首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluid that resides within cranial and spinal cavities, cerebrospinal fluid (CSF), moves in a pulsatile fashion to and from the cranial cavity. This motion can be measured hy magnetic resonance imaging (MRI) and may he of clinical importance in the diagnosis of several brain and spinal cord disorders such as hydrocephalus, Chiari malformation, and syringomyelia. In the present work, a geometric and hydrodynamic characterization of an anatomically relevant spinal canal model is presented. We found that inertial effects dominate the flow field under normal physiological flow rates. Along the length of the spinal canal, hydraulic diameter was found to vary significantly from 5 to 15 mm. The instantaneous Reynolds number at peak flow rate ranged from 150 to 450, and the Womersle number ranged from 5 to 17. Pulsatile flow calculations are presented for an idealized geometric representation of the spinal cavity. A linearized Navier-Stokes model of the pulsatile CSF flow was constructed based on MRI flow rate measurements taken on a healthy volunteer. The numerical model was employed to investigate effects of cross-sectional geometry and spinal cord motion on unsteady velocity, shear stress, and pressure gradientfields. The velocity field was shown to be blunt, due to the inertial character of the flow, with velocity peaks located near the boundaries of the spinal canal rather than at the midpoint between boundaries. The pressure gradient waveform was found to be almost exclusively dependent on the flow waveform and cross-sectional area. Characterization of the CSF dynamics in normal and diseased states may be important in understanding the pathophysiology of CSF related disorders. Flow models coupled with MRI flow measurements mnay become a noninvasive tool to explain the abnormal dynamics of CSF in related brain disorders as well as to determine concentration and local distribution of drugs delivered into the CSF space.  相似文献   

2.
Initial measurements of the time-varying wall shear rate at two sites in a compliant cast of a human aortic bifurcation are presented. The shear rates were derived from flow velocities measured by laser Doppler velocimetry (LDV) near the moving walls of the cast. To derive these shear rate values, the distance from the velocimeter sampling volume to the cast wall must be known. The time variation of this distance was obtained from LDV measurements of the velocity of the wall itself.  相似文献   

3.
Pressure drop and flow rate measurements in a rigid cast of a human aortic bifurcation under both steady and physiological pulsatile flow conditions are reported. Integral momentum and mechanical energy balances are used to calculate impedance, spatially averaged wall shear stress and viscous dissipation rate from the data. In the daughter branches, steady flow impedance is within 30% of the Poiseuille flow prediction, while pulsatile flow impedance is within a factor of 2 of fully developed, oscillatory, straight tube flow theory (Womersley theory). Estimates of wall shear stress are in accord with measurements obtained from velocity profiles. Mean pressure drop and viscous dissipation rate are elevated in pulsatile flow relative to steady flow at the mean flow rate, and the exponents of their Reynolds number dependence are in accord with available theory.  相似文献   

4.
Hemodynamic stress in lateral saccular aneurysms   总被引:7,自引:0,他引:7  
The flow velocities in glass and silastic lateral aneurysm models were quantitatively measured with the non-invasive laser Doppler method. The influences of the elasticity of the wall, the pulse wave and the properties of the perfusion medium on the intra-aneurysmal circulation were investigated. As shown previously, the inflow into the aneurysm arose from the downstream lip and was directed toward the center of the fundus. Backflow to the parent vessel took place along the walls of the fundus. With non-pulsatile perfusion, flow velocities in the center of the standardized aneurysms varied between 0.4 and 2% of the maximum velocity in the parent vessel. With pulsatile perfusion, flow velocities in the center of the fundus ranged between 8 and 13% of the flow velocity in the axis of the parent vessel. Flow velocities in the aneurysms were slower with a polymer suspension with blood-like properties compared to a glycerol/water solution. Flow velocity measurements near the aneurysmal wall allowed the estimation of the shear stresses at critical locations. The maximum shear stresses at the downstream lip of the aneurysm were in the range of the stresses measured at the flow divider of an arterial bifurcation. The present results suggest that in human saccular aneurysms intra-aneurysmal flow and shear stress on the wall are directly related to the pulsatility of perfusion, i.e. the systolic/diastolic pressure difference and that the tendency to spontaneous thrombosis depends on the viscoelastic properties of the blood, namely the hematocrit.  相似文献   

