首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Induction of muscle genes in neural cells   总被引:8,自引:4,他引:4       下载免费PDF全文
The regulation of skeletal muscle genes was examined in heterokaryons formed by fusing differentiated chick skeletal myocytes to four different rat neural cell lines. Highly enriched populations of heterokaryons isolated using irreversible biochemical inhibitors were labeled with [35S]methionine and analyzed on two-dimensional gels. Rat skeletal myosin light chains were induced in three of the four cell combinations. The one exception, the S-20 cholinergic cell line, not only failed to synthesize rat muscle proteins but also suppressed chick myogenic functions. Experiments with heterokaryons between chick myocytes and cells from whole embryonic rat brain cultures demonstrated that rat skeletal myosin light chains are inducible in normal diploid neural cells as well as in established neural cell lines. In contrast, dividing cell hybrids between rat myoblasts and rat glial cells were nonmyogenic. These results demonstrate that although neural cells may contain factors that prevent the decision to differentiate along myogenic lines in cell hybrids, most neural cell lines do not dominantly suppress the expression of muscle structural genes in heterokaryons. Furthermore, the skeletal myosin light chain genes in most neural cell lines are regulated by a mechanism that permits them to respond to putative chick skeletal myocyte-inducing factors. The "open" state of these myogenic genes may explain many of the reports of apparent "transdifferentiation" to muscle in neural cultures and neural tumors.  相似文献   

2.
Heterokaryons were formed by fusing differentiated chick skeletal myocytes to fibroblasts derived from skin, lung or heart cultures. The heterokaryons were analyzed for the synthesis of skeletal myosin light chains, acetylcholine receptor, total CPK activity and the ability to spontaneously fuse to form myotubes. Whereas all of the above myogenic functions were expressed in control heterokaryons formed between myocytes and myoblasts, all were extinguished in the crosses between myocytes and fibroblasts. These results confirm that the suppression of myogenic functions previously observed in cell hybrids involving fibroblastoid tumor cells also occurs in heterokaryons isolated using biochemical inhibitors between diploid fibroblasts and chick skeletal myocytes.  相似文献   

3.
The inducibility of several rat skeletal muscle proteins was examined in heterokaryons formed by fusing differentiated chick myocytes to undifferentiated rat myoblasts. Chicken and rat proteins were distinguished using species-specific antibodies or by their different migrations in polyacrylamide or agarose gels. Both rat skeletal myosin light chain 1 and rat α-tropomyosin were induced in the heterokaryons. In contrast, neither rat acetylcholine receptors nor creatine kinase could be detected. These results suggest that chick myocytes may contain quantities of regulatory factors that are sufficient for the activation of some but not all of these rat muscle-specific proteins within the cellular context of the heterokaryon.  相似文献   

4.
Summary Quail myoblasts were maintained in an undifferentiated state by first blocking differentiation with 5-bromodeoxyuridine and then reversing the block in the presence of phorbol-12-myristate-13-acetate. The synthesis of quail skeletal myosin light chain 1 is induced in heterokaryons formed by fusing these undifferentiated quail myoblasts to differentiated chick myocytes. These results extend observations previously obtained using an established line of rat myoblasts and indicate that the induction is a result of regulatory interactions present in normal diploid cells. This work was supported by grants from the Muscular Dystrophy Association and the National Institutes of Health.  相似文献   

5.
《The Journal of cell biology》1983,97(5):1348-1355
Heterokaryons derived from polyethylene glycol-mediated fusion of myoblasts at different stages of development were used to investigate the transition of cells in the skeletal muscle lineage from the determined to the differentiated state. Heterokaryons were analyzed by immunofluorescence, using rabbit antibodies against the skeletal muscle isoforms of chicken creatine kinase and myosin, and a mouse monoclonal antibody that cross-reacts with chicken and rat skeletal muscle myosin. When cytochalasin B-treated rat L8(E63) myocytes (Konieczny S.F., J. McKay, and J. R. Coleman, 1982, Dev. Biol., 91:11-26) served as the differentiated parental component and chicken limb myoblasts from stage 23-26 or 10-12-d embryos were used as the determined, undifferentiated parental cell, heterokaryons exhibited a progressive extinction of rat skeletal muscle myosin during a 4-6-d culture period, and no precocious expression of chicken differentiated gene products was detected. In the reciprocal experiment, 85-97% of rat myoblast X chicken myocyte heterokaryons ceased expression of chicken skeletal muscle myosin and the M subunit of chicken creatine kinase within 7 d of culture. Extinction was not observed in heterokaryons produced by fusion of differentiated chicken and differentiated rat myocytes and thus is not due to species incompatibility or to the polyethylene glycol treatment itself. The results suggest that, when confronted in a common cytoplasm, the regulatory factors that maintain myoblasts in a proliferating, undifferentiated state are dominant over those that govern expression of differentiated gene products.  相似文献   

