首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Current hypothesis suggest that tumors can originate from adult cells after a process of ''reprogramming'' driven by genetic and epigenetic alterations. These cancer cells, called cancer stem cells (CSCs), are responsible for the tumor growth and metastases. To date, the research effort has been directed to the identification, isolation and manipulation of this cell population. Independently of whether tumors were triggered by a reprogramming of gene expression or seeded by stem cells, their energetic metabolism is altered compared with a normal cell, resulting in a high aerobic glycolytic ''Warburg'' phenotype and dysregulation of mitochondrial activity. This metabolic alteration is intricately linked to cancer progression.The aim of this work has been to demonstrate the possibility of differentiating a neoplastic cell toward different germ layer lineages, by evaluating the morphological, metabolic and functional changes occurring in this process. The cellular differentiation reported in this study brings to different conclusions from those present in the current literature. We demonstrate that ''in vitro'' neuroblastoma cancer cells (chosen as experimental model) are able to differentiate directly into osteoblastic (by rapamycin, an mTOR inhibitor) and hepatic lineage without an intermediate ''stem'' cell step. This process seems owing to a synergy among few master molecules, metabolic changes and scaffold presence acting in a concerted way to control the cell fate.Cancer stem cells are currently viewed as the cells capable of generating cancer (tumor-initiating cells), owing to their intrinsic features of self-renewal and longevity.1 However, emerging evidence suggests a surprising ability of normal committed cells to act as reserve stem cells upon reprogramming following tissue damage resulting from inflammation and wound healing. This brings to the alternative hypothesis that tumors may originate from differentiated cells that have recovered stem cell properties owing to genetic or epigenetic reprogramming.1, 2 Possibly, both models are correct, and consequently there is a continuum of cells capable of generating cancer, ranging from early primitive stem cells to committed progenitor or even terminally differentiated cells.The development of methods for reprogramming somatic cells to induced pluripotent stem cells (iPSCs) through ectopic expression of a few pluripotency factors holds the promise for disease modeling, drug screening studies and treatment of several diseases.3 Generating iPSCs from cancer cells might also clarify the mechanisms that underlie oncogenic transformation.4, 5 Thus reprogramming and oncogenic transformation are processes that have interesting common steps, while iPSCs generated from cancer cells could give clues to molecular mechanisms underlying the pathogenesis of human cancer.6 To date, there are only few reports demonstrating a successful reprogramming of human primary cancer cells. Only one report describes the reprogramming of human primary cancer cells7 while the remaining studies used established cell lines.8, 9, 10, 11, 12 Carrete et al.9 generated iPSCs from the chronic myeloid leukemia (CML) cell line KBM7 carrying the BCR-ABL fusion oncogene by expressing four ectopic reprogramming factors (OCT4, KLF4, SOX2, and c-Myc (OKSM)). Conversely, Choi et al.10 reprogrammed EBV-immortalized B lymphocytes to pluripotency using non-integrative episomal vectors. Lin et al.11 reprogrammed human skin cancer cell lines to pluripotency using the microRNA miR-302. Miyoshi et al.12 reprogrammed gastrointestinal-transformed cell lines using retroviral vectors expressing c-Myc and BCL2. Finally, Hu et al.8 successfully reprogrammed primary human lymphoblasts from a BCR-ABL+CML patient using transgene-free iPSC technology to ectopically express OKSM and LIN28. In addition, Ramos-Mejia et al.4 in a recent review emphasize the importance of deciphering the barriers underlying the reprogramming process of primary cancer cells to obtain information on the links between pluripotency and oncogenic transformation that would be instrumental for therapy development.Cancer cells show distinct metabolic features. In fact, neoplastic cells adapt their metabolic pathways to face the demands of abnormal proliferation. For example, cancer cells increase glucose uptake and the rate of glycolysis even under normoxic conditions; this process of aerobic glycolysis was first described by Warburg et al.13, 14 and thence called Warburg effect. Recent studies are increasingly highlighting the importance of metabolic manipulation in cancer cells and how bio-energetic and biosynthetic changes could be exploited to stop tumor cells progression.15, 16, 17 Reprogramming, pluripotency, oncogenic transformation and metabolic changes are therefore connected processes that share interesting similarities.18, 19 The fact that the same alterations driving tumorigenesis can influence the reprogramming of non-cancer somatic cells is a double-edged sword. It poses safety concerns for the cell therapy applications with iPSCs, while at the same time it promotes further studies aimed to analyzing the mechanisms and barriers underlying the direct reprogramming of cancer cells. This is a fundamental attempt to acquire valuable new insight on reprogramming and cell transformation.20Along these concepts, here we have investigated the possibility to revert cancer progression by targeting cancer cells, seen as deprogrammed cell and therefore similar to adult stem cells. Using a human neuroblastoma cell line (SH-SY5Y) as model, our work has been designed to experimentally explore different aspects. We show how these cells can differentiate toward a germ line different from the original one, modifying their morphology and acquiring metabolic changes which are distinctive of a more normal phenotype.  相似文献   

