共查询到20条相似文献,搜索用时 0 毫秒
1.
植物蛋白激酶介导的非生物胁迫和激素信号转导途径的研究进展 总被引:1,自引:0,他引:1
干旱、盐渍、低温和高温等非生物胁迫严重影响植物的生长发育和作物的产量。在长期的进化过程中,植物逐渐形成了对外部刺激快速感知和主动适应的能力,其中植物体内逆境信号的传递在植物快速感知外部刺激和主动适应非生物胁迫过程中起着非常重要的作用。蛋白激酶和蛋白磷酸酶催化的蛋白质磷酸化和去磷酸化是植物体内存在的最普遍且最重要的信号转导调节方式。其中,蛋白激酶的主要作用是将ATP或GTP上的γ磷酸基团转移到特定的底物蛋白上,使蛋白磷酸化,被磷酸化的蛋白发挥相应的生理功能。近年来,利用生物技术和基因工程等手段从细胞、分子水平上研究有关蛋白激酶的抗逆机理,通过基因沉默、基因过表达等策略提高植物的抗逆性成为国内外抗逆分子生物学与分子育种学研究的热点。本文主要对植物蛋白激酶在介导非生物胁迫和激素信号通路中的作用进行综述,为进一步研究植物蛋白激酶功能提供有价值的信息。 相似文献
2.
3.
MAP kinase signal transduction pathways in plants 总被引:22,自引:2,他引:22
Peter C. Morris 《The New phytologist》2001,151(1):67-89
4.
Using biochemical techniques similar to those used by Krebs and Fischer in elucidating the cAMP kinase cascade, a protein kinase cascade has been found that represents a new pathway for signal transduction. This pathway is activated in almost all cells that have been examined by many different growth and differentiations factors suggesting control of different cell responses. At this writing, four tiers of growth factor regulated kinases, each tier represented by more than one enzyme, have been reconstitutedin vitro to form the MAP kinase cascade. Preliminary findings suggesting multiple feedback or feedforward regulation of several components in the cascade predict higher complexity than a simple linear pathway. 相似文献
5.
6.
Auxin-induced elongation of com coleoptiles is accompanied by cell wall acidification, which depends upon H+-pump activity. We tested the hypothesis that phospholipase A and a protein kinase are involved in the pathway of auxin signal transduction leading to H+ secretion, and elongation of corn coleoptiles. Initially, the pH of the bath solution at 50–100 μm from the surface of a coleoptile segment (pHo) ranged between 4.8 and 6.6 when measured with an H+-sensitive microelectrode. Twenty or 50 μM lysophosphatidylcholine, 50 μM linolenic acid or 50 μM arachidonic acid induced a decline in pHo by 0.3 to 2.1 units. The effect was blocked by 1 mM vanadate, suggesting that lysophosphatidylcholine or linolenic acid induced acidification of the apoplast by activating the H+-pump. Lysophosphatidylcholine and linolenic acid also accelerated the elongation rate of the coleoptiles. While linolenic acid and arachidonic acid, highly unsaturated fatty acids, promoted pHo decrease and coleoptile elongation, linoleic acid, oleic acid, and stearic acid, fatty acids with a lesser extent of unsaturation, had no such effects. The effects of lysophosphatidylcholine, linolenic acid, and arachidonic acid on H+ secretion were not additive to that of indoleacetic acid (IAA), suggesting that lysophospholipids, fatty acids and auxin use similar pathways for the activation of the H+-pump. The phospholipase A2 inhibitors, aristolochic acid and manoalide, inhibited the IAA-induced pHo decrease and coleoptile elongation. The general protein kinase inhibitors, H-7 or staurosporine, blocked the IAA- or lysophosphatidylcholine-induced decrease in pHo. H-7 also inhibited the coleoptile elongation induced by IAA or lysophosphatidylcholine. These results support the hypothesis that phospholipase A is activated by auxin, and that the products of the enzyme, lysophospholipids and fatty acids, induce acidification of the apoplast by activating the H+-pump through a mechanism involving a protein kinase, which in turn promotes com coleoptile elongation. 相似文献
7.