6.
The regulation of both muscle and adrenal functions was examined in heterokaryons formed by fusing differentiated chick skeletal myocytes to Y1 mouse adrenal cells. Mouse fast skeletal myosin light chain one (LC1) synthesis was induced and acetylcholine receptor expression was maintained at muscle control levels. Steroid secretion, although reduced compared with Y1 × Y1 adrenal homokaryon control fusions, was nonetheless maintained at relatively high levels. Steroid secretion in the myocyte × adrenal heterokaryons was constitutively expressed and was not increased by exposure to either adrenocorticotrophic hormone or db-cAMP. The population of heterokaryons was thus simultaneously expressing both muscle and adrenal functions. The steroid secretion in these heterokaryons was compared to that in heterokaryons formed by fusing Y1 adrenal cells to either chick skin fibroblasts or rat C6 glial cells. Both of these sets of heterokaryons exhibited low baseline levels of steroid secretion that were inducible to control values by ACTH. These results extend previous observations showing that heterokaryons are functionally very different than cell hybrids, and exhibit a variety of phenotypic interactions. Although fibroblasts suppress muscle functions in heterokaryons, they are permissive for adrenal functions. C6 glial cells are permissive for both adrenal and muscle functions, and along with several other neurectodermal derivatives contain an inducible skeletal myosin light chain gene. Finally, myocytes and Y1 adrenal cells are mutually permissive for their differentiated functions, and Y1 adrenal cells contain an inducible myosin light chain gene.  相似文献   

7.
Clones of differentiation-defective myoblasts were isolated by selecting clones of L6 rat myoblasts that did not form myotubes under differentiation-stimulating conditions. Rat skeletal myosin light chain synthesis was induced in heterokaryons formed by fusing these defective myoblasts to differentiated chick skeletal myocytes. This indicates that the structural gene for this muscle protein was still responsive to chick inducing factors and that the defective myoblasts were not producing large quantities of molecules that dominantly suppressed the expression of differentiated functions. The regulation of the decision to differentiate was then examined in hybrids between differentiation- defective myoblasts and differentiation-competent myoblasts. Staining with antimyosin antibodies showed that the defective myoblasts and homotypic hybrids formed by fusing defective myoblasts to themselves could in fact differentiate, but did so more than a thousand times less frequently than the 64% differentiation achieved by competent L6 myoblasts or homotypic competent X competent L6 hybrids. Heterotypic hybrids between differentiation-defective myoblasts and competent L6 cells exhibited an intermediate behavior of approximately 1% differentiation. A theoretical model for the regulation of the commitment to terminal differentiation is proposed that could explain these results by invoking the need to achieve threshold levels of secondary inducing molecules in response to differentiation-stimulating conditions. This model helps explain many of the stochastic aspects of cell differentiation.  相似文献   

