首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that vitamin C (ascorbic acid) can initiate hydroxyl radical formation in copper contaminated household drinking water. In the present study, we have examined the stability of vitamin C in copper and bicarbonate containing household drinking water. In drinking water samples, contaminated with copper from the pipes and buffered with bicarbonate, 35% of the added vitamin C was oxidized to dehydroascorbic acid within 15?min. After 3?h incubation at room temperature, 93% of the added (2?mM) ascorbic acid had been oxidized. The dehydroascorbic acid formed was further decomposed to oxalic acid and threonic acid by the hydrogen peroxide generated from the copper (I) autooxidation in the presence of oxygen. A very modest oxidation of vitamin C occurred in Milli-Q water and in household water samples not contaminated by copper ions. Moreover, addition of vitamin C to commercially sold domestic bottled water samples did not result in vitamin C oxidation. Our results demonstrate that ascorbic acid is rapidly oxidized to dehydroascorbic acid and further decomposed to oxalic- and threonic acid in copper contaminated household tap water that is buffered with bicarbonate. The impact of consuming ascorbic acid together with copper and bicarbonate containing drinking water on human health is discussed.  相似文献   

2.
Mung bean plants (Wilczek) accumulate increasingly greater amounts of buffer-extractable copper in both their shoots and roots when grown in liquid medium containing greater than 2 micrograms per milliliter copper (31.4 micromolar) as cupric sulfate. This increase in soluble copper is accompanied by an increase in the relative amount of low molecular weight (7,000 to 20,000) macromolecular-bound copper and a decrease in the relative amount of high molecular weight (greater than 20,000) copper. The major low molecular weight copper protein has been isolated from copper-intoxicated mung bean plants by a combination of ammonium sulfate fractionation, gel filtration, and ion exchange chromatography. It was identified as mung bean plastocyanin on the basis of its molecular weight, optical behavior, and amino acid composition. No evidence was found for a low molecular weight copper-binding protein corresponding to mammalian thionein or chelatin.  相似文献   

3.
We have previously shown that vitamin C (ascorbic acid) can initiate hydroxyl radical formation in copper contaminated household drinking water. In the present study, we have examined the stability of vitamin C in copper and bicarbonate containing household drinking water. In drinking water samples, contaminated with copper from the pipes and buffered with bicarbonate, 35% of the added vitamin C was oxidized to dehydroascorbic acid within 15 min. After 3 h incubation at room temperature, 93% of the added (2 mM) ascorbic acid had been oxidized. The dehydroascorbic acid formed was further decomposed to oxalic acid and threonic acid by the hydrogen peroxide generated from the copper (I) autooxidation in the presence of oxygen. A very modest oxidation of vitamin C occurred in Milli-Q water and in household water samples not contaminated by copper ions. Moreover, addition of vitamin C to commercially sold domestic bottled water samples did not result in vitamin C oxidation. Our results demonstrate that ascorbic acid is rapidly oxidized to dehydroascorbic acid and further decomposed to oxalic- and threonic acid in copper contaminated household tap water that is buffered with bicarbonate. The impact of consuming ascorbic acid together with copper and bicarbonate containing drinking water on human health is discussed.  相似文献   

4.
The apparent molecular weight of functional protein S in citrated plasma was observed to be between 115,000 and 130,000 as measured by sedimentation equilibrium in the air-driven ultracentrifuge. The molecular weight of the functional protein decreased to approximately 62,000 when copper ions were added to the plasma. This suggested the presence of a protein S-binding protein in plasma, which was confirmed by gel filtration experiments. Frontal analysis of plasma indicated that functional protein S could exist in as many as three forms. Addition of copper ions to plasma reduced the number of forms to one. In order to isolate the binding protein, plasma was fractionated first on a column of immobilized iminodiacetic acid that had been equilibrated with copper ions. The proteins that eluted in a 0.6 M NaCl wash were passed over a column of protein S immobilized on agarose beads. A protein, eluted in the 0.6 M NaCl wash, was observed to bind to protein S in gel filtration experiments. When added to plasma depleted of both protein S and the binding protein, the binding protein was observed to enhance the anticoagulant activity of activated protein C only in the presence of protein S. Protein S-binding protein was also observed to enhance the rate of factor Va inactivation by activated protein C and protein S.  相似文献   