5.
A new small-angle neutron scattering (SANS) sample environment optimized for studying the microstructure of complex fluids under simple shear flow is presented. The SANS shear cell consists of a concentric cylinder Couette geometry that is sealed and rotating about a horizontal axis so that the vorticity direction of the flow field is aligned with the neutron beam enabling scattering from the 1-2 plane of shear (velocity-velocity gradient, respectively). This approach is an advance over previous shear cell sample environments as there is a strong coupling between the bulk rheology and microstructural features in the 1-2 plane of shear. Flow-instabilities, such as shear banding, can also be studied by spatially resolved measurements. This is accomplished in this sample environment by using a narrow aperture for the neutron beam and scanning along the velocity gradient direction. Time resolved experiments, such as flow start-ups and large amplitude oscillatory shear flow are also possible by synchronization of the shear motion and time-resolved detection of scattered neutrons. Representative results using the methods outlined here demonstrate the useful nature of spatial resolution for measuring the microstructure of a wormlike micelle solution that exhibits shear banding, a phenomenon that can only be investigated by resolving the structure along the velocity gradient direction. Finally, potential improvements to the current design are discussed along with suggestions for supplementary experiments as motivation for future experiments on a broad range of complex fluids in a variety of shear motions.  相似文献   

6.
The present study deals with the effect of externally-imposed body accelerations on blood flow in arteries. Body accelerations may be caused deliberately, for example making the subjecs lie down on vibrating tables: or unintentionally during travel in road vehicles, aircraft or spacecraft. A mathematical model of flow in single arteries subject to a pulsating pressure gradient as well as body acceleration is presented. The resulting equations are solved by using the technique of Laplace transforms. Computational results are presented for the effects of body accelerations on flow variables namely flow rate, velocity of flow, acceleration and shear stress corresponding to typical arteries of human subjects.  相似文献   

7.
Numerical prediction of non-Newtonian blood flow in a 3D abdominal aortic aneurysm bifurcating model is carried out. The non-Newtonian Carreau model is used to characterise the shear thinning behaviour of the human blood. A physical inlet velocity waveform incorporating a radial velocity distribution reasonably representative of a practical case configuration is employed. Case studies subject to both equal and unequal outlet pressures at iliac bifurcations are presented to display convincingly the downstream pressure influences on the flow behaviour within the aneurysm. Simulations indicate that the non-Newtonian aspects of the blood cannot at all be neglected or given a cursory treatment. The wall shear stress (WSS) is found to change significantly at both the proximal and distal ends of the aneurysm. At the peak systole, the WSS is peak around the bifurcation point, whereas the WSS becomes zero in the bifurcation point. Differential downstream pressure fields display significant effects regarding the flow evolution in the iliac arteries, whereas little or no effects are observed directly on the flow details in the aneurysm.  相似文献   

8.
Numerical prediction of non-Newtonian blood flow in a 3D abdominal aortic aneurysm bifurcating model is carried out. The non-Newtonian Carreau model is used to characterise the shear thinning behaviour of the human blood. A physical inlet velocity waveform incorporating a radial velocity distribution reasonably representative of a practical case configuration is employed. Case studies subject to both equal and unequal outlet pressures at iliac bifurcations are presented to display convincingly the downstream pressure influences on the flow behaviour within the aneurysm. Simulations indicate that the non-Newtonian aspects of the blood cannot at all be neglected or given a cursory treatment. The wall shear stress (WSS) is found to change significantly at both the proximal and distal ends of the aneurysm. At the peak systole, the WSS is peak around the bifurcation point, whereas the WSS becomes zero in the bifurcation point. Differential downstream pressure fields display significant effects regarding the flow evolution in the iliac arteries, whereas little or no effects are observed directly on the flow details in the aneurysm.  相似文献   