8.
Terminal cell differentiation in a variety of model systems is inhibited by the thymidine analogue 5-bromodeoxyuridine (BUdR). We investigated the mode of action of BUdR by forming heterokaryons between undifferentiated BUdR-blocked rat myoblasts and differentiated chick skeletal myocytes. We analyzed newly synthesized proteins on two- dimensional polyacrylamide gels. The induction of rat skeletal myosin light-chain synthesis was reduced fivefold, as compared with controls, when chick myocytes were fused to BUdR-blocked rat myoblasts. This indicates that plasma membrane effects cannot be the proximate cause for the inhibition of myogenesis by BUdR, since BUdR is able to block the effect of chick inducing factors even when a differentiated chick myocyte is in direct cytoplasmic continuity with the BUdR-blocked rat nucleus. The observation that chick cells required an 80% substitution of BUdR for thymidine to block myogenesis, whereas L6 rat myoblasts required only a 20% substitution led to a hypothesis involving a DNA- mediated action of BUdR. This model yielded three testable predictions: (a) putative chick inducing molecules should be present in limiting quantities, (b) exploiting gene-dosage effects to increase the quantity of putative chick inducing factors might overcome the inhibition produced in the rat myoblasts by a 35% BUdR for thymidine substitution, and (c) these gene-dosage effects should be abolished by increasing the level of BUdR substitution in the rat myoblast to 60-80%. All three of these predictions have been verified, providing strong indirect evidence that the inhibition of myogenesis produced by BUdR is a direct result of its incorporation into cellular DNA.  相似文献   

9.
Attempts were made to reprogram chick erythrocyte nuclei to specify the synthesis of chick myosin. Chick erythrocytes were fused with rat myogenic cells with the aid of UV-inactivated Sendai virus. In the heterokaryons and hybrid myotubes which resulted from this fusion, the erythrocyte nuclei resumed RNA synthesis and formed nucleoli. Although some new chick antigens developed in those myotubes which contained fully reactivated chick erythrocyte nuclei, accumulation of chick myosin could not be detected by immunological methods. Neither small heterokaryons nor large hybrid myotubes which were actively synthesizing rat myosin reacted with antibodies directed against chick myosin. A small number of mononucleated cells, believed to be synkaryons formed by mitotic division of heterokaryons, did, however, react strongly with antibodies directed against chick myosin and showed a cross striation typical of skeletal muscle. The frequency of such cells was too low, however, to permit karyological analysis or further characterization of the antigen. Hybrids between chick myoblasts and rat myoblasts produced both chick and rat myosin thus indicating that simultaneous translation of chick and rat mRNA for myosin in a common cytoplasm was possible. In summary the evidence obtained suggested that reprogramming of chick erythrocyte nuclei, if it did occur in the present system, was a rare phenomenon.The possibility that hybrids between chick erythrocytes and rat myoblasts expressed markers typical of an erythroid phenotype was examined by immune staining with antibodies directed against chick haemoglobin. The results suggested that haemoglobin was introduced into hybrid cells by erythrocytes which failed to lyse before fusion. The intensity of this immune fluorescence decreased with increasing time after fusion. The rate at which this decrease occurred was not affected by inhibition of RNA synthesis. Thus, there was no evidence for the accumulation of haemoglobin in the hybrid cells.  相似文献   

10.
Cultured chick embryo skeletal muscle cells normally synthesize only the embryonic isoform of mysoin. We have found that aneural muscle cultures that become or are provoked into an extremely contractile state will begin to synthesize a pattern of myosin light chains typical of maturing muscle. Immunoblots with neonatal and adult specific monoclonal antibodies did not reveal a corresponding isozyme transition in myosin heavy chain. These results demonstrate a correlation between contractility and the regulation of myosin light chain maturation, and also suggest that the transitions of heavy and light chain synthesis during development do not appear to be under close coordinate regulation.  相似文献   

11.
A recombinant DNA plasmid, pMHC8, that contains gene sequences for embryonic chick cardiac myosin heavy chain was constructed, identified and characterized. The identity of the clone was established by hybridization with labeled probes that afford screening of MHC22 with high specificity, by inhibition of MHC synthesis in the in vitro hybrid-arrested translation assay, and by tissue-specific hybridization of labeled pMHC8 DNA to MHC messenger RNA.The pMHC8 DNA probe is highly specific for chick heart muscle tissue, since it hybridized poorly to chick skeletal muscle RNA and did not detectably hybridize to adult rat heart RNA. Upon screening the embryonic chick heart cells in culture, no detectable level of MHC mRNA was observed in dividing myoblasts, but the mRNA appeared in differentiated cardiac myocytes paralleling morphogenetic changes in the embryonic cells.  相似文献   