5.
L Xun  E Topp    C S Orser 《Journal of bacteriology》1992,174(24):8003-8007
Tetrachloro-p-hydroquinone (TeCH) is the first intermediate in pentachlorophenol (PCP) degradation by Flavobacterium sp. strain ATCC 39723. We previously purified a PCP hydroxylase that oxidized PCP to TeCH. Subsequently, we identified the reductive dehalogenation of TeCH to 2,3,6-trichloro-p-hydroquinone and then to 2,6-dichloro-p-hydroquinone in a cell extract with the reduced form of glutathione as the reducing agent under anaerobic conditions. Here we report the purification of a TeCH reductive dehalogenase that reductively dehalogenated TeCH to trichlorohydroquinone and then to dichlorohydroquinone. The enzyme was purified by protamine sulfate treatment, ammonium sulfate fractionation, and phenyl-agarose, anion-exchange, and gel filtration column chromatographies. As determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses, the protein has a molecular weight of about 30,000; nondenaturing polyacrylamide gel electrophoresis analysis suggests that the native enzyme exists as a dimer. The enzyme used glutathione but not NADPH, NADH, dithiothreitol, or ascorbic acid as the reducing agent. The optimal pH was close to neutral.  相似文献   

6.
7.
8.
Composition of Root Mucilage Polysaccharides from Lepidium sativum   总被引:1,自引:0,他引:1  
Root mucilage polysaccharides were recovered from roots of 3-d-oldcress seedlings by washing with water, followed by ethanol precipitationof the high molecular weight material. The redissolved polysaccharidewas fractionated by combined gel filtration chromatography onBiogel A50 and ion exchange chromatography on DEAE-Sepharose/DEAE-Trisacrylinto four heterogeneous fractions. The fractions could be assignedto two groups based on monosaccharide composition and behaviourduring ion-exchange chromatography. Group One polysaccharidescontained fucose as the major 6-deoxyhexose and were low inuronic acid, not binding to the ion-exchange column. Group Twopolysaccharides contained rhamnose as the major 6-deoxyhexoseand were uronic acid rich. It is suggested that these representroot cap and root epidermal mucilage components respectively. Key words: Root mucilage, recognition, polysaccharides  相似文献   

9.
Ascrobate free-radical reductase (EC 1.6.5.4) from potato tubers was purified to apparent homogencity by a method which included ammonium-sulfate precipitation, gel filtration and chromatography on diethylaminoethyl cellulose and hydroxylapatite. Gel filtration and gel electrophoresis showed that the purified enzyme was monomeric with a molecular weight of about 42 000. Enzyme activity was heat lable and severely inhibited by thiol reagents. The Km values for enzyme substrates were estimated.Abbreviations AFR ascorbate free radical - AsA ascorbic acid - DE-32(52) diethylaminoethyl cellulose - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-glycine  相似文献   

10.
Plant roots secrete a complex polysaccharide mucilage that may provide a significant source of carbon for microbes that colonize the rhizosphere. High molecular weight mucilage was separated by high-pressure liquid chromatography gel filtration from low molecular weight components of pea root exudate. Purified pea root mucilage generally was similar in sugar and glycosidic linkage composition to mucilage from cowpea, wheat, rice, and maize, but appeared to contain an unusually high amount of material that was similar to arabinogalactan protein. Purified pea mucilage was used as the sole carbon source for growth of several pea rhizosphere bacteria, including Rhizobium leguminosarum 8401 and 4292, Burkholderia cepacia AMMD, and Pseudomonas fluorescens PRA25. These species grew on mucilage to cell densities of three- to 25-fold higher than controls with no added carbon source, with cell densities of 1 to 15% of those obtained on an equal weight of glucose. Micromolar concentrations of nod gene-inducing flavonoids specifically stimulated mucilage-dependent growth of R. leguminosarum 8401 to levels almost equaling the glucose controls. R. leguminosarum 8401 was able to hydrolyze p-nitrophenyl glycosides of various sugars and partially utilize a number of purified plant polysaccharides as sole carbon sources, indicating that R. leguminosarum 8401 can make an unexpected variety of carbohydrases, in accordance with its ability to extensively utilize pea root mucilage.  相似文献   

