首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Warfarin is a commonly prescribed oral anticoagulant with narrow therapeutic index. It achieves anti-coagulating effects by interfering with the vitamin K cycle. Warfarin has two enantiomers, S(−) and R(+) and undergoes stereoselective metabolism, with the S(−) enantiomer being more effective. We reported the intracellular metabolic profile in HepG2 cells incubated with S(−) and R(+) warfarin by GCMS. Chemometric method PCA was applied to analyze the individual samples. A total of 80 metabolites which belong to different categories were identified. Two batches of experiments (with and without the presence of vitamin K) were designed. In samples incubated with S(−) and R(+) warfarin, glucuronic acid showed significantly decreased in cells incubated with R(+) warfarin but not in those incubated with S(−) warfarin. It may partially explain the lower bio-activity of R(+) warfarin. And arachidonic acid showed increased in cells incubated with S(−) warfarin but not in those incubated with R(+) warfarin. In addition, a number of small molecules involved in γ-glutamyl cycle displayed ratio variations. Intracellular glutathione detection further validated the results. Taken together, our findings provided molecular evidence on a comprehensive metabolic profile on warfarin-cell interaction which may shed new lights on future improvement of warfarin therapy.  相似文献   

2.
Coumadin (R/S-warfarin) is a commonly prescribed anticoagulant for over ~20 million Americans. Although highly efficacious, positive clinical outcomes during warfarin therapy depend on maintaining a narrow therapeutic range for the drug. This goal is challenging due to large inter-individual variability in patient response, which has been attributed to diversity in drug metabolism. Warfarin is given as a racemic mixture and evidence suggest differences of R and S-warfarin in their therapeutic activities and metabolism. Previous investigation of warfarin metabolism has been hampered by the inability to quantify the individual enantiomers. To overcome this limitation a multi-mode LC-MS/MS method is reported. This strategy combines phenyl based reverse phase chromatography with chiral phase chromatography prior to quantitation by liquid chromatography tandem mass spectrometry. This approach was made possible through advances in UPLC technology producing narrow peaks suitable for transferring to a second column. The reported method separated individual R and S enantiomers of hydroxywarfarin and warfarin. All four possible isomers of 10-hydroxywarfarin were resolved to reveal unprecedented insights into the stereo-specific metabolism of warfarin. Characterization of the method demonstrated that it is robust and sensitive with inter-day coefficients of error between <7% and a detection limit of 2 nM in sample or 10 fmol on column for each analyte. Individual metabolites may be suitable surrogate biomarkers or predictive markers that predict warfarin dose, adverse interactions, or other important clinical outcomes during anticoagulant therapy. Consequently, the metabolite profiles obtained through this dual phase UPLC-MS/MS method are expected to increase our understanding of the role warfarin metabolism plays in patient response to therapy and yield new strategies to improve patient outcomes.  相似文献   

3.
Enantioselective degradation of warfarin in soils   总被引:1,自引:0,他引:1  
Lao W  Gan J 《Chirality》2012,24(1):54-59
  相似文献   

4.
Warfarin is a commonly prescribed oral anti‐coagulant with narrow therapeutic index. It interferes with vitamin K cycle to achieve anti‐coagulating effects. Warfarin has two enantiomers, S(?) and R(+) and undergoes stereoselective metabolism, with the S(?) enantiomer being more effective. We reported that the intracellular protein profile in HepG2 cells incubated with S(?) and R(+) warfarin, using iTRAQ‐coupled 2‐D LC‐MS/MS. In samples incubated with S(?) and R(+) warfarin alone, the multi‐task protein Protein SET showed significant elevation in cells incubated with S(?) warfarin but not in those incubated with R(+) warfarin. In cells incubated with individual enantiomers of warfarin in the presence of vitamin K, protein disulfide isomerase A3 which is known as a glucose‐regulated protein, in cells incubated with S(?) warfarin was found to be down‐regulated compared to those incubated with R(+) warfarin. In addition, Protein DJ‐1 and 14‐3‐3 Proteinσ were down‐regulated in cells incubated with either S(?) or R(+) warfarin regardless of the presence of vitamin K. Our results indicated that Protein DJ‐1 may act as an enzyme for expression of essential enzymes in vitamin K cycle. Taken together, our findings provided molecular evidence on a comprehensive protein profile on warfarin–cell interaction, which may shed new lights on future improvement of warfarin therapy.  相似文献   