12.
Cells of the myogenic rat cell line L6 can be obtained as a confluent, quiescent population of undifferentiated myoblasts after growth in F12 medium supplemented with fetal calf serum. Myogenic differentiation can be induced in these cells by changing to Dulbecco's modified Eagle's (DME) medium containing insulin as the only protein component. Labeling of the cells with [3H]thymidine demonstrates that this induction of fusion occurs in the absence of DNA synthesis in about 85% of the cells. This result was confirmed using cytosine arabinoside: fusion of quiescent L6 cells was induced in the presence of this inhibitor of DNA synthesis. The myotubes formed in DME + insulin medium, with or without cytosine arabinoside, synthesize or accumulate proteins characteristic of differentiated muscle cells including myosin heavy and light chains, alpha-actin, alpha- and beta-tropomyosins, and the acetylcholine receptor. These experiments represent a direct demonstration that DNA synthesis is not required for the induction of myogenic differentiation in undifferentiated quiescent cells.  相似文献   

13.
The relative rates of synthesis and breakdown of myosin heavy and light chains were studied in primary cell cultures of embryonic chick cardiac and skeletal muscle. Measurements were made after 4 days in culture, at which time both skeletal and cardiac cultures were differentiated and contracted spontaneously. Following a 4-hr pulse of radioactive leucine, myosin and its heavy and light chains were extracted to 90% or greater purity and the specific activities of the proteins were determined. In cardiac muscle, myosin heavy chains were synthesized approximately 1.6 times the rate of myosin light chains, and in skeletal muscle, heavy chains were synthesized at approximately 1.4 times the rate of light chains. Relative rates of degradation of muscle proteins were determined using a dual-isotope technique. In general, the soluble and myofibrillar proteins of both types of muscle had decay rates proportional to their molecular weights (larger proteins generally had higher decay rates) based on analyses utilizing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A notable exception to this general rule was myosin heavy chains, which had decay rates only slightly higher than the myosin light chains. Direct measurements on purified proteins indicated that the heavy chains of myosin were turning over at a slightly greater rate (approximately 20%) than the myosin light chains in both cardiac and skeletal muscle. The reasons for the apparent discrepancy between these measurements of myosin heavy and light chain synthesis and degradation are discussed.  相似文献   

14.
Extinction of muscle-specific properties in somatic cell heterokaryons   总被引:4,自引:0,他引:4  
In studies of gene regulation using somatic cell fusion techniques, the analysis of heterokaryons circumvents several problematic aspects of the more traditional approach utilizing proliferating hybrid cells. We have analyzed the expression of muscle specific properties in heterokaryons between muscle and nonmuscle cells in order to investigate whether differentiating cells contain regulatory factors that repress the expression of alternative developmental pathways. Heterokaryons and cybrids were derived from polyethylene glycol-mediated fusion of differentiated mononucleate chicken myocytes with mouse melanoma cells, mouse melanoma cytoplasts, chicken fibroblasts, or other chicken myocytes. Our results demonstrate that fusion of a myocyte with a nonmyogenic cell generally results in extinction of muscle-specific properties in the immediate fusion product. Myocyte X melanoma heterokaryons ceased to express the skeletal muscle forms of myosin, desmin and creatine kinase, reinitiated DNA synthesis, and showed a loss of spontaneous fusion competence within 96 hr after their formation. Although chicken myocyte X mouse melanoma heterokaryons showed extinction of muscle specific properties, they continued to synthesize protein and to incorporate [3H]hypoxanthine, presumably due to the continued production of constitutive chicken HPRT. That presence of the melanoma nucleus was required for extinction to be observed was demonstrated by the continued expression of muscle proteins in cybrids between chicken myocytes and melanoma cytoplasts. Significantly, heterokaryons between chicken myocytes and chicken fibroblasts also exhibited extinction of muscle proteins, demonstrating for the first time that extinction is not restricted to fusions in which at least one parental cell type was derived from an established cell line. Our results strongly support the notion that extinction reflects cell-type specific gene regulatory mechanisms operative during development.  相似文献   