11.
An in vitro bioassay based on suppression of GnRH-stimulated FSH secretion by pituitary cells in culture was used to monitor inhibin activity after dialysis, gel filtration or polyacrylamide gel electrophoresis of protein preparations from a variety of gonadal secretions and extracts under native and dissociating conditions. The suggestion that inhibin is a peptide of molecular weight less than 5000 was not confirmed. Although some fractions of low molecular weight suppressed FSH secretion, the amount of activity was low and the dose response curves were not parallel with a standard preparation of inhibin. Under most conditions, inhibin eluted with an apparent molecular weight of about 90 000. However, gel filtration of rete testis fluid protein in 1 M acetic acid resulted in elution of inhibin activity with a lower apparent molecular weight and with polyacrylamide gel electrophoresis in 0.1% (w/v) sodium dodecylsulfate, the apparent molecular weight was 30 000. It is concluded that inhibin is a protein which tends to aggregate and coelute with larger molecules.  相似文献   

12.
Summary Extracellular polysaccharide/proteoglycan (EPS) mucilages play a crucial role in maintaining the structure of the extensive algal sheets that appear along the undersurface of nearshore Antarctic sea ice during the austral spring. In this study we have determined the composition and ultrastructural location of a family of novel sulphated polysaccharides/proteoglycans from the pennate ice diatomStauroneis amphioxys Gregory. They occur as soluble EPS in the culture supernatant, as an intercellular mucilage sheet, and as components of a distinct organic layer (diatotepum) underlying the silicious cell wall. The ultrastructural location and quantitative extraction of the mucilage EPS and the major diatotepum polysaccharides with hot water and alkali, respectively, was monitored by light and electron microscopy. The EPS and wall components were purified by Ultrafiltration, anion exchange and gel filtration chromatographies, and their monosaccharide composition was determined by gas-chro-matography mass spectrometry. The soluble and mucilage EPS, and major diatotepum polysaccharides/proteoglycans had an apparent molecular mass greater than 2 × 106 Da on gel. They contained a similar complex monosaccharide composition that includes glucuronic acid and galactose as the major sugars and significant levels of rhamnose, fucose, arabinose, xylose, mannose, glucose and the mono-O-methylated monosaccharides 3-O-methylrhamnose, 3-O-methylfucose, 3-O- and 4-O-methylxylose. The ratios of Gal to GlcA, which together account for 45% of the monosaccharides, varied from 0.8 (in the soluble EPS) to 2.3 (in diatotepum polysaccharides). The level of sulphation also varied from 5–15% (w/w), with the mucilage EPS being the most highly sulphated. The soluble EPS also contains a small amount of protein (ca. 5%, v/w) which cochromatographs with the polysaccharide during gel filtration and anion exchange chromatographies suggesting that it may be a sulphated proteoglycan. They are clearly distinct from a sulphated glucuronomannan that remained in the alkali-insoluble fraction and may be tightly associated with the silica wall components. The amount of mucilage EPS increased during logarithmic growth but decreased during stationary phase, when most of the EPS was found in the soluble pool. These changes correlate with the breakdown of the mucilage sheet and dispersal of diatom colonies during stationary growth. Interestingly, the soluble EPS from stationary-growth cultures was indistinguishable from the mucilage EPS of logarithmic- or stationary-phase cells, suggesting that the dissolution of the intercellular mucilage was not due to a change in EPS composition. The possibility that cell motility may be required for mucilage formation and the significance of these polysaccharides in the under-ice community is discussed.  相似文献   

13.
Purification of low molecular weight copper binding proteins from the livers of copper loaded male rats was achieved by sequential ultracentrifugation (186,000g, 2h), ultrafiltration (Amicon PM 30), gel filtration (Sephadex G-75) and anion exchange chromatography (DEAE - Biogel A) of soluble tissue extracts. The three major copper-associated polypeptides obtained which had molecular weights of about 7000, 9,000, and 12,000 daltons contained approximately 2.5g atoms of copper per mole. Amino acid analyses indicated a similarity between these proteins and the copper protein ‘L-6D’ isolated earlier from livers of Wilson's disease patients and distinguished them from metallothioneins which have been isolated from animals administered other trace metal ions.  相似文献   