LI Zhengyu ZHAO Xia & WEI Yuquan . Department of Gynecology Obstetrics West China Second Hospital of Sichuan University Chengdu China . Key Laboratory of Biotherapy of Human Diseases of Ministry of Education West China Hospital of Sichuan university Chengdu China 《中国科学:生命科学英文版》2004,47(2):107-114
With progressing recognition of apoptosis in bio-logical and medical sciences, the apoptotic signal transduction has rapidly become a dominant project to reveal the molecular mechanisms of apoptotic process. A lot of researches about apoptotic signal transduction have showed the expression of heat shock proteins was closely correlated with cell growth and differen-tiation, and involved in the regulation of apoptosis in different signal transduction pathways. Here we re-view the effects of hsps… 相似文献
8.
促分裂原激活的蛋白激酶(MAPK)信号传导通路的研究进展 总被引:12,自引:0,他引:12
MAPK信号传导通路在真核生物细胞的生化和分化、细胞周期调节和细胞凋亡过程中发挥着重要的作用。生物化学研究和分子生物学鉴定表明:在酵母和哺乳动物细胞中MAPK信号传导通路都有一个保守的三组分激活模件,该模件内的激酶引发了一系列的磷酸化级联反应。了解MAPK信号传导通路的组成部分、调控方式和作用机制,有助于对因信号传导通路的调节失控而引起的疾病进行预防和治疗。 相似文献
9.
蛋白磷酸酶(protein phosphatase,PP)是蛋白质可逆磷酸化调节机制中的关键酶,而PP2C磷酸酶是一类丝氨酸/苏氨酸残基蛋白磷酸酶,是高等植物中最大的蛋白磷酸酶家族,包含76个家族成员,广泛存在于生物体中。迄今为止,在植物体内已经发现了4种PP2C蛋白磷酸酶。蛋白激酶和蛋白磷酸酶协同催化蛋白质可逆磷酸化,在植物体内信号转导和生理代谢中起着重要的调节作用,蛋白质的磷酸化几乎存在于所有的信号转导途径中。大量研究表明,PP2Cs参与多条信号转导途径,包括PP2C参与ABA调控,对干旱、低温、高盐等逆境胁迫的响应,参与植物创伤和种子休眠或萌发等信号途径,其调控机制不同,但酶催化活性都依赖于Mg2+或Mn2+的浓度。植物PP2C蛋白的C端催化结构域高度保守,而N端功能各异。文中还综述了高等植物PP2C的分类、结构、ABA受体与PP2Cs蛋白互作、PP2C基因参与ABA信号途径以及其他逆境信号转导途径的研究进展。 相似文献
10.
The study about apoptotic signal transductions has become a project to reveal the molecular mechanisms of apoptosis. Heat
shock proteins (hsps), which play an important role in cell growth and apoptosis, have attracted great attentions. A lot of
researches have showed there is a hsps superfamily including hsp90, hsp70, hsp60 and hsp27, etc., which regulates the biological
behaviors of cells, particularly apoptotic signal transduction in Fas pathway, JNK/SAPK pathway and caspases pathway at different
levels, partly by the function of molecular chaperone. 相似文献
11.
Mitogen-activated protein kinase (MAPK) pathways transduce a large variety of external signals in mammals, unicellular eukaryotes, and plants. In recent years, plant MAPK pathways have attracted increasing interest resulting in the isolation of a large number of different components. Studies on the function of these components have revealed that MAPKs play important roles in the response to a broad variety of stresses, but also in the signaling of plant hormones and the cell cycle. Besides giving an update on recent results, the success and logic of MAPK-based signal transduction cascades is discussed. 相似文献
12.