9.
Experimental techniques for measuring unsteady flow in a glass arterial bifurcation model have been developed to aid in quantifying three-dimensional wall shear fluctuations associated with arterial disease. The unique feature of the current technique is the use of a "curved" laser sheet, which was everywhere tangent to the inner wall of a daughter tube in an arterial bifurcation model. Surface tangent velocity vector field measurements were made to demonstrate the potential of this technique. Ensemble-averaged data showing weak secondary flows as well as statistical distributions of flow angles are presented. Measurements of this type may be used to estimate mean and instantaneous wall shear magnitude and direction, data that are necessary for understanding the importance of circumferential motions on arterial disease.  相似文献   

10.
The steady flow of blood through three common types of prosthetic heart valves was simulated numerically using the finite element method. The velocity, pressure and stress fields were obtained for the disk-type, tilting-disk and ball-type prosthetic heart valves in aortic position, for increasing Reynolds numbers up to 900, 1500 and 2000 respectively. Computer graphics of calculated velocities are presented, showing in detail the accelerated flow, recirculation and stagnation areas developed in the prosthesis. Maximum wall shear stresses were found at 0.5, 1.4, and 1.2 diameters from the sewing ring downstream for the disk, tilting-disk and ball valves being the values of 55, 18 and 33 dyn cm-2 respectively. In the vicinity of the occluder, maximum shear stresses of 38, 30 and 47 dyn cm-2 respectively were computed. The flow characteristics and performance for each valve are compared, the results are presented in terms of energy loss and maximum shear stress. The velocity and stress fields are compared with in vitro evaluations found in the literature.  相似文献   

11.
The presence of atherosclerotic plaques has been shown to be closely related to the vessel geometry. Studies on postmortem human arteries and on the experimental animal show positive correlation between the presence of plaque thickness and low shear stress, departure of unidirectional flow and regions of flow separation and recirculation. Numerical simulations of arterial blood flow and direct blood flow velocity measurements by magnetic resonance imaging (MRI) are two approaches for the assessment of arterial blood flow patterns. In order to verify that both approaches give equivalent results magnetic resonance velocity data measured in a compliant anatomical carotid bifurcation model were compared to the results of numerical simulations performed for a corresponding computational vessel model. Cross sectional axial velocity profiles were calculated and measured for the midsinus and endsinus internal carotid artery. At both locations a skewed velocity profile with slow velocities at the outer vessel wall, medium velocities at the side walls and high velocities at the flow divider (inner) wall were observed. Qualitative comparison of the axial velocity patterns revealed no significant differences between simulations and in vitro measurements. Even quantitative differences such as for axial peak flow velocities were less than 10%. Secondary flow patterns revealed some minor differences concerning the form of the vortices but maximum circumferential velocities were in the same range for both methods.  相似文献   

12.
To evaluate the local hemodynamic implications of coronary artery balloon angioplasty, computational fluid dynamics (CFD) was applied in a group of patients previously reported by [Wilson et al. (1988), 77, pp. 873-885] with representative stenosis geometry post-angioplasty and with measured values of coronary flow reserve returning to a normal range (3.6 +/- 0.3). During undisturbed flow in the absence of diagnostic catheter sensors within the lesions, the computed mean pressure drop delta p was only about 1 mmHg at basal flow, and increased moderately to about 8 mmHg for hyperemic flow. Corresponding elevated levels of mean wall shear stress in the midthroat region of the residual stenoses, which are common after angioplasty procedures, increased from about 60 to 290 dynes/cm2 during hyperemia. The computations (Ree approximately equal to 100-400; alpha e = 2.25) indicated that the pulsatile flow field was principally quasi-steady during the cardiac cycle, but there was phase lag in the pressure drop-mean velocity (delta p - u) relation. Time-averaged pressure drop values, delta p, were about 20 percent higher than calculated pressure drop values, delta ps, for steady flow, similar to previous in vitro measurements by Cho et al. (1983). In the throat region, viscous effects were confined to the near-wall region, and entrance effects were evident during the cardiac cycle. Proximal to the lesion, velocity profiles deviated from parabolic shape at lower velocities during the cardiac cycle. The flow field was very complex in the oscillatory separated flow reattachment region in the distal vessel where pressure recovery occurred. These results may also serve as a useful reference against catheter-measured pressure drops and velocity ratios (hemodynamic endpoints) and arteriographic (anatomic) endpoints post-angioplasty. Some comparisons to previous studies of flow through stenoses models are also shown for perspective purposes.  相似文献   