14.
Ascorbic acid and dehydroascorbic acid are unstable in aqueous solution in the presence of copper and iron ions, causing problems in the routine analysis of vitamin C. Their stability can be improved by lowering the pH below 2, preferably with metaphosphoric acid. Dehydroascorbic acid, an oxidised form of vitamin C, gives a relatively low response on the majority of chromatographic detectors, and is therefore routinely determined as the increase of ascorbic acid formed after reduction. The reduction step is routinely performed at a pH that is suboptimal for the stability of both forms. In this paper, the reduction of dehydroascorbic acid with tris-[2-carboxyethyl] phosphine (TCEP) at pH below 2 is evaluated. Dehydroascorbic acid is fully reduced with TCEP in metaphosphoric acid in less than 20 min, and yields of ascorbic acid are the same as at higher pH. TCEP and ascorbic acid formed by reduction, are more stable in metaphosphoric acid than in acetate or citrate buffers at pH 5, in the presence of redox active copper ions. The simple experimental procedure and low probability of artefacts are major benefits of this method, over those currently applied in a routine assay of vitamin C, performed on large number of samples.  相似文献   

15.
Ascorbate oxidase activity and ascorbic acid content were followedduring the development of muskmelon (Cucumis melo L. var. reticulatus)fruits. The enzyme was highly expressed in ovaries and veryyoung fruit tissues, followed by a decrease in 10- and 20-d-oldfruits and an increase in 30- and 35-d-old fruits which coincidedwith early events of fruit ripening. Ascorbic acid content wasnegatively correlated with ascorbate oxidase activity. The enzymewas purified to homogeneity following ion exchange, affinityand gel filtration chromatographic trials. The purified enzymewas a glycoprotein of molecular weight 137 000 composed of twosubunits of molecular weight 68000, and formed by six isoenzymeswith isoelectric points in the range of pH 7.7 to 8.3. Its electronparamagnetic resonance and optical spectra were in agreementwith other copper proteins and the enzyme contained eight copperatoms per dimeric molecule. The Km of the enzyme for ascorbicacid was 50 µM. Ascorbate oxidase activity was inhibitedby azide and by EDTA, two inhibitors of copper proteins. Optimalconditions for enzyme activity was pH 5.5, and a temperatureof 37 C. Polyclonal antibodies were produced against the purifiedprotein and immunoprecipitated ascorbate oxidase activity. Key words: Cucumis melo, muskmelon, ascorbate oxidase, fruit ripening  相似文献   

16.
Structure and proteolysis of the growth hormone receptor on rat hepatocytes   总被引:3,自引:0,他引:3  
K Yamada  K E Lipson  D B Donner 《Biochemistry》1987,26(14):4438-4443
125I-Labeled human growth hormone is isolated in high molecular weight (Mr) (300,000, 220,000, and 130,000) and low molecular weight complexes on rat hepatocytes after affinity labeling. The time-dependent formation of low molecular weight complexes occurred at the expense of the higher molecular weight species and was inhibited by low temperature or inhibitors of serine proteinases. Exposure to reducing conditions induced loss of Mr 300,000 and 220,000 species and augmented the amount of Mr 130,000 complexes. The molecular weight of growth hormone (22,000) suggests that binding had occurred with species of Mr 280,000, 200,000, and 100,000. Two-dimensional gel electrophoresis demonstrated that the 100,000-dalton receptor subunit is contained in both the 280,000- and 200,000-dalton species. Reduction of interchain disulfide bonds in the growth hormone receptor did not alter its elution from gel filtration columns, but intact, high molecular weight receptor constituents were separated from lower molecular weight degradation products. Digestion of affinity-labeled growth hormone-receptor complexes with neuraminidase increased the mobility of receptor constituents on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These observations show that the growth hormone receptor is degraded by hepatic serine proteinases to low molecular weight degradation products which can be separated from intact receptor by gel filtration. Intact hormone-receptor complexes are aggregates of 100,000-dalton sialoglycoprotein subunits held together by interchain disulfide bonds and by noncovalent forces.  相似文献   