Böhm M Schröder HC Müller IM Müller WE Gamulin V 《Biology of the cell / under the auspices of the European Cell Biology Organization》2000,92(2):95-104
Our recent data suggest that during auto- and allograft recognition in sponges (Porifera), cytokines are differentially expressed. Since the mitogen-activated protein kinase (MAPK) signal transduction modulates the synthesis and release of cytokines, we intended to identify one key molecule of this pathway. Therefore, a cDNA from the marine sponge Suberites domuncula encoding the MAPK was isolated and analyzed. Its encoded protein is 366 amino acids long (calculated Mr 42 209), has a TGY dual phosphorylation motif in protein kinase subdomain VIII and displays highest overall similarity to the mammalian p38 stress activated protein kinase (SAPK2), one subfamily of MAPKs. The sponge protein was therefore termed p38_SD. The overall homology (identity and similarity) between p38_SD and human p38alpha (CSBP2) kinase is 82%. One feature of the sponge kinase is the absence of threonine at position 106. In human p38alpha MAPK this residue is involved in the interaction with the specific pyridinyl-imidazole inhibitor; T106 is replaced in p38_SD by methionine. Inhibition studies with the respective inhibitor SB 203580 showed that it had no effect on the phosphorylation of the p38 substrate myelin basic protein. A stress responsive kinase Krs_SD similar to mammalian Ste20 kinases, upstream regulators of p38, had already previously been found in S. domuncula. The S. domuncula p38 MAPK is phosphorylated after treatment of the animal in hypertonic medium. In contrast, exposure of cells to hydrogen peroxide, heat shock and ultraviolet light does not cause any phosphorylation of p38. It is concluded that sponges, the oldest and most simple multicellular animals, utilize the conserved p38 MAPK signaling pathway, known to be involved in stress and immune (inflammatory) responses in higher animals. 相似文献
13.
Cellular signal transduction and the reversal of malignancy 总被引:3,自引:0,他引:3
A H Lockwood S K Murphy S Borislow A Lazarus M Pendergast 《Journal of cellular biochemistry》1987,33(4):237-255
Animal cells contain only a few defined molecular systems that transduce hormonal and growth signals from the external environment to the intracellular milieu to regulate cellular growth and differentiation. Among the most ubiquitous of these "second messenger" pathways are those utilizing cyclic AMP and phosphatidylinositide turnover. The former activates protein kinase A, while the latter leads to the activation of protein kinase C and mobilization of intracellular calcium. Lesions induced by oncogenes in signal transduction systems may be responsible for the cancerous transformation of cells. In many tumor cell lines, including some transformed by the ras and sis oncogenes, activation of protein kinase A by elevation of cyclic AMP or activation of protein kinase C by addition of phorbol esters can restore many normal aspects of growth and morphology. Such "reverse transformation" is accompanied by the phosphorylation of unique cellular proteins and alterations in the phosphoinositide cycle. Molecular mechanisms by which activation of signal transduction systems can attenuate the malignant phenotype are considered in the context of cellular growth and differentiation. 相似文献
14.
Ishikawa M Soyano T Nishihama R Machida Y 《The Plant journal : for cell and molecular biology》2002,32(5):789-798
The tobacco mitogen-activated protein kinase kinase kinase NPK1 localizes to the equatorial region of phragmoplasts by interacting with kinesin-like protein NACK1. This leads to activation of NPK1 kinase at late M phase, which is necessary for cell plate formation. Until now, its localization during interphase has not been reported. We investigated the subcellular localization of NPK1 in tobacco-cultured BY-2 cells at interphase using indirect immunofluorescence microscopy and fusion to green fluorescent protein (GFP). Fluorescence of anti-NPK1 antibodies and GFP-fused NPK1 were detected only in the nuclei of BY-2 cells at interphase. Examination of the amino acid sequence of NPK1 showed that at the carboxyl-terminal region in the regulatory domain, which contains the binding site of NACK1, NPK1 contained a cluster of basic amino acids that resemble a bipartite nuclear localization signal (NLS). Amino acid substitution mutations in the critical residues in putative NLS caused a marked reduction in nuclear localization of NPK1 in BY-2 cells, indicating that this sequence is functional in tobacco BY-2 cells. We also found that the 64-amino acid sequence at the carboxyl terminus that contains NLS sequence is essential for interaction with NACK1, and that mutations in the NLS sequence prevented NPK1 from interacting with NACK1. Thus, the amino acid sequence at the carboxyl-terminal region of NPK1 has dual functions for nuclear localization during interphase and binding NACK1 in M phase. 相似文献
15.