13.
This paper presents Computational fluid dynamic (CFD) analysis of blood flow in three different 3-D models of left coronary artery (LCA). A comparative study of flow parameters (pressure distribution, velocity distribution and wall shear stress) in each of the models is done for a non-Newtonian (Carreau) as well as the Newtonian nature of blood viscosity over a complete cardiac cycle. The difference between these two types of behavior of blood is studied for both transient and steady states of flow. Additionally, flow parameters are compared for steady and transient boundary conditions considering blood as non-Newtonian fluid. The study shows that the highest wall shear stress (WSS), velocity and pressure are found in artery having stenosis in all the three branches of LCA. The use of Newtonian blood model is a good approximation for steady as well as transient blood flow boundary conditions if shear rate is above 100 s-1. However, the assumption of steady blood flow results in underestimating the values of flow parameters such as wall shear stress, pressure and velocity.  相似文献   

14.
With an objective to understanding arteriosclerosis, the blood flow in a cylindrical tube with local constriction is analysed. The cross-section of the tube is an ellipse, the axes of which are in an arbitrary position with respect to the axis of the tube. Blood is taken to be a Newtonian and homogeneous fluid. The cross-sectional area varies slowly with the longitudinal distance and the area change is so adjusted to take account of stenosis. The transverse velocity field and the effects of inertia on the primary velocity and pressure distribution are calculated to a first order in the relevant small parameter and effects of asymmetry on the wall shear stress and impedance are presented.  相似文献   

15.
Magnetic fields are increasingly being utilized in endoscopy and gastric transport control. In this regard, the present study investigates the influence of a transverse magnetic field in the transient peristaltic rheological transport. An electrically-conducting couple stress non-Newtonian model is employed to accurately simulate physiological fluids in peristaltic flow through a sinusoidally contracting channel of finite length. This model is designed for computing the intra-bolus oesophageal and intestinal pressures during the movement of food bolus in the digestive system under magneto-hydro-dynamic effects. Long wavelength and low Reynolds number approximations have been employed to reduce the governing equations from nonlinear to linear form, this being a valid approach for creeping flows which characterizes physiological dynamics. Analytical approximate solutions for axial velocity, transverse velocity, pressure gradient, local wall shear stress and volumetric flow rate are obtained for the non-dimensional conservation equations subject to appropriate boundary conditions. The effects of couple stress parameter and transverse magnetic field on the velocity profile, pressure distribution, local wall shear stress and the averaged flow rate are discussed with the aid of computational results. The comparative study of non-integral and integral number of waves propagating along the finite length channel is also presented. Magnetic field and non-Newtonian properties are found to strongly influence peristaltic transport.  相似文献   

16.
The unsteady blood flow through an indented tube with atherosclerosis in the presence of mild stenosis has been studied numerically by finite difference method. The effects of hematocrit, frequency parameter, height of stenosis, parameter determining the shape of the constriction on velocity field, volumetric flow rate, pressure gradient of the fluid in stenotic region and wall shear stress at the surface of stenosis are obtained and shown graphically.  相似文献   

