolated from guinea pig heart ventricles contained endogenous protein kinase activity and protein substrates for this enzyme. Phosphorylation of sarcolemma was modestly stimulated by cyclic AMP with the half-maximal stimulation at 0.5 μm cyclic AMP. The phosphorylation of sarcolemma due to endogenous kinase was dependent on Mg2+. The apparent affinity for Mg2+ was found to be 1.4 and 0.53 mm in the absence and presence of 1 μm cyclic AMP, respectively. The apparent affinity for ATP was 55 μm. Sarcolemmal membranes were also phosphorylated by exogenous (purified) cyclic AMP-dependent protein kinase(s). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of phosphorylated membranes, followed by slicing and determination of the radioactivity in the gel slices, showed that endogenous protein kinase activity promoted the phosphorylation of specific protein peaks, arbitrarily designated a–g in order of increasing relative mobility (relative molecular weights 125,000, 110,000, 86,000, 58,000, 48,000, 22,000, and 16,000, respectively); peak e (48,000) was the major phosphorylated band. Exogenous protein kinase stimulated the phosphorylation of all peaks. However, the degree of stimulation of the low molecular weight peaks f and g was more marked. Results obtained after treatment of phosphorylated membranes with hydroxylamine at acid pH indicated the absence of any significant amount of acyl phosphate-type incorporation of phosphate. Purified phosphoprotein phosphatase from rabbit liver effected dephosphorylation of previously phosphorylated sarcolemma; this treatment resulted in dephosphorylation of all peaks (a–g). Pretreatment of sarcolemma with trypsin (membrane to trypsin ratio of 100) was found to markedly reduce both the total membrane phosphorylation as well as relative phosphorylation of peaks c, f, and g. On the other hand, pretreatment of sarcolemma with phospholipase c slightly stimulated total membrane phosphorylation with nondiscriminatory enhancement of the phosphorylation of all peaks. Microsomal membrane vesicles (enriched in sarcoplasmic reticulum fragments) isolated from guinea pig heart ventricle also contained endogenous protein kinase activity. Cyclic AMP modestly increased the kinase. Polypeptides of molecular weights 56,000, 22,000, and 16,000 were found to be phosphorylated. Exogenous (purified) cyclic AMP-dependent protein kinase increased the phosphorylation of microsomes and of 22,000 and 16,000 molecular weight polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号