17.
Solid-state culture of the white-rot fungus Phanerochaete chrysosporium BKMF-1767 (ATCC 24725) has been carried out, using an inert support, polystyrene foam. Suitable medium and culture conditions have been chosen to favor the secretion of manganese peroxidase (MnP). The enzyme was isolated and purified from immobilized P. chrysosporium and partially characterized. Partial protein precipitation in crude enzyme was affected using ammonium sulphate, polyethylene glycol, methanol, and ethanol methods. Fractionation of MnP was performed by DEAE-Sepharose ion exchange chromatography followed by Ultragel AcA 54 gel filtration chromatography. This purification attained 23.08% activity yield with a purification factor of 5.8. According to data on gel filtration chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), the molecular weight of the enzyme was 45 000±1000 Da. The optimum pH and temperature of purified MnP were 4.5 and 30 °C, respectively. This enzyme was stable in the pH range 4.5–6.0, at 25 °C and also up to 35 °C at pH 4.5 for 1 h incubation period. MnP activity was inhibited by 2 mM NaN3, ascorbic acid, β-mercaptoethanol and dithreitol. The Km values of MnP for hydrogen peroxide and 2.6-dimetoxyphenol were 71.4 and 28.57 μM at pH 4.5, respectively. The effects of possible inhibitors and activators of enzyme activity were investigated.  相似文献   

18.
Tartrate-resistant acid phosphatase active on nucleoside di- and triphosphate substrates was isolated from developing rat bone and purified 2500-fold. The enzyme concentration had a purple coloration and activity that was sensitive to reducing agents. Mild reducing agents such as ferrous ion and ascorbic acid caused loss of purple color and increased activity toward substrates severalfold; however, a strong reductant such as dithionite caused loss of both color and activity which were partially restored by addition of ferrous ion and ascorbic acid. Enzyme activity was homogeneous with protein during the final gel permeation steps of chromatography and gave an apparent molecular size of about 40,000 Da. Determination of iron in the most pure preparation revealed the presence of 1.3 atoms of iron per molecule of the tartrate-resistant enzyme E2. Other properties of the purified enzyme include a pI of approximately 9.5 and sensitivity to inhibition by ions of copper, zinc, fluoride, and molybdate. Antibody prepared to the pre-concanavalin A (Con A)-Sepharose purified enzyme reacted with all protein from the Con A step, but it did not react with tartrate-sensitive acid phosphatase from rat bone or with potato acid phosphatase. Purple acid phosphatase from rat bone has many properties that parallel the iron-containing purple acid phosphatases from rat spleen, bovine spleen, and pig uterine secretions.  相似文献   

19.
An alkaline phosphatase was purified from boar seminal plasma using adsorption to calcium phosphate gel, gel filtration, and ion-exchange chromatography. The preparation gave a single band on SDS polyacrylamide electrophoresis. The enzyme was a non-specific alkaline phosphatase that hydrolysed pyrophosphate slowly and had no phosphodiesterase activity. The pH optimum was 10 and the Km was approximately 0.2 mM with p-nitrophenyl phosphate as substrate. The enzyme was a zinc metalloenzyme as indicated by the loss of activity when treated with o-phenanthroline and the restoration of activity by zinc and magnesium ions. It also lost activity when treated with thiols. Molecular weight estimates from SDS polyacrylamide gel electrophoresis and gel filtration suggest that the enzyme is a tetramer of identical subunits, each of which has a molecular weight of 68,000.  相似文献   

20.
The distribution of copper and zinc among soluble proteins in liver from normal slaughter cattle was examined after gel filtration of the proteins. Gopper- and zinc-binding proteins were mainly separated into three fractions. Varying amounts of zinc were eluted in a fourth fraction of molecular weight less than 2,000. A clear relationship was noted between the amount of copper bound to the low molecular weight fraction (m.w. ~ 10,000) and the total liver zinc concentration. The high molecular weight protein fraction (m.w. > 65,000) dominated in liver with zinc concentrations below 40 µg/g wet weight and total copper concentrations from 16 to 240 µg/g, while in liver with zinc concentrations above 40 µg/g and copper concentrations ranging from 20 to 107 µg/g, the low molecular weight metallothionein-like fraction dominated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号