3.

Aims

Hemophilia A (HA) is a severe, congenital bleeding disorder caused by the deficiency of clotting factor VIII (FVIII). For years, traditional laboratory animals have been used to study HA and its therapies, although animal models may not entirely mirror the human pathophysiology. Human induced pluripotent stem cells (iPSCs) can undergo unlimited self-renewal and differentiate into all cell types. This study aims to generate hemophilia A (HA) patient-specific iPSCs that differentiate into disease-affected hepatocyte cells. These hepatocytes are potentially useful for in vitro disease modeling and provide an applicable cell source for autologous cell therapy after genetic correction.

Main methods

In this study, we mainly generated iPSCs from urine collected from HA patients with integration-free episomal vectors PEP4-EO2S-ET2K containing human genes OCT4, SOX2, SV40LT and KLF4, and differentiated these iPSCs into hepatocyte-like cells. We further identified the genetic phenotype of the FVIII genes and the FVIII activity in the patient-specific iPSC derived hepatic cells.

Key findings

HA patient-specific iPSCs (HA-iPSCs) exhibited typical pluripotent properties evident by immunostaining, in vitro assays and in vivo assays. Importantly, we showed that HA-iPSCs could differentiate into functional hepatocyte-like cells and the HA-iPSC-derived hepatocytes failed to produce FVIII, but otherwise functioned normally, recapitulating the phenotype of HA disease in vitro.

Significance

HA-iPSCs, particular those generated from the urine using a non-viral approach, provide an efficient way for modeling HA in vitro. Furthermore, HA-iPSCs and their derivatives serve as an invaluable cell source that can be used for gene and cell therapy in regenerative medicine.  相似文献   

4.
5.
6.

Background

Epigenetic regulation is critical for the maintenance of human pluripotent stem cells. It has been shown that pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, appear to have a hypermethylated status compared with differentiated cells. However, the epigenetic differences in genes that maintain stemness and regulate reprogramming between embryonic stem cells and induced pluripotent stem cells remain unclear. Additionally, differential methylation patterns of induced pluripotent stem cells generated using diverse methods require further study.

Methodology

Here, we determined the DNA methylation profiles of 10 human cell lines, including 2 ESC lines, 4 virally derived iPSC lines, 2 episomally derived iPSC lines, and the 2 parental cell lines from which the iPSCs were derived using Illumina''s Infinium HumanMethylation450 BeadChip. The iPSCs exhibited a hypermethylation status similar to that of ESCs but with distinct differences from the parental cells. Genes with a common methylation pattern between iPSCs and ESCs were classified as critical factors for stemness, whereas differences between iPSCs and ESCs suggested that iPSCs partly retained the parental characteristics and gained de novo methylation aberrances during cellular reprogramming. No significant differences were identified between virally and episomally derived iPSCs. This study determined in detail the de novo differential methylation signatures of particular stem cell lines.

