首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation of a novel series of N-aryl CBI derivatives in which an aryl substituent could be used to predictably modulate the reactivity of the resulting CC-1065/duocarmycin alkylation subunit analogue is detailed and its extension to a unique series of N-alkenyl derivatives is reported. The N-aryl derivatives were found to be exceptionally stable and to exhibit well-defined relationships between structure (X-ray), reactivity, and cytotoxic potency. When combined with the results of past investigations, the studies define a fundamental parabolic relationship between reactivity and cytotoxic potency. The parabolic relationship establishes that compounds in the series should possess sufficient stability to reach their biological target (DNA), yet maintain sufficient reactivity to effectively alkylate DNA upon reaching the biological target. Just as importantly, it defined this optimal balance of stability and reactivity that may be used for future design of related analogues. Notably, the duocarmycin SA and yatakemycin alkylation subunit lies at this optimal stability/reactivity position, whereas the CC-1065 and duocarmycin A alkylation subunits lie progressively and significantly to the left of this optimal position (too reactive).  相似文献   

2.
CC-1065 is a unique antitumor antibiotic produced by Streptomyces zelensis. The potent cytotoxic effects of this drug are thought to be due to its ability to form a covalent adduct with DNA through N3 of adenine. Thermal treatment of CC-1065-DNA adducts leads to DNA strand breakage. We have shown that the CC-1065 structural modification of DNA that leads to DNA strand breakage is related to the primary alkylation site on DNA. The thermally induced DNA strand breakage occurs between the deoxyribose at the adenine covalent binding site and the phosphate on the 3' side. No residual modification of DNA is detected on the opposite strand around the CC-1065 lesion. Using the early promoter element of SV40 DNA as a target, we have examined the DNA sequence specificity of CC-1065. A consensus sequence analysis of CC-1065 binding sites on DNA reveals two distinct classes of sequences for which CC-1065 is highly specific, i.e., 5'PuNTTA and 5'AAAAA. The orientation of the DNA sequence specificity relative to the covalent binding site provides a basis for predicting the polarity of drug binding in the minor groove. Stereo drawings of the CC-1065-DNA adduct are proposed that are predictive of features of the CC-1065-DNA adduct elucidated in this investigation.  相似文献   

3.
A series of CBI analogues of the duocarmycins and CC-1065 exploring substituent effects within the first indole DNA binding subunit are detailed. Substitution at the indole C5 position led to cytotoxic potency enhancements that are > or =1000-fold, providing simplified analogues containing a single DNA binding subunit that are more potent (IC(50)=2-3 pM) than CBI-TMI, duocarmycin SA, or CC-1065.  相似文献   

4.
An extensive series of CBI analogues of the duocarmycins and CC-1065 exploring substituent effects within the first indole DNA binding subunit is detailed. In general, substitution at the indole C5 position led to cytotoxic potency enhancements that can be >/=1000-fold providing simplified analogues containing a single DNA binding subunit that are more potent (IC(50)=2-3 pM) than CBI-TMI, duocarmycin SA, or CC-1065.  相似文献   

5.
The DNA base pair preferences of the antitumor antibiotic CC-1065 and two analogs of CC-1065 were studied by following the rate of covalent bond formation (N-3 adenine adduct) with DNA oligomers containing the 5'NNTTA* and 5'NNAAA* sequences (N = nucleotide, A* = alkylated adenine). The rate of adduct formation of CC-1065 is greatly affected by DNA base changes at the fourth and fifth positions of the bonding site for the 5'NNAAA sequences, but not the 5'NNTTA sequences. However, an analog of CC-1065 containing the same alkylating moiety as CC-1065, but not the third fused ring system or additional methylene and oxygen substituents, shows similar rates of adduct formation for all sequences. A second analog of CC-1065 containing three fused ring systems, but not the methylene and oxygen substituents of CC-1065, shows rates of adduct formation with the same sequence dependence as CC-1065, but does not distinguish between the sequences to the degree shown by CC-1065. Adduct formation of CC-1065, but not the analogs, competes with a reversibly bound species. Thymine bases to the 3' side of a potentially reactive adenine or a cytosine base at the fifth position from the bonding adenine create reversible binding sites which decrease the rate of adduct formation of CC-1065. The sequence 5'GCGAATT binds CC-1065 only reversibly. This sequence can compete for CC-1065 with covalent bonding sequences if the sites are located in different oligomers, or if the sites are located (overlapped or not overlapped) in the same oligomer. The results of these competitive binding experiments suggest that the transfer of CC-1065 from the reversible binding site to the covalent bonding site with both sites located on a single DNA duplex, not overlapped, occurs through an equilibrium of CC-1065 in solution, not by migration of CC-1065 in the minor groove.  相似文献   