5.
Warfarin was measured with a sensitive and specific method in the plasma and breast milk of 13 mothers. Less than 0-08 micronmol warfarin per litre (25 ng/ml) of breast milk was found in each instance. Seven of the mothers were breast-feeding their infants, in none of whom was warfarin detected in the plasma; furthermore, in three the British corrected ratio of the plasma was appreciably less than that of the mother and was within the expected range. We conclude that nursing mothers given warfarin may safely breast-feed their infants.  相似文献   

6.
Warfarin, which is used for anticoagulant therapy, rarely produces congenital warfarin syndrome characterized with hypoplastic nose, stippled epiphyses, and skeletal abnormalities when ingested during pregnancy. Here, we present a male infant, whose mother was treated with warfarin because of a prosthetic heart valve replacement after rheumatic heart disease, with signs of warfarin embryopathy. The mother's first pregnancy at 12 weeks gestation resulted in abortus due to warfarin toxicity. Subsequently, she delivered two healthy girls after her treatment had changed to low molecular heparin during pregnancy periods. We want to emphasize that risk-benefit ratio should be well weighed by both obstetricians and cardiologists when considering warfarin therapy for a woman at childbearing age.  相似文献   

7.

Background

Warfarin, a widely used anticoagulant, is a vitamin K antagonist impairing the activity of vitamin K-dependent Bone Gla Protein (BGP or Osteocalcin) and Matrix Gla Protein (MGP). Because dabigatran, a new anticoagulant, has no effect on vitamin K metabolism, the aim of this study was to compare the impact of warfarin and dabigatran administration on bone structure and vascular calcification.

Methods

Rats with normal renal function received for 6 weeks warfarin, dabigatran or placebo. Bone was evaluated immuno-histochemically and hystomorphometrically after double labelling with declomycin and calcein. Aorta and iliac arteries were examined histologically.

Results

Histomorphometric analysis of femur and vertebrae showed significantly decreased bone volume and increased trabecular separation in rats treated with warfarin. Vertebra analysis showed that the trabecular number was higher in dabigatran treated rats. Osteoblast activity and resorption parameters were similar among groups, except for maximum erosion depth, which was higher in warfarin treated rats, suggesting a higher osteoclastic activity. Therefore, warfarin treatment was also associated with higher bone formation rate/bone surface and activation frequency. Warfarin treatment may cause an increased bone turnover characterized by increased remodelling cycles, with stronger osteoclast activity compared to the other groups. There were no differences among experimental groups in calcium deposition either in aortic or iliac arteries.

Conclusions

These findings suggest for the first time that dabigatran has a better bone safety profile than warfarin, as warfarin treatment affects bone by reducing trabecular size and structure, increasing turnover and reducing mineralization. These differences could potentially result in a lower incidence of fractures in dabigatran treated patients.  相似文献   

8.
BackgroundBleeding is the most common and worrisome adverse effect of warfarin therapy. One of the factors that might increase bleeding risk is initiation of interacting drugs that potentiate warfarin. We sought to evaluate whether initiation of an antidepressant increases the risk of hospitalization for gastrointestinal bleeding in warfarin users.Conclusions/SignificanceWarfarin users who initiated citalopram, fluoxetine, paroxetine, amitriptyline, or mirtazapine had an increased risk of hospitalization for gastrointestinal bleeding. However, the elevated risk with mirtazapine suggests that a drug-drug interaction may not have been responsible for all of the observed increased risk.  相似文献   

9.
The in vitro human serum albumin binding characteristics of the enantiomers of the major metabolites of warfarin [6-hydroxywarfarin (6-HW), 7-hydroxywarfarin (7-HW), (S)-warfarin alcohols [(S,S)- and (S,R)-WA], and (R,S)-warfarin alcohol [(R,S)-WA]] have been studied, using a stereospecific HPLC assay. Warfarin metabolites are less bound both within plasma and a 40 g/liter solution of human serum albumin than the enantiomers of warfarin. The reduced warfarin metabolites have a lower fraction unbound [1.33% for (S,R)-WA, 2.09% for (S,S)-WA, and 1.04% for (R,S)-WA] than hydroxylated metabolites [3.24% for (R)-6-HW, 4.26% (S)-6-HW, 4.49% for (R)-7-HW and 4.27% for (S)-7-HW] to HSA. Phenylbutazone produced a concentration-dependent increase in the unbound fraction of all metabolites. It was possible to predict the unbound fraction of warfarin metabolites based on the unbound fraction of warfarin enantiomers. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Warfarin therapy is the cornerstone in the prevention of thromboembolism in patients with atrial fibrillation. It reduces the risk of stroke by two thirds in comparison with no anticoagulation. 1 A weak alternative to warfarin is aspirin, which is also effective over placebo in the prevention of stroke in atrial fibrillation. 1 Aspirin is safer than warfarin in general use. The incidence of atrial fibrillation sharply increases with age, but also the risk of bleeding from warfarin shows the same pattern.  相似文献   