Conclusions

This study describes the DNA methylation profiles of human iPSCs generated using both viral and episomal methods, the corresponding somatic cells, and hESCs. Series of ss-DMRs and ES-iPS-DMRs were defined with high resolution. Knowledge of this type of epigenetic information could be used as a signature for stemness and self-renewal and provides a potential method for selecting optimal pluripotent stem cells for human regenerative medicine.  相似文献   

7.
8.
Recent studies have shown that induced pluripotent stem cells (iPSCs) retain a memory of their origin and exhibit biased differentiation potential. This finding reveals a severe limitation in the application of iPSCs to cell-based therapy because it means that certain cell types are not available for reprogramming for patients. Here we show that the iPSC differentiation process is accompanied by profound gene expression and epigenetic modifications that reflect cells'' origins. Under typical conditions for mammary differentiation, iPSCs reprogrammed from tail-tip fibroblasts (TF-iPSCs) activated a fibroblast-specific signature that was not compatible with mammary differentiation. Strikingly, under optimized conditions, including coculture with iPSCs derived from the mammary epithelium or in the presence of pregnancy hormones, the fibroblast-specific signature of TF-iPSCs obtained during differentiation was erased and cells displayed a mammary-specific signature with a markedly enhanced ability for mammary differentiation. These findings provide new insights into the precise control of differentiation conditions that may have applications in personalized cell-based therapy.The mammary gland is a primary target for carcinogenesis. Breast cancer occurs at a high rate and affects one in eight women in Western countries during their lifetime.1, 2 In the United States alone, 232 340 new invasive breast cancer cases were reported for women in 2013 and 39 620 patients died.3 Regenerative therapy of the damaged mammary gland tissues is the best way to restore breast functions; therefore, the creation of stem cells that are capable of developing into fully functional mammary glands is desirable. There are two distinct types of pluripotent stem cells that may be used for this purpose. The first is embryonic stem cells (ESCs) derived from the inner cell mass of embryonic blastocysts,4 and the second is induced pluripotent stem cells (iPSCs) obtained by reprogramming somatic cells.5 Although, in theory, both ESCs and iPSCs can be differentiated into any type of mature cell, use of the latter is more desirable because it does not require the killing of embryos, and the cells can be derived from virtually any type of tissue. In addition, because iPSCs can be generated from the same patient, the use of iPSCs avoids the immunosuppressive reactions that have long hampered organ and tissue transplantation.6, 7, 8 However, recent studies have shown that some iPSCs seem to retain a memory of their origin and exhibit skewed potential during differentiation for tissue/organ formation.9, 10, 11, 12, 13, 14 This feature may represent a limitation if certain cell types from diseased tissues or organs are not available for reprogramming.Numerous studies about the use of ESCs have indicated that, although these cells have the potential to generate all cell types, their differentiation depends critically on many factors.14, 15, 16 Precise conditions are required for driving cells into specific pathways leading to new lineage formation (reviewed in Murry and Keller17 and Cahan and Daley18). Based on these observations, we hypothesized that the skewed differentiation of iPSCs could be overcome by providing favorable conditions for differentiation. To test this hypothesis, we have generated iPSCs from mouse mammary epithelial cells (ME-iPSCs) and mouse-tail fibroblasts (TF-iPSCs), and have studied the gene expression profiles and epigenetic modifications during differentiation. We found that, although these iPSCs activate distinct signature memories that are reflective of their origins during the differentiation process, the fate of iPSCs could be redirected under optimized conditions in favor of the formation of a desired tissue/organ.  相似文献   