6.
Covalent DNA adducts of the antitumor antibiotic CC-1065 and its analogues undergo a retrohomologous Michael reaction in aqueous/organic solvent mixtures to regenerate the initial cyclopropylpyrroloindole (CPI) structure and, presumably, intact DNA. This reaction, which at higher temperatures competes with depurination of the N3-alkylated adenine, also occurs to a significant extent at 37 degrees C in neutral aqueous solution. Tritium-labeled adozelesin, covalently bonded to a 3-kilobase DNA restriction fragment which was exhaustively extracted to remove unbonded drug, was efficiently transferred to a 1-kilobase fragment upon coincubation for 20 h at 37 degrees C in aqueous buffer. Covalent adducts of adozelesin, but not CC-1065, on calf thymus DNA were cytotoxic to L1210 cells after incubation for 3 days at 37 degrees C, indicating that reversal of DNA alkylation can mediate potent cellular effects for simplified CC-1065 analogues.  相似文献   

7.
CC-1065 is a potent antitumor antibiotic produced by Streptomyces zelensis. The drug binds covalently through N-3 of adenine and lies within the minor groove of DNA. Previous studies indicated that CC-1065 reacted with adenine in DNA to yield a thermally labile product that could be used to reveal its sequence specificity. These studies also provided insight into a DNA sequence (5'-CGGAGTTAGGGGCG-3') which should bind one molecule of CC-1065 in an unambiguous manner. This sequence, which contains the CC-1065 adenine binding site within the sequence 5'-TTA-3' was chemically synthesized together with the complementary strand. CC-1065 reacted with the oligoduplex to give an adduct that maintained the B-DNA form and had a final CD spectrum similar to those of the CC-1065 complexes formed with calf thymus DNA. The above 14mer was 5' end-labelled with 32P, annealed with its complementary strand, reacted with CC-1065 and heated. Drug-mediated strand breakage was evaluated on a sequencing gel. A single break occurred in the labelled strands to give a fragment that migrated as an 8.5mer; subsequent piperidine treatment produced a fragment that migrated as a 7mer, which is the size expected from the known binding of CC-1065 at adenine in 5'-TTA-3' sequences.  相似文献   

8.
The design, construction, and characterization of a site-directed CC-1065-N3-adenine adduct in a 117 base pair segment of M13mpI DNA are described. CC-1065 is an extremely potent antitumor antibiotic produced by Streptomyces zelensis. Previous studies have demonstrated that the cyclopropyl ring of CC-1065 reacts quite specifically with N3 of adenine in double-stranded DNA to form a CC-1065-DNA adduct. Following alkylation, the drug molecule lies snugly within the minor groove of DNA, overlapping with five base pairs for which a marked sequence preference exists [Hurley, L. H., Reynolds, V. R., Swenson, D. H., Petzold, G. L., & Scahill, T. A. (1984) Science (Washington, D.C.) 226, 843-844]. On the basis of the unique characteristics of the reaction of CC-1065 with DNA and the structure of the resulting DNA adduct, we have designed a general strategy to construct a site-directed CC-1065-DNA adduct in a restriction fragment. The presence of unique AluI and HaeIII restriction enzymes sites on each side of a high-affinity CC-1065 binding sequence (5'-GATTA) permitted the preparation of a partial duplex DNA molecule containing the CC-1065 binding sequence in the duplex DNA region. Since CC-1065 only binds to duplex DNA, potential CC-1065 binding sequences in the long single-stranded regions were protected from drug binding during the construction process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A theoretical modelling is presented of the covalent adducts of the antitumor agent CC-1065 with B-DNA. The optimal complexes are obtained by energy minimisation, taking into account full structure flexibility, including the flexible rings of the ligand and DNA. The binding preference of CC-1065 with respect to base sequence is studied. The results obtained elucidate the origin of the preference for two AT base pairs on the 5'side of the modified adenine. The modifications of the DNA structure upon ligand covalent binding are discussed.  相似文献   