In this study it was shown that growth factor receptors (GFR) play a crucial role in early embryogenesis of the echinoderms Hemicentrotus pulcherrimus and Clypeaster japonicus by transmitting signals to the mitogen-activated protein kinase (MAPK) pathway. The phosphorylation ratio of extracellular signal-regulated kinase 1 (ERK1) changed dynamically during early embryogenesis and showed a peak at the swimming blastula (sBl) stage. Suramin, an inhibitor of GFR, when applied during the sBl stage perturbed morphogenesis, including primary mesenchyme cell (PMC) migration, cell proliferation, archenteron elongation, spiculogenesis, pigment cell differentiation and phosphorylation of myosin light chains (MLC). Genistein, a receptor-type protein tyrosine kinase inhibitor, severely inhibited PMC migration, gastrulation and the phosphorylation of MLC. Manumycin A, a Ras inhibitor, inhibited spiculogenesis and invagination. PD98059, a MAPK/ERK kinase inhibitor, perturbed early PMC migration and pigment cell differentiation, but not spiculogenesis and gastrulation (although these two events were significantly delayed). PMC ingression was not perturbed by genistein, suramin, manumycin A or PD98059. All of the inhibitors perturbed the phosphorylation of ERK1, which was completely restored by exogenous platelet-derived growth factor (PDGF)-AB. PDGF-AB also partially restored elongation of the archenteron by restoring cell proliferation that had been perturbed by suramin. 相似文献
16.
Autism is a neurodevelopmental disorder with unknown etiology. In some cases, typically developing children regress into clinical symptoms of autism, a condition known as regressive autism. Protein kinases are essential for G-protein-coupled receptor-mediated signal transduction, and are involved in neuronal functions, gene expression, memory, and cell differentiation. Recently, we reported decreased activity of protein kinase A (PKA) in the frontal cortex of subjects with regressive autism. In the present study, we analyzed the activity of protein kinase C (PKC) in the cerebellum and different regions of cerebral cortex from subjects with regressive autism, autistic subjects without clinical history of regression, and age-matched control subjects. In the frontal cortex of subjects with regressive autism, PKC activity was significantly decreased by 57.1% as compared to age-matched control subjects (p = 0.0085), and by 65.8% as compared to non-regressed autistic subjects (p = 0.0048). PKC activity was unaffected in the temporal, parietal and occipital cortices, and in the cerebellum in both autism groups, i.e., regressive and non-regressed autism as compared to control subjects. These results suggest brain region-specific alteration of PKC activity in the frontal cortex of subjects with regressive autism. Further studies showed a negative correlation between PKC activity and restrictive, repetitive and stereotyped pattern of behavior (r= -0.084, p = 0.0363) in autistic individuals, suggesting involvement of PKC in behavioral abnormalities in autism. These findings suggest that regression in autism may be attributed, in part, to alterations in G-protein-coupled receptor-mediated signal transduction involving PKA and PKC in the frontal cortex. 相似文献
17.
Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex 总被引:1,自引:0,他引:1
Held K Pascaud F Eckert C Gajdanowicz P Hashimoto K Corratgé-Faillie C Offenborn JN Lacombe B Dreyer I Thibaud JB Kudla J 《Cell research》2011,21(7):1116-1130
Potassium (K(+)) channel function is fundamental to many physiological processes. However, components and mechanisms regulating the activity of plant K(+) channels remain poorly understood. Here, we show that the calcium (Ca(2+)) sensor CBL4 together with the interacting protein kinase CIPK6 modulates the activity and plasma membrane (PM) targeting of the K(+) channel AKT2 from Arabidopsis thaliana by mediating translocation of AKT2 to the PM in plant cells and enhancing AKT2 activity in oocytes. Accordingly, akt2, cbl4 and cipk6 mutants share similar developmental and delayed flowering phenotypes. Moreover, the isolated regulatory C-terminal domain of CIPK6 is sufficient for mediating CBL4- and Ca(2+)-dependent channel translocation from the endoplasmic reticulum membrane to the PM by a novel targeting pathway that is dependent on dual lipid modifications of CBL4 by myristoylation and palmitoylation. Thus, we describe a critical mechanism of ion-channel regulation where a Ca(2+) sensor modulates K(+) channel activity by promoting a kinase interaction-dependent but phosphorylation-independent translocation of the channel to the PM. 相似文献
18.
* The role of nitric oxide (NO) and the relationship between NO, hydrogen peroxide (H(2)O(2)) and mitogen-activated protein kinase (MAPK) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Both ABA and H(2)O(2) induced increases in the generation of NO in mesophyll cells of maize leaves, and H(2)O(2) was required for the ABA-induced generation of NO. Pretreatment with NO scavenger and nitric oxide synthase (NOS) inhibitor substantially reduced the ABA-induced production of NO, and partly blocked the activation of a 46 kDa MAPK and the expression and the activities of several antioxidant enzymes induced by ABA. Treatment with the NO donor sodium nitroprusside (SNP) also induced the activation of the MAPK, and enhanced the antioxidant defense systems. * Conversely, SNP treatment did not induce the production of H(2)O(2), and pretreatments with NO scavenger and NOS inhibitor did not affect ABA-induced H(2)O(2) production. * Our results suggest that ABA-induced H(2)O(2) production mediates NO generation, which, in turn, activates MAPK and results in the upregulation in the expression and the activities of antioxidant enzymes in ABA signaling. 相似文献
19.
LPS介导细胞激活的信号转导:从CD14到p38MAPK通路的研究 总被引:27,自引:0,他引:27
近年来对脂多糖(LPS)介导细胞激活的信号转导过程已取得实质性进展,LPS与血浆LPS结合蛋白(LBP)结合被运输到单核巨噬细胞表面,与mCD14受体结合起起细胞激活。MAPK参与了LPS激活细胞产生肿瘤坏死因子(TNF)等活性物质的细胞内信号转导过程。p38MAPK对TNF-α等细胞因子具有重要的调节作用。对LPS激活细胞的信号转导研究呆能为治疗内毒素休克提供新的理论和思路。 相似文献
20.
V. N. Zholkevich N. V. Zhukovskaya M. S. Popova 《Russian Journal of Plant Physiology》2007,54(4):487-490
In detached roots of etiolated maize (Zea mays L.) seedlings, neurotransmitters, adrenalin and noradrenalin, stimulated exudation by increasing the root pressure due to activation of its metabolic component. In these treatments, the osmotic pressure of the exudate was somewhat reduced. In contrast, a temperature coefficient Q10 was increased, which as in accordance with the increase of the absolute value of the metabolic component and its proportion in the total root pressure. To obtain some information about transmitting the signals induced by adrenalin and noradrenalin action on water transport, we used two inhibitors of the most important and universal elements of signaling pathways, staurosporine (the inhibitor of protein kinases) and okadaic acid (the inhibitor of protein phosphatases). In control roots, staurosporine markedly slowed and okadaic acid accelerated exudation. In the presence of staurosporine in the incubation medium, a stimulatory effect of both neurotransmitters was completely abolished and the rate of exudation became even below the control value. Okadaic acid exerted an opposite action: it augmented markedly stimulatory effects of both neurotrasmitters. The data obtained indicated the involvement of protein kinases and protein phosphatases in transduction of signals induced by adrenalin and noradrenalin, which stimulated root water-pumping activity. 相似文献