9.
The differentiation of pluripotent stem cells into various progeny is perplexing. In vivo, nature imposes strict fate constraints. In vitro, PSCs differentiate into almost any phenotype. Might the concept of ‘cellular promiscuity'' explain these surprising behaviours?John Gurdon''s [1] and Shinya Yamanaka''s [2] Nobel Prize involves discoveries that vex fundamental concepts about the stability of cellular identity [3,4], ageing as a rectified path and the differences between germ cells and somatic cells. The differentiation of pluripotent stem cells (PSCs) into progeny, including spermatids [5] and oocytes [6], is perplexing. In vivo, nature imposes strict fate constraints. Yet in vitro, reprogrammed PSCs liberated from the body government freely differentiate into any phenotype—except placenta—violating even somatic cell against germ cell segregations. Albeit that it is anthropomorphic, might the concept of ‘cellular promiscuity'' explain these surprising behaviours?Fidelity to one''s differentiated state is nearly universal in vivo—even cancers retain some allegiance. Appreciating the mechanisms in vitro that liberate reprogrammed cells from the numerous constraints governing development in vivo might provide new insights. Similarly to highway guiderails, a range of constraints preclude progeny cells within embryos and organisms from travelling too far away from the trajectory set by their ancestors. Restrictions are imposed externally—basement membranes and intercellular adhesions; internally—chromatin, cytoskeleton, endomembranes and mitochondria; and temporally by ageing.‘Cellular promiscuity'' was glimpsed previously during cloning; it was seen when somatic cells successfully ‘fertilized'' enucleated oocytes in amphibians [1] and later with ‘Dolly'' [7]. Embryonic stem cells (ESCs) corroborate this. The inner cell mass of the blastocyst cells develops faithfully, but liberation from the trophoectoderm generates pluripotent ESCs in vitro, which are freed from fate and polarity restrictions. These freedom-seeking ESCs still abide by three-dimensional rules as they conform to chimaera body patterning when injected into blastocysts. Yet if transplanted elsewhere, this results in chaotic teratomas or helter-skelter in vitro differentiation—that is, pluripotency.August Weismann''s germ plasm theory, 130 years ago, recognized that gametes produce somatic cells, never the reverse. Primordial germ cell migrations into fetal gonads, and parent-of-origin imprints, explain how germ cells are sequestered, retaining genomic and epigenomic purity. Left uncontaminated, these future gametes are held in pristine form to parent the next generation. However, the cracks separating germ and somatic lineages in vitro are widening [5,6]. Perhaps, they are restrained within gonads not for their purity but to prevent wild, uncontrolled misbehaviours resulting in germ cell tumours.The ‘cellular promiscuity'' concept regarding PSCs in vitro might explain why cells of nearly any desired lineage can be detected using monospecific markers. Are assays so sensitive that rare cells can be detected in heterogeneous cultures? Certainly population heterogeneity is considered for transplantable cells—dopaminergic neurons and islet cells—compared with applications needing few cells—sperm and oocytes. This dilemma of maintaining cellular identity in vitro after reprogramming is significant. If not addressed, the value of unrestrained induced PSCs (iPSCs) as reliable models for ‘diseases in a dish'', let alone for subsequent therapeutic transplantations, might be diminished. X-chromosome re-inactivation variants in differentiating human PSCs, epigenetic imprint errors and copy number variations are all indicators of in vitro infidelity. PSCs, which are held to be undifferentiated cells, are artefacts after all, as they undergo their programmed development in vivo.If correct, the hypothesis accounts for concerns raised about the inherent genomic and epigenomic unreliability of iPSCs; they are likely to be unfaithful to their in vivo differentiation trajectories due to both the freedom from in vivo developmental programmes, as well as poorly characterized modifications in culture conditions. ‘Memory'' of the PSC''s identity in vivo might need to be improved by using approaches that might not fully erase imprints. Regulatory authorities, including the Food & Drug Administration, require evidence that cultured PSCs do retain their original cellular identity. Notwithstanding fidelity lapses at the organismal level, the recognition that our cells have intrinsic freedom-loving tendencies in vitro might generate better approaches for only partly releasing somatic cells into probation, rather than full emancipation.  相似文献   

10.
11.
12.
Induced pluripotent stem cells (iPSCs) have great potential in bone tissue engineering to repair large bone defects. Before their clinical application, investigations are needed to discover the genes and osteoconductive scaffolds that influence their differentiation toward an osteogenic lineage. Alox5 plays controversial and complex roles in the regulation of bone and fat metabolism. To detect the effect of Alox5 on osteogenic and adipogenic differentiation of iPSCs, both Alox5 knockout mouse iPSCs (Alox5-KO-iPSCs) and wild-type mouse iPSCs (Wild-iPSCs) were developed. The mRNA levels of many osteogenic markers in Alox5-KO-iPSCs were significantly reduced, while many adipogenic markers were enhanced. Furthermore, when implanted in rat cranial critical-sized defects with collagen/chitosan/hydroxyapatite scaffolds (CCHS), Alox5-KO-iPSCs produced significantly less new bone than Wild-iPSCs and both cell-scaffold groups had no tumor formation. There was a significant difference in the expression of Cox2 during the osteogenic and adipogenic differentiation between the two kinds of iPSCs in vitro. In conclusion, firstly, Alox5 knockout reduced the osteogenic but increased the adipogenic differentiation potential of mouse iPSCs. These disorders might be related to the change of Cox2 expression. Secondly, combined with iPSCs, CCHS can serve as a potential substrate to repair critical-sized bony defects. However, more studies are required to confirm the mechanisms through which Alox5 affects the osteogenic and adipogenic abilities of iPSCs in vivo and the effect of Cox2 inhibition in this system.  相似文献   