17.
P Gaehtgens 《Biorheology》1987,24(4):367-376
Pressure-velocity relations were obtained in vertical and horizontal glass tubes (I.D. 26 to 83 micron) perfused with normal human blood at feed hematocrits between 0.25 and 0.65. Perfusion pressures used corresponded to wall shear stresses up to 0.27 dyn cm-2. Red cell velocity measurements were made both immediately following implementation of perfusion pressure (with red cells still disaggregated) and in a steady state situation (with red cells aggregated). Analysis of the slopes of the linear relations between perfusion pressure and velocity showed apparent viscosity to decrease with the manifestation of red cell aggregation. In horizontal tubes, sedimentation and aggregation occurred simultaneously, and apparent viscosity increased due to axial asymmetry of cell concentration. Evidence for a yield shear stress (flow stagnation at positive driving pressure) was not observed.  相似文献   

18.
Quantitative measurements of intravascular microscopic dynamics, such as absolute blood flow velocity, shear stress and the diffusion coefficient of red blood cells (RBCs), are fundamental in understanding the blood flow behavior within the microcirculation, and for understanding why diffuse correlation spectroscopy (DCS) measurements of blood flow are dominantly sensitive to the diffusive motion of RBCs. Dynamic light scattering‐optical coherence tomography (DLS‐OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution‐constrained three‐dimensional volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS‐OCT to measure both RBC velocity and the shear‐induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile and the degree of blunting decreases with increasing vessel diameter. The measured shear‐induced diffusion coefficient was proportional to the flow shear rate with a magnitude of ~0.1 to 0.5 × 10?6 mm2. These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.   相似文献   

19.
In the present paper, a closely coupled numerical and experimental investigation of pulsatile flow in a prototypical stenotic site is presented. Detailed laser Doppler velocimetry measurements upstream of the stenosis are used to guide the specification of velocity boundary conditions at the inflow plane in a series of direct numerical simulations (DNSs). Comparisons of the velocity statistics between the experiments and DNS in the post-stenotic area demonstrate the great importance of accurate inflow conditions, and the sensitivity of the post-stenotic flow to the disturbance environment upstream. In general, the results highlight a borderline turbulent flow that sequentially undergoes transition to turbulence and relaminarization. Before the peak mass flow rate, the strong confined jet that forms just downstream of the stenosis becomes unstable, forcing a role-up and subsequent breakdown of the shear layer. In addition, the large-scale structures originating from the shear layer are observed to perturb the near wall flow, creating packets of near wall hairpin vortices.  相似文献   

20.

In order for computational fluid dynamics to provide quantitative parameters to aid in the clinical assessment of type B aortic dissection, the results must accurately mimic the hemodynamic environment within the aorta. The choice of inlet velocity profile (IVP) therefore is crucial; however, idealised profiles are often adopted, and the effect of IVP on hemodynamics in a dissected aorta is unclear. This study examined two scenarios with respect to the influence of IVP—using (a) patient-specific data in the form of a three-directional (3D), through-plane (TP) or flat IVP; and (b) non-patient-specific flow waveform. The results obtained from nine simulations using patient-specific data showed that all forms of IVP were able to reproduce global flow patterns as observed with 4D flow magnetic resonance imaging. Differences in maximum velocity and time-averaged wall shear stress near the primary entry tear were up to 3% and 6%, respectively, while pressure differences across the true and false lumen differed by up to 6%. More notable variations were found in regions of low wall shear stress when the primary entry tear was close to the left subclavian artery. The results obtained with non-patient-specific waveforms were markedly different. Throughout the aorta, a 25% reduction in stroke volume resulted in up to 28% and 35% reduction in velocity and wall shear stress, respectively, while the shape of flow waveform had a profound influence on the predicted pressure. The results of this study suggest that 3D, TP and flat IVPs all yield reasonably similar velocity and time-averaged wall shear stress results, but TP IVPs should be used where possible for better prediction of pressure. In the absence of patient-specific velocity data, effort should be made to acquire patient’s stroke volume and adjust the applied IVP accordingly.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号