11.
Warfarin is the most common agent used for control and prevention of venous as well as arterial thromboembolism (blood clots). In aqueous media, warfarin forms inclusion complexes with a family of cyclic oligosaccharides, α, β, γ‐cyclodextrins (CD). The formation of these complexes results in enhancement of the fluorescence of warfarin. Such spectroscopic changes offer a venue for the development of bioanalytical methodologies for warfarin quantification in biological liquids. We characterized the photophysical properties of warfarin in solvents with varying polarity and viscosity. The fluorescence quantum yield of warfarin correlated: (1) strongly with the solvent viscosity (R = 0.979) and (2) weakly with the solvent polarity (R = 0.118). These findings indicate that it is the change of the viscosity, rather than polarity, of the microenvironment that causes the fluorescence enhancement of warfarin upon binding to β‐CD. Utilizing the observed fluorescence enhancement in fluorescence titration measurements, the binding constants of warfarin to β‐CD were obtained (2.6 × 102 M?1–3.7 × 102 M?1). Using multivariable linear analysis, we extracted the stoichiometry of warfarin‐β‐CD interaction (1:1). © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

12.
Petersen CE  Ha CE  Curry S  Bhagavan NV 《Proteins》2002,47(2):116-125
The binding of warfarin to the following human serum albumin (HSA) mutants was examined: K195M, K199M, F211V, W214L, R218M, R222M, H242V, and R257M. Warfarin bound to human serum albumin (HSA) exhibits an intrinsic fluorescence that is approximately 10-fold greater than the corresponding signal for warfarin in aqueous solution. This property of the warfarin/HSA complex has been widely used to determine the dissociation constant for the interaction. In the present study, such a technique was used to show that specific substitutions in subdomain 2A altered the affinity of HSA for warfarin. The fluorescence of warfarin/mutant HSA complexes varied widely from the fluorescence of the warfarin/wild-type HSA complex at pH = 7.4, suggesting changes in the structure of the complex resulting from specific substitutions. The fluorescence of the warfarin/wild-type HSA complex increases about twofold as the pH is increased from 6.0 to 9.0 due to the neutral-to-base (N-B) transition, a conformational change that occurs in HSA as a function of pH. Changes in the fluorescence of warfarin/mutant HSA complexes as a function of pH suggests novel behavior for most HSA species examined. For the HSA mutants F211V and H242V, the midpoint of the N-B transition shifts from a wild-type pH of 7.8 to a pH value of 7.1-7.2.  相似文献   

13.
K. W. G. Brown  R. L. MacMillan 《CMAJ》1964,91(26):1358-1359
Warfarin sodium was compared with bishydroxycoumarin (Dicumarol) in 16 patients on long-term anticoagulant therapy. When the patients were changed from bishydroxycoumarin to warfarin sodium there was no improvement in control of their prothrombin times. It was found that 5 mg. of warfarin had slightly less effect than 50 mg. of bishydroxycoumarin. It was concluded that the drugs were equally effective in long-term anticoagulant therapy. The metabolism of the ingested drug was more important than absorption in determining the control of the patients'' prothrombin times.  相似文献   

14.
BACKGROUND: Recognizing specific protein changes in response to drug administration in humans has the potential for the development of personalized medicine. Such changes can be identified by pharmacoproteomics approach based on proteomic technologies. It can also be helpful in matching a particular target-based therapy to a particular marker in a subgroup of patients, in addition to the profile of genetic polymorphism. Warfarin is a commonly prescribed oral anticoagulant in patients with prosthetic valve disease, venous thromboembolism and stroke. METHODS AND FINDING: We used a combined pharmacogenetics and iTRAQ-coupled LC-MS/MS pharmacoproteomics approach to analyze plasma protein profiles of 53 patients, and identified significantly upregulated level of transthyretin precursor in patients receiving low dose of warfarin but not in those on high dose of warfarin. In addition, real-time RT-PCR, western blotting, human IL-6 ELISA assay were done for the results validation. CONCLUSION: This combined pharmacogenomics and pharmacoproteomics approach may be applied for other target-based therapies, in matching a particular marker in a subgroup of patients, in addition to the profile of genetic polymorphism.  相似文献   