15.
The emergence of avian satellite cells during development has been studied using markers that distinguish adult from fetal cells. Previous studies by us have shown that myogenic cultures from fetal (Embryonic Day 10) and adult 12-16 weeks) chicken pectoralis muscle (PM) each regulate expression of the embryonic isoform of fast myosin heavy chain (MHC) differently. In fetal cultures, embryonic MHC is coexpressed with a ventricular MHC in both myocytes (differentiated myoblasts) and myotubes. In contrast, myocytes and newly formed myotubes in adult cultures express ventricular but not embryonic MHC. In the current study, the appearance of myocytes and myotubes which express ventricular but not embryonic MHC was used to determine when adult myoblasts first emerge during avian development. By examining patterns of MHC expression in mass and clonal cultures prepared from embryonic and posthatch chicken skeletal muscle using double-label immunofluorescence with isoform-specific monoclonal antibodies, we show that a significant number of myocytes and myotubes which stain for ventricular but not embryonic MHC are first seen in cultures derived from PM during fetal development (Embryonic Day 18) and comprise the majority, if not all, of the myoblasts present at hatching and beyond. These results suggest that adult type myoblasts become dominant in late embryogenesis. We also show that satellite cell cultures derived from adult slow muscle give results similar to those of cultures derived from adult fast muscle. Cultures derived from Embryonic Day 10 hindlimb form myocytes and myotubes that coexpress ventricular and embryonic MHCs in a manner similar to cells of the Embryonic Day 10 PM. Thus, adult and fetal expression patterns of ventricular and embryonic MHCs are correlated with developmental age but not muscle fiber type.  相似文献   

16.
Intracellular migration of species-specific nuclear antigens was studied in chick-rat heterokaryons. These cells were produced by virus-induced or spontaneous fusion of different chick cells with rat myoblasts or myotubes. Chick erythrocyte nuclei introduced into rat myogenic cells increased in volume and were reactivated to synthesize RNA. As the chick erythrocyte nuclei enlarged, they rapidly accumulated rat nuclear antigens. Rat nucleolar and nucleoplasmic antigens assumed a distribution in the chick nuclei corresponding to that in rat nuclei. In hybrid myotubes formed by the spontaneous fusion of chick myoblasts and rat myoblasts antigen exchange was at a much lower level. Some exchange of both rat and chick nuclear antigens could, however, be detected also in this system. Thus chick nuclear envelope and nucleolar antigens migrated into the rat myoblast nuclei and assumed an intranuclear localization analogous to that in chick nuclei. On the basis of these results it appears that antigenic nuclear macromolecules are constantly exchanged between the rat and chick nuclear compartments and the cytoplasm of the heterokaryon. During the rapid nuclear swelling which occurs when chick erythrocyte nuclei are activated in rat myoblast heterokaryons, the inward migration of rat nuclear antigens into the chick erythrocyte nucleus is more impressive than the migration of chick antigens into the rat nuclei.  相似文献   

17.
DNA synthesis, mitosis and fusion of myocardial cells   总被引:1,自引:0,他引:1  
Myocardial cells obtained from embryonic chick ventricles have been used to investigate (1) whether differentiated cells can undergo DNA synthesis and mitosis and, (2) whether heart cells when grown in culture can fuse with each other and with chick skeletal myoblasts to form heterokaryon myotubes. Electron microscopic observations have shown that myocardial cells of day 3 and day 20 chick embryos did contain myofibrils with defined sarcomeres; these cells have been observed in mitosis. Cells obtained by tryptic digestion of day 12 chick ventricles when grown in culture continued to replicate their DNA as shown by thymidine-3H radioautography with DNase controls and were observed in all stages of mitosis. Electron microscopy showed that myofibrils were present in some of the cultured cells. Bi-, tri- and tetranucleate cells were observed in the cultures. Thymidine-3H radioautography showed that these cells were formed by karyokinesis without cytokinesis and by the fusion of uninucleate cells. Since the heart cells could fuse with each other, we tested the possibility that they could fuse with skeletal myoblasts to form heterokaryon myotubes. This was accomplished by co-culturing thymidine-3H labeled ventricular cells and unlabeled skeletal myoblasts. Radioautography with DNase controls showed that some of the myotubes consisted of unlabeled skeletal muscle nuclei and labeled heart nuclei in varied proportions. The factors initiating the formation of these heterokaryons have not been elucidated.  相似文献   