10.
Cameron L  Thompson AS 《Biochemistry》2000,39(17):5004-5012
Adozelesin (formerly U73975, The Upjohn Co.) is a monofunctional DNA alkylating analogue of the antitumor antibiotic (+)-CC-1065. Adozelesin consists of a cyclopropa[c]pyrrolo[3,2-e]indol-4(5H)-one (CPI) alkylating subunit of (+)-CC-1065 and a indole and benzofurans subunit replacing the more complex pyrroloindole B and C subunits, respectively, of (+)-CC-1065. Previous studies have shown that adozelesin forms a reversible covalent DNA duplex adduct via a reaction between the N3 of adenine and the cyclopropyl of the cyclopropapyrroloindole (CPI) subunit. Gel electrophoresis studies have shown that adozelesin, like all the monofunctional (CPI)-based antitumor antibiotics, has a sequence preference for 5'-TTA-3' [the asterisk () indicates covalently modified base]. Molecular-modeling studies have shown that the bound adozelesin ligand spans a total of five base pairs including the modified adenine. These studies have also indicated that, owing to the orientation of the ligand within the base minor groove, there should be an overall preference for sequences rich in A.T base pairs, thus avoiding steric crowding around the exocyclic NH(2) of any guanines present. In this study, we have prepared and studied, by high-field NMR and restrained molecular mechanics (rMM) and dynamics (rMD), the duplex adduct formed between adozelesin and 5'-CGTAAGCGCTTACG-3'. Previous molecular-modeling studies suggested that this sequence should be less preferred, since the two GC base pairs should lead to extensive steric crowding within the adduct, and this hypothesis has, however, never been supported by DNA-footprinting data. (1)H NMR of the adozelesin duplex adduct has reveals that, although Watson-Crick base pairing is maintained throughout the DNA duplex, there is significant distortion around the central base pairs. This distortion is the result of strong hydrogen-bonding between the amide linker of the indole and benzofuran subunits, and the carbonyl of a central thymine base and second, weaker, hydrogen bond to the exocyclic NH(2) of the central guanine was also observed. (1)H NMR and rMD also indicate that, to accommodate this hydrogen-bond system, the bound adozelesin is not positioned centrally within the minor groove but pushed toward the modified DNA strand. Previous studies on the dimeric CPI analogue bizelesin have indicated the important role the ureylene linker plays in the DNA binding. This study indicates that a similar situation exists in the reaction of adozelesin with double-stranded DNA and provides a possible explanation into the unpredicted sequence selectivity of these ligands.  相似文献   

11.
In this work, we report on the binding of the novel antitumor agent CC-1065 to poly(dA).poly(dT) and to mixtures of dA and dT oligomers as determined by electronic absorption and circular dichroism (CD) methods. In addition, the DNA binding properties of CC-1065 and its binding mechanism are compared to those of netropsin. CC-1065 binds to the polymer by at least three mechanisms to produce one irreversibly and two reversibly bound species. One reversibly bound species is moderately stable, but in time (days), it converts to the irreversibly bound species. Both of these species bind within the minor groove of the polymer and exhibit intense CC-1065 induced CD spectra. The other reversibly bound species does not acquire an induced CD. CC-1065 forces B-form duplex formation between mixtures of single strand dA and dT oligomers and binds irreversibly to the duplexes without showing the presence of an intermediate, reversibly bound species. The induced CD increases with increasing length of the oligomer, from the 5-mer (barely detectable CD) to the 14-mer (intense CD). The 7-, 10- and 14-mer mixtures bind about 1, between 1 and 2, and between 2 and 3 CC-1065 molecules, respectively. Computer graphic models of the CC-1065-DNA complex show that the covalent adduct of CC-1065 and unreacted CC-1065 can attain the same close van der Waals contacts between adenine C2 hydrogens and antibiotic CH groups that were observed in the crystal structure of the netropsin-DNA complex. These contacts may account for the dA-dT base pair binding specificity of CC-1065 and for the stability of the reversibly bound CC-1065 species.  相似文献   