15.
Warfarin doses are greatly affected by polymorphism altering cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) gene. This study evaluated the prevalence of alleles (either single or double) and carriers of single nucleotide polymorphisms (SNPs) in both genotypes CYP2C9 and VKORC1 in alkharj area, Saudi Arabia and its association with warfarin use risk. Total 112 samples were collected and genotyped using FlexiGene DNA Kit for isolation and StepOnePlus Real-Time PCR System by TaqMan allelic discrimination methods. The results indicated the frequency of 11%, 8% and 45% for CYP2C9 *2 *3 and VKORC1-1639 G > A polymorphism. And as a combination genotype it was 15.18% For both CYP2C9 and VKORC1 polymorphism, 27.67% for CYP2C9 and 42.86% for VKORC1. Non-carriers rate came to be at 30.3%. According to previously published dosing changes in warfarin for polymorphism carriers (single-double-triple). The predicted warfarin doses reduction in order of 1–1.6, 2–2.9, 2.9–3.7 mg/day. It was found that 72.3% of the study population was carrier of a type of polymorphism, 15.18% for two types of polymorphisms. These findings predict changes in warfarin metabolism and eventually dosing alteration among patients on warfarin. Both genotypes (CYP2C9 and VKORC1) require different dosing of warfarin than non-carriers in order to minimize the risk of warfarin overdosing and avoidance of the drug-related problems (DRPs).  相似文献   

16.

Background and Aim

Warfarin is the most frequently prescribed anticoagulant worldwide. However, warfarin therapy is associated with a high risk of bleeding and thromboembolic events because of a large interindividual dose-response variability. We investigated the effect of genetic and non genetic factors on warfarin dosage in a South Italian population in the attempt to setup an algorithm easily applicable in the clinical practice.

Materials and Methods

A total of 266 patients from Southern Italy affected by cardiovascular diseases were enrolled and their clinical and anamnestic data recorded. All patients were genotyped for CYP2C9*2,*3, CYP4F2*3, VKORC1 -1639 G>A by the TaqMan assay and for variants VKORC1 1173 C>T and VKORC1 3730 G>A by denaturing high performance liquid chromatography and direct sequencing. The effect of genetic and not genetic factors on warfarin dose variability was tested by multiple linear regression analysis, and an algorithm based on our data was established and then validated by the Jackknife procedure.

Results

Warfarin dose variability was influenced, in decreasing order, by VKORC1-1639 G>A (29.7%), CYP2C9*3 (11.8%), age (8.5%), CYP2C9*2 (3.5%), gender (2.0%) and lastly CYP4F2*3 (1.7%); VKORC1 1173 C>T and VKORC1 3730 G>A exerted a slight effect (<1% each). Taken together, these factors accounted for 58.4% of the warfarin dose variability in our population. Data obtained with our algorithm significantly correlated with those predicted by the two online algorithms: Warfarin dosing and Pharmgkb (p<0.001; R2 = 0.805 and p<0.001; R2 = 0.773, respectively).

Conclusions

Our algorithm, which is based on six polymorphisms, age and gender, is user-friendly and its application in clinical practice could improve the personalized management of patients undergoing warfarin therapy.  相似文献   