13.
Chronic hyperglycemia and duration of diabetes are the major risk factors associated with development of micro- and macrovascular complications of diabetes. Although it is believed that hyperglycemia induces damage to the particular cell subtypes, e.g., mesangial cells in the renal glomerulus, capillary endothelial cells in the retina, and neurons and Schwann cells in peripheral nerves, the exact mechanisms underlying these damaging defects are not yet well understood. Clustering of micro- and macrovascular complications in families of patients with diabetes suggests a strong genetic susceptibility. However, until now only a handful number of genetic variants were reported to be associated with either nephropathy (ACE, ELMO1, FRMD3, and AKR1B1) or retinopathy (VEGF, AKR1B1, and EPO), and only a few studies were carried out for genetic susceptibility to cardiovascular diseases (ADIPOQ, GLUL) in patients with diabetes. It is, therefore, obvious that the accumulation of more data from larger studies and better phenotypically characterized cohorts is needed to facilitate genetic discoveries and unravel novel insights into the pathogenesis of diabetic complications.  相似文献   

14.
Postulated Stem/progenitor cells involved in endometrium regeneration are epithelial, mesenchymal, and endothelial. Bone marrow (BM) has been implicated in endometrial stem cells. We aimed at studying gene expression profiling of endometrial mesenchymal stem cells compared to BM MSCS to better understand their nature and functional phenotype. Endometrial tissues were obtained from premenopausal hysterectomies (n = 3), minced and enzymatically digested as well as Normal BM aspirates (n=3). Immunophenotyping, differentiation to mesoderm, and proliferation were studied. The expression profile of 84 genes relevant to mesenchymal stem cells was performed. Fold change calculations were determined with SA Biosciences data analysis software. VEGF, G-CSF, and GM-CSF in cultures supernatants of MSCs were assayed by Luminex immunoassay. Endo MSCs possess properties similar to BM MSCs. Cumulative population doubling was significantly higher in Endo MSCs compared to BM MSCs (p < 0.001). 52 core genes were shared between both generated MSCs including stemness, self-renewal, members of the Notch, TGFB, FGF, and WNT.16 downregulated genes (VCAM, IGF1)and 16 upregulated in Endo MSCs compared to BM (p < 0.05 → fourfolds). They included mostly cytokine and growth factor genes G-CSF, GM-CSF, VWF, IL1b, GDF15, and KDR. VEGF and G-CSF levels were higher in Endo MSCs supernatants (p < 0.0001). Cells sharing MSC and endothelial cell characteristics could be isolated from the human endometrium. Endo MSCs share a core genetic profile with BM MSCs including stemness. They show upregulation of genes involved in vasculogenesis, angiogenesis, cell adhesion, growth proliferation, migration, and differentiation of endothelial cells, all contributing to endometrial function.  相似文献   