18.
Skeletal muscle cells and adipose cells have a close relationship in developmental lineage. Our previous study has shown that the heterokaryons between quail myoblasts and undifferentiated 3T3-L1 cells (preadipocytes) normally differentiated into myotubes, whereas the heterokaryons between myoblasts and differentiated 3T3-L1 cells (adipocytes) failed myogenic differentiation. These results suggest differences between preadipocytes and adipocytes. The purpose of this study was to clarify whether preadipocytes have flexibility in differentiation before terminal adipose differentiation. Presumptive quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) and mouse 3T3-L1 cells (either preadipocytes or adipocytes) were co-cultured for 48 h under conditions allowing myogenic differentiation. On co-culture between myoblasts and undifferentiated 3T3-L1 cells, heterokaryotic myotubes formed spontaneously, but not on co-culture with differentiated 3T3-L1 cells. In addition, the heterokaryotic myotubes expressed mouse myogenin derived from the 3T3-L1 cell gene. Our previous study indicated that the fusion sensitivity of differentiating myoblasts change with decreasing cholesterol of the cell membrane during myoblast fusion. Thus we compared the level of membrane cholesterol between undifferentiated and differentiated 3T3-L1 cells. The result showed that the level of membrane cholesterol in 3T3-L1 cells increases during adipose differentiation. Corresponding to the increase in membrane cholesterol content, differentiated 3T3-L1 cells had lower sensitivity to HVJ (Sendai virus)-mediated cell fusion than undifferentiated 3T3-L1 cells. This study demonstrated that 3T3-L1 cells at an undifferentiated state have a capacity for spontaneous fusion with differentiating myoblasts following myogenic differentiation, and that the capacity is lost after terminal adipose differentiation.  相似文献   

19.
The biosynthesis and accumulation of the myosin heavy chain (MHC) peptide has been examined in embryonic chick skeletal muscle cultures under conditions of normal or arrested cell fusion. When compared with primary chick fibroblasts, the myogenic cells accumulated significantly more MHC, even while mononucleated. Electron microscopy of the fusion-blocked cultures revealed the presence of myosinlike thick filaments in the myoblasts. It is concluded that cell fusion is not a prerequisite for myosin accumulation or myofilament assembly during embryonic chick muscle differentiation.  相似文献   

20.
Pattern of chick gene activation in chick erythrocyte heterokaryons   总被引:1,自引:1,他引:0       下载免费PDF全文
The reactivation of chicken erythrocyte nuclei in chick-mammalian heterokaryons resulted in the activation of chick globin gene expression. However, the level of chick globin synthesis was dependent on the mammalian parental cell type. The level of globin synthesis was high in chick erythrocyte-rat L6 myoblast heterokaryons but was 10-fold lower in chick erythrocyte-mouse A9 cell heterokaryons. Heterokaryons between chick erythrocytes and a hybrid cell line between L6 and A9 expressed chick globin at a level similar to that of A9 heterokaryons. Erythrocyte nuclei reactivated in murine NA neuroblastoma, 3T3, BHK and NRK cells, or in chicken fibroblasts expressed less than 5% chick globin compared with the chick erythrocyte-L6 myoblast heterokaryons. The amount of globin expressed in heterokaryons correlated with globin mRNA levels. Hemin increased beta globin synthesis two- to threefold in chick erythrocyte-NA neuroblastoma heterokaryons; however, total globin synthesis was still less than 10% that of L6 heterokaryons. Distinct from the variability in globin expression, chick erythrocyte heterokaryons synthesized chick constitutive polypeptides in similar amounts independent of the mammalian parental cell type. Approximately 40 constitutive chick polypeptides were detected in heterokaryons after immunopurification and two-dimensional gel electrophoresis. The pattern of synthesis of these polypeptides was similar in heterokaryons formed by fusing chicken erythrocytes with rat L6 myoblasts, hamster BHK cells, or mouse neuroblastoma cells. Three polypeptides synthesized by non-erythroid chicken cells but less so by embryonic erythrocytes were conspicuous in heterokaryons. Two abundant erythrocyte polypeptides were insignificant in non-erythroid chicken cells and in heterokaryons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号