12.
CC-1065 is a potent natural antitumor antibiotic that binds non-covalently and covalently (N-3 adenine adduct) in the minor groove of B-form DNA. Synthetic analogs of CC-1065 do not exhibit the delayed death toxicity of CC-1065 and are efficacious anticancer agents, some of them curative in murine tumor models. In an attempt to understand the different biological properties of CC-1065 and analogs, we have determined the following quantities for CC-1065, enantiomeric CC-1065, and three biologically active analogs and their enantiomers: the calf thymus DNA (CT-DNA) induced molar ellipticity of the adduct (or how rigidly the adduct is held in the right-hand conformation of the minor groove); the stability of the adduct with respect to long incubation times and to digestion by snake venom phosphodiesterase I (SVPD); the stabilizing effect on the CT-DNA helix of the covalently and non-covalently bound species with respect to thermal melting; and the CT-DNA binding/bonding (non-covalent/covalent) profiles at a low molar ratio of nucleotide to drug. The major observations from these studies are as follows: (i) molecules which show large DNA interaction parameters, stable adducts, and significant non-covalent binding exhibit delayed death toxicity; (ii) molecules which show intermediate DNA interaction parameters and stable adducts, but do not show significant non-covalent binding, do not exhibit delayed death toxicity and are biologically active; (iii) molecules which show small DNA interaction parameters and unstable DNA adducts are biologically inactive. The results suggest that a window exists in the affinity for the minor groove of DNA wherein an analog may possess the correct balance of toxicity and activity to make a useful anticancer agent. Outside of this window, the analog causes delayed deaths or has no significant biological activity.  相似文献   

13.
(+)-CC -1065 is biologically potent DNA-reactive antitumor antibiotic produced by Streptomyces zelensis. This antibiotic covalently modifies DNA by alkylation of N-3 of a adenine in the minor groove. As a Structural consequence of covalent modification of DNA, the helix axis id bent into the minor groove. The drug-induced bending of DNA has similarities to intrinsic. A-tract bending and the 3′ adenine of A-tracts shows a unique reactivity to alkylation by (+) -CC-1065. Upon covalent modification of A-tracts, the magnitude of bending is increased and helix is stiffened. Using high-field NMR, hydroxyl-radical footprinting and gel electrophoresis, the molecular basis for the high reactivity of the bonding sequence 5′ - AGTTA* (an asterisk indicates the covalent modification site) to (+)-CC-1065 has been shown to involve the inherent conformational flexibility of this sequence. Furthermore, these studies also demonstrate that after alkylation the drug-induced bending is focused over the TT region. By analogy with the junction bend model for A-tracts, a ‘truncated junction bend model’ is proposed for this structure. Last, the application of (+)-CC-1065 entrapped/induced bending of DNA as a probe for the Sp1-induced bending of the 21-base-pair repeat an Mu transpose bending of the att L3 sequence is described.  相似文献   

14.
We describe sequence-specific alkylation in the minor groove of double-stranded DNA by a hybridization-triggered reactive group conjugated to a triplex forming oligodeoxyribonucleotide (TFO) that binds in the major groove. The 24 nt TFOs (G/A motif) were designed to form triplexes with a homopurine tract within a 65 bp target duplex. They were conjugated to an N 5-methyl-cyclopropapyrroloindole (MCPI) residue, a structural analog of cyclopropapyrroloindole (CPI), the reactive subunit of the potent antibiotic CC-1065. These moieties react in the DNA minor groove, alkylating adenines at their N3 position. In order to optimize alkylation efficiency, linkers between the TFO and the MCPI were varied both in length and composition. Quantitative alkylation of target DNA was achieved when the dihydropyrroloindole (DPI) subunit of CC-1065 was incorporated between an octa(propylene phosphate) linker and MCPI. The required long linker traversed one strand of the target duplex from the major groove-bound TFO to deliver the reactive group to the minor groove. Alkylation was directed by relative positioning of the TFOs. Sites in the minor groove within 4-8 nt from the end of the TFO bearing the reactive group were selectively alkylated.  相似文献   