15.
The selective in vitro expansion and differentiation of multipotent stem cells are critical steps in cell-based regenerative therapies, but technical challenges have limited cell yield and thus the success of these potential treatments. The Rho GTPases and downstream Rho kinases (Rho coiled-coil kinases or ROCKs) are central regulators of cytoskeletal dynamics during the cell cycle and thus help determine the balance between stem cells self-renewal, lineage commitment, and apoptosis. Here, we examined if suppression of ROCK signaling enhances the efficacy of bone marrow-derived mesenchymal stem cells (BMSCs) differentiation into neurons and neuroglial cells. BMSCs were cultured in epidermal growth factor (EGF, 10 µg/l) and basic fibroblastic growth factor (bFGF, 10 µg/l) in the presence or absence of the Rho kinase inhibitor Y-27632 (10 µM). The expression levels of neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) were detected by immunofluorescence and Western blotting. The average number of NSE-positive cells increased from 83.20 ± 8.677 (positive ratio 0.2140 ± 0.0119) to 109.20 ± 8.430 (positive ratio 0.3193 ± 0.0161) per visual field in the presence of Y-27632, while GFAP-positive cell number increased from 96.30 ± 8.486 (positive ratio 0.18 ± 0.0152) to 107.50 ± 8.683 (positive ratio 0.27 ± 0.0115) (P < 0.05 for both). Both NSE and GFAP protein expression levels were enhanced significantly by Y-27632 treatment (NSE: 0.74 ± 0.05 vs. 1.03 ± 0.06; GFAP: 0.64 ± 0.08 vs. 0.97 ± 0.05, both P < 0.01) as indicated by Western blots. The Rho kinase inhibitor Y-27632 concomitant with EGF and bFGF stimulation promotes BMSC differentiation into neural cells. Control of Rho kinase activity may enhance the efficiency of stem cell-based treatments for neurodegenerative diseases.  相似文献   

16.
17.
18.
Liver in a dish     
There exists a worldwide shortage of donor livers for transplant. This may not pose a problem in the future, as Takebe et al. have recently grown functional “liver buds” from stem cells in a dish.Since the discovery of human induced pluripotent stem cells (hiPSCs), the promise of generating organs from patients'' iPSCs has received considerable attention as an alternative to donor organ transplantation. Over the past few years, much progress has been made in the differentiation of various somatic cell types from human pluripotent stem cells (hPSCs). However, only a limited number of reports have described the generation of three-dimensional organoids from human stem cells in vitro, including the optic cup1, the pituitary epithelium2, and from adult stem cells — the gut epithelium3. These experimental systems share several common features: 1) they all begin with ES cells or adult stem cells, 2) the cells grow as floating aggregates, and 3) all three organoids (optic cup, pituitary epithelium, and gut crypt) are epithelial structures4. In addition, one particularly unexpected finding has emerged from each of these experiments, namely that a high level of self-organization seems to play a substantial role in establishing local tissue architecture and assembly of the resulting organoid.Despite these remarkable examples of organogenesis in vitro, the likelihood of growing a complex vascularized organ in dish, such as liver, has seemed less plausible. Takebe et al.5 have made the implausible possible by focusing on the first steps of organogenesis, namely the cellular interactions that occur during liver bud development. The earliest stage of liver organogenesis involves the outgrowth of a group of endodermal and mesenchymal cells from the posterior foregut that soon thereafter become vascularized to form a liver bud. During these morphogenetic changes, a key element to the formation of a liver bud is the orchestration of signals between three types of cells: liver, mesenchymal and endothelial progenitors. Takebe et al. posited that they might be able to recapitulate liver bud formation in vitro by mixing hepatic endoderm cells together with endothelial and mesenchymal cells. To test this idea, they prepared hepatic endoderm cells (hiPSC-HEs) from hiPSCs by directed differentiation, and then co-cultured them with human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (MSCs). Two days later, the cells had self-assembled into a 5-mm-long, three-dimensional tissue that was reminiscent of “liver bud” structures in vivo. To further mature these hiPSC-derived “liver buds” (hiPSC-LBs), they transplanted them into immune-compromised mice where the hiPSC-LBs connected with the host vasculature within 48 h and formed functional vascular networks similar in density and morphology to those of human adult livers. Transplanted hiPSC-LBs started functioning about 10 days later, producing human albumin and metabolizing drugs in a similar fashion to human liver. Perhaps most remarkably, Takebe et al. demonstrated that these hiPSC-LBs could rescue liver function when transplanted to mice with liver failure.The differences between Takebe and his colleagues'' study and other studies designed to reproduce organogenesis in vitro are that they started with several different cell types; the cells were grown initially in a two-dimensional petri dish; and the result was a solid liver organoid that can be vascularized and function after transplantation. For many, the most striking finding is the high level of self-organization in this experimental differentiation system. By analogy, it is equivalent to delivering all of the materials necessary to build a house to a construction site and returning several days later to find a fully assembled home. Clearly the principles of self-organization and self-assembly are playing much more profound roles during differentiation than we previously thought and it is likely what has been reported by Takebe et al. represents only the tip of the iceberg. One takeaway from the way that Takebe and his colleagues'' tackled the problem of in vitro organogenesis may be their focus on the earliest processes in organ development, as it is likely to identify the right combination of cell types for organogenesis to proceed. Nonetheless, this study has raised several new questions. How does self-organization and self-assembly occur in vitro? What is the molecular logic of this process? How can we manipulate a self-organizing system so that we might guide it in the direction we want it to go? And ultimately, could we use a similar strategy to produce other complex solid organs in vitro, e.g., lung, kidney, and pancreas?As summarized by Takebe et al., this study demonstrates a “proof-of-concept” that “organ-bud transplantation provides a promising new approach to study regenerative medicine”. However, a significant amount of work will be required before these findings can be translated into a therapy. First, these little liver buds do not form a complete adult liver. They are missing a number of critical cell types, chief among them biliary epithelial cells and thus bile ducts. How to produce a fully functional liver remains a challenge. Second, in order to translate these findings into human therapies, a key step will be to scale this process so that one can produce a liver bud large enough for transplantation into humans. Of course, there is always the question about safety when it comes to stem cell-based therapies. Undifferentiated stem cells left in transplants tend to form tumors and the use of oncogenes for iPS reprogramming needs to be resolved before iPS cells can be considered for human therapy. Despite the reality that clinical therapies based on this report remain a distant promise, it is inspirational to consider how quickly the field is moving and exciting to speculate about what might come next. If one considers that a drug has been identified to specifically eliminate pluripotent but not differentiated hPSCs6 and that a recent report showed that pluripotent stem cells could be induced from mouse somatic cells by using only small molecules7, we may have good reason to believe that one day in the not too distant future we could grow patient-customized organs for transplantation (Figure 1).Open in a separate windowFigure 1This figure outlines the strategy of generating organs from patients'' iPSCs as an alternative to transplantation. Patient-derived pluripotent stem cells (iPSCs) can be differentiated in vitro to desired cell types. As demonstrated by Takebe et al.5, different cell types can be co-cultured in dish to recapitulate the earliest process of organogenesis and form three-dimensional organ buds. These in vitro produced organ buds could be used for transplantation in the future.  相似文献   