17.
BackgroundWarfarin is traditionally the drug of choice for stroke prophylaxis or treatment of venous thromboembolism in patients with end-stage renal disease (ESRD) on hemodialysis as data on apixaban use is scarce. We aimed to assess the safety and efficacy of Apixaban in patients with ESRD on hemodialysis when compared with warfarin.MethodsA comprehensive literature search in PubMed, Google Scholar, and Cochrane databases from inception until Nov 25, 2019, was performed. Studies reporting clinical outcomes comparing Apixaban (2.5 mg BID or 5 mg BID) versus Warfarin in ESRD patients on hemodialysis were included. Mantel-Haenszel risk ratio (RR) random-effects model was used to summarize data.ResultsFour studies (three retrospective and one randomized) with a total of 9862 patients (apixaban = 2,547, warfarin = 7315) met inclusion criteria. The overall mean age was 66.6 ± 3.9 years and mean CHA2DS2-VASc score 4.56 ± 0.58. Apixaban was associated with lower rates of major bleeding (RR 0.53, 95% CI 0.45–0.64, p < 0.0001], gastrointestinal (GI) bleed (RR 0.65, 95% CI 0.55–0.76, p < 0.0001), intracranial bleed (RR 0.56, 95% CI 0.36–0.89, p = 0.01), and stroke/systemic embolism [RR 0.65, 95% CI 0.52–0.83, p = 0.0004] compared with warfarin in patients with ESRD on hemodialysis. There was no significant increased risk of all-cause mortality with the apixaban vs. warfarin (RR 0.90, 95% CI 0.41–1.96, p = 0.78).ConclusionApixaban had an overall favorable risk-benefit profile, with significant reductions in ischemic stroke, major bleeding, and intracranial bleeding compared to Warfarin in ESRD patients on hemodialysis with non-valvular AF and/or venous thromboembolism.  相似文献   

18.
OBJECTIVE--To investigate the suitability of treatment with low dose aspirin or warfarin, or both, as possible prophylaxis against cardiovascular disease by determining the effect on gastric mucosal bleeding. DESIGN--Randomised crossover trial. SETTING--Academic department of therapeutics. SUBJECTS--Twenty healthy male volunteers aged 19-22. INTERVENTIONS--On separate occasions and in randomised order all subjects received aspirin 75 mg, warfarin, or aspirin 75 mg combined with warfarin. Each treatment was given for 12 days or (when warfarin was used) for longer if necessary until the international normalised ratio of the prothrombin time was stable at 1.4-1.6. END POINT--Loss of blood over 10 minutes into gastric washings. MEASUREMENTS AND MAIN RESULTS--Bleeding over 10 minutes into gastric washings under baseline conditions and after five days, and at end of each regimen of treatment. Aspirin 75 mg increased bleeding from 0.60 (95% confidence interval 0.36 to 0.99) microliters/10 minutes to 1.26 (0.71 to 2.25) microliters/10 minutes at five days, with no evidence of either progressive change or adaptation thereafter. Warfarin had no effect on bleeding either alone or when combined with aspirin. CONCLUSIONS--Aspirin 75 mg causes gastric mucosal bleeding. Low dose warfarin neither induces gastric mucosal bleeding nor enhances that caused by aspirin.  相似文献   

19.
20.

Background

Warfarin is a widely prescribed anticoagulant with narrow therapeutic window for thromboembolic events. Warfarin displays large individual variability in dose requirements. The purpose of this study is to assess the contribution of patient-specific and genetic risk factors to dose requirements of patients on either high or low warfarin maintenance dose in Ghana. Blood samples were collected from 141 (62 males, 79 females) Ghanaian patients on stable warfarin dose to determine their INR. Influence of patient specific factors and gene variations within VKORC1, CYP2C9 and CYP4F2 were determined in patients on either high or low warfarin maintenance dose.

Results

One hundred and forty-one patients took part in the study with 79 (56%) participants being Female. The median age of the study participants was 48 years [IQR: 34–58]. The median duration for patients to be on warfarin therapy was 24 months [IQR: 10–72]. Majority of the study participants (80.9%, n = 114) did not have any side effects to warfarin. CYP2C9*2 and CYP2C9*3 variant alleles were not detected. VKORC1 variant allele was observed at 6% and CYP4F2 variant allele was observed at 41%. Duration of patients on warfarin therapy was marginally associated with high warfarin dose (adjusted OR = 1.01 [95% CI 1.00–1.02], p = 0.033) while the odds of heterozygous individuals (G/A) for VKORC1 gene to have high warfarin dose compared to persons with homozygous (G/G) (adjusted OR = 0.06 [95% CI 0.01–0.63], p = 0.019). Age, gender, diagnosis, presence of side effects and other medications were not associated with warfarin dose (p = 0.05).

Conclusion

This study provides data on VKORC1 and CYP4F2 variants among an indigenous African population. Duration of patients on warfarin therapy was marginally associated with high warfarin dose. CYP2C9*2 and *3 variants were not detected and may not be the most important genetic factor for warfarin maintenance dose among Ghanaians.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号