15.
CC-1065 is a very potent antitumor antibiotic capable of covalent and noncovalent binding to the minor groove of naked DNA. Upon thermal treatment, covalent adducts formed between CC-1065 and DNA generate strand breaks [Reynolds, R. L., Molineux, I. J., Kaplan, D.J., Swenson, D.H., & Hurley, L.H. (1985) Biochemistry 24, 6228-6237]. We have shown that this molecular damage can be detected following CC-1065 treatment of mammalian whole cells. Using alkaline sucrose gradient analysis, we observe thermally induced breakage of [14C]thymidine-prelabeled DNA from drug-treated African green monkey kidney BSC-1 cells. Very little damage to cellular DNA by CC-1065 can be detected without first heating the drug-treated samples. CC-1065 can also generate heat-labile sites within DNA during cell lysis and heating, subsequent to the exposure of cells to drug, suggesting that a pool of free and noncovalently bound drug is available for posttreatment adduct formation. This effect was controlled for by mixing [3H]thymidine-labeled untreated cells with the [14C]thymidine-labeled drug-treated samples. The lowest drug dose at which heat-labile sites were detected was 3 nM CC-1065 (3 single-stranded breaks/10(6) base pairs). This concentration reduced survival of BSC-1 cells to 0.1% in cytotoxicity assays. The generation of CC-1065-induced lesions in cellular DNA is time dependent (the frequency of lesions caused by a 60 nM treatment reaching a plateau at 2 h) and is not readily reversible. The induction of heat-labile sites in cellular DNA was confirmed by gel electrophoretic analyses of the damage to intracellular simian virus 40 (SV40) DNA in SV40-infected BSC-1 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In vitro and in vivo DNA bonding by the CC-1065 analogue U-73975   总被引:1,自引:0,他引:1  
K L Weiland  T P Dooley 《Biochemistry》1991,30(30):7559-7565
CC-1065, a cyclopropylpyrroloindole (CPI), is a highly potent antitumor DNA-alkylating agent. We have devised a simple method to detect CPI bonding sites on double-stranded DNA (dsDNA). The technique utilizes a modified form of bacteriophage T7 polymerase, Sequenase, to synthesize a radiolabeled nascent strand from dsDNA that has been reacted in vitro with the CC-1065 analogue U-73975 (adozelesin). The reaction products were electrophoresed on sequencing gels containing 8 M urea and visualized by autoradiography. The transit of this DNA polymerase is inhibited at the sites where CPIs are bound to the template strand. Thus, the enzyme stalls or stops at the nucleotide immediately adjacent to the modified base, resulting in the accumulation of DNA strands at these sites and in diminished read-through beyond these sites in a set of CPI-treated DNA molecules. The precise positions of polymerase inhibition can be determined by comparison of CPI-treated and unreacted DNA reactions. This modified dideoxynucleotide sequencing technique has been used to establish the sequence selectivity of U-73975. Approximately 1 kilobase of dsDNA has been analyzed to derive a consensus canonical bonding sequence, 5'(T/A)-T/A-T-A*-(C/G)-(G), where A* is the site of U-73975 alkylation and parentheses denote deoxynucleotide preferences. Noncanonical sites were also found at poly(A) sites. This technique yielded a consensus sequence for U-73975 bonding that is similar to, but not identical with, the published consensus obtained for CC-1065 by a modified Maxam and Gilbert sequencing technique. We have also examined the bonding of [3H]U-73975 to the DNA of viable cultured mammalian cells, using gel electrophoresis and autoradiographic techniques.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
C H Lin  J M Beale  L H Hurley 《Biochemistry》1991,30(15):3597-3602
(+)-CC-1065 is an extremely potent antitumor agent produced by Streptomyces zelensis. The potent effects of (+)-CC-1065 and its alkylating analogues are thought to be due to the formation of a covalent adduct through N3 of adenine in DNA. It has been previously postulated, on the basis of modeling studies, that a phosphate may be involved in stabilization of the adduct and in acid catalysis of this reaction. In this study, using 1H NMR in combination with 17O-labeled water and phosphate, we demonstrate the involvement of a bridging water molecule between a phenolic proton on the alkylating subunit of (+)-CC-1065 and an anionic oxygen in the phosphate on the noncovalently modified strand of DNA. In addition, a second ordered water molecule associated with one of the protons on N6 of the covalently modified adenine is also identified. This structure has important implications for catalytic activation of the covalent reaction between (+)-CC-1065 and DNA and, consequently, the molecular basis for sequence-selective recognition of DNA by the alkylating subunit of (+)-CC-1065. On the basis of the example described here, the use of 1H NMR in 17O-labeled water may be a powerful probe to examine other structures and catalytic processes for water-mediated hydrogen-bonded bridges that occur between small molecules and DNA or enzymes.  相似文献   