19.
20.
Mesenchymal stem cells (MSCs) are multipotent adult stem cells that have an immunosuppressive effect. The biological stability of MSCs in serum-free medium during long-term culture in vitro has not been elucidated clearly. The morphology, immunophenotype and multi-lineage potential were analyzed at passages 3, 5, 10, 15, 20, and 25 (P3, P5, P10, P15, P20, and P25, respectively). The cell cycle distribution, apoptosis, and karyotype of human umbilical cord-derived (hUC)-MSCs were analyzed at P3, P5, P10, P15, P20, and P25. From P3 to P25, the three defining biological properties of hUC-MSCs [adherence to plastic, specific surface antigen expression, multipotent differentiation potential] met the standards proposed by the International Society for Cellular Therapy for definition of MSCs. The cell cycle distribution analysis at the P25 showed that the percentage of cells at G0/G1 was increased, compared with the cells at P3 (P < 0.05). Cells at P25 displayed an increase in the apoptosis rate (to 183 %), compared to those at P3 (P < 0.01). Within subculture generations 3–20 (P3–P20), the differences between the cell apoptotic rates were not statistically significant (P > 0.05). There were no detectable chromosome eliminations, displacements, or chromosomal imbalances, as assessed by the karyotyping guidelines of the International System for Human Cytogenetic Nomenclature (ISCN, 2009). Long-term culture affects the biological stability of MSCs in serum-free MesenCult-XF medium. MSCs can be expanded up to the 25th passage without chromosomal changes by G-band. The best biological activity period and stability appeared between the third to 20th generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号