18.
The calf thymus DNA (CT-DNA) and poly(dI-dC).poly(dI-dC) binding properties of the natural antitumor antibiotic CC-1065 and selected analogs of CC-1065 were studied by circular dichroism (CD) and absorbance methods. The results indicate that the intense long wavelength DNA-induced CD band of these molecules originates from a chiral electronic transition which is delocalized over the whole molecule. Both the covalently bound species (N-3 adenine adduct) and the reversibly bound species exhibit the characteristic spectral behavior of an inherently dissymmetric chromophore when these agents bind within the minor groove of B-form DNA. This mechanism of optical activity accounts for why CC-1065 shows a weak CD in buffer but a very intense induced CD at long wavelength when bound to DNA, why the intensity of the induced CD of CC-1065 analogs depends upon how many fused ring systems the analog contains, and why covalently bound analogs having the mirror image configuration of the natural configuration also exhibit an intense positive induced CD band at long wavelength.  相似文献   

19.
CC-1065 is an extremely potent antitumor antibiotic that forms a well-defined adduct with DNA in which the molecule lies within the minor groove and is covalently attached through N3 of adenine. Addition of CC-1065 to human fibroblast cells produced a prolonged depletion of the nicotinamide adenine dinucleotide (NAD) pool even at extremely low drug concentrations (0.01 microgram/mL). The depletion of NAD by CC-1065 was blocked by 3-aminobenzamide, which is consistent with a NAD depletion mechanism involving poly-(ADP-ribose) synthesis in response to a repair-induced DNA strand breakage event. Significantly, similar extents of NAD depletion were also evident in xeroderma pigmentosum cells of complementation groups A and D following exposure to CC-1065. Since this NAD depletion is presumably associated with repair-induced incision, the repair of CC-1065-DNA adducts can probably take place by a pathway distinct from that involved in repair of more conventional bulky DNA adducts. The prolonged depletion of NAD, even at low doses of drug, suggests that CC-1065 causes DNA damage that results in a delay or block in DNA excision repair between the excision and ligation steps.  相似文献   

20.
The factors influencing the binding of CC-1065 to DNA were examined using racemic analogs with varying chain lengths. The ability of these agents to bind DNA appeared to be related to cytotoxic potency, however this did not appear to be a direct quantitative correlation. Two enantiomers of a bis-indole analog of CC-1065 were studied for DNA binding and cytotoxic activity. The agent with the same stereochemical configuration as CC-1065 was a potent cytotoxin, but its enantiomer was essentially inactive. Both enantiomers showed significant binding to DNA, but the biologically less active isomer showed less overall binding. In all cases, the agents preferred AT-rich DNA, and all bound to similar regions in DNA as evidenced by positions of drug-initiated thermal breaks in single end-labelled fragments of phi X 174RF DNA. The overall similarity in site specificity for binding of the structurally diverse agents suggests that much of the specificity observed in binding of the agent to DNA lies in the DNA itself. Thus, it may be difficult to change minor groove specificity for agents of this type simply by designing structures that can encompass guanine or cytosine residues. Other modifications, such as changing the specificity of the alkylating moiety, may be required to achieve this goal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号