首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
pRb and E2f-1 in mouse development and tumorigenesis   总被引:7,自引:0,他引:7  
Our understanding of how RB and E2F-1 function has progressed significantly from the model in which RB negatively regulates expression of genes required for S phase by binding to and inhibiting E2F-1. Both RB and E2F-1 have been shown recently to possess additional properties and mechanisms of regulation relevant to developmental and tumorigenic processes. In particular, it is now realised that RB has E2F-independent tumor suppressor functions which rely upon the ability of RB to induce differentiation. For its part, E2F-1 is unique amongst E2F family members in its capacity to induce apoptosis and this function is clearly relevant to our appreciation of E2F-1 as a conditional tumor suppressor. E2F-1 can induce both apoptosis and S-phase transition and whether E2F-1 acts as an oncogene or a tumor-suppressor gene may depend on the extent to which E2F-1 induces apoptosis as opposed to G1/S transition.  相似文献   

3.
4.
5.
6.
7.
E2F-1 plays a critical role in cell cycle regulation and other biological processes in cells. E2F-1 mediates apoptosis and suppresses tumorigenesis in many tissue types, but there are few data available on E2F-1 expression and its relationship to tumor kinetics in gastric cancer. To gain better insight into the involvement of E2F-1 in the biological characteristics of gastric tumors, we investigated the effect of E2F-1 overexpression on the progression of gastric carcinoma cells. A gastric cancer cell line stably overexpressing E2F-1 (MGC-803/E2F-1) was established. The influence of E2F-1 overexpression on in vitro cell growth was assessed by measuring cell survival, colony formation, and cell cycle progression. The results clearly show that overexpression of E2F-1 significantly inhibits cell growth and proliferation, blocking entry into the S-phase of the cell cycle. MGC-803/E2F-1 cells also had a higher apoptotic rate than control cells. In addition, E2F-1 reduced the motility and invasion of gastric cancer cells.  相似文献   

8.
9.
10.
11.
12.
13.
14.
E2F-1 is essential for normal epidermal wound repair.   总被引:2,自引:0,他引:2  
E2F factors are involved in proliferation and apoptosis. To understand the role of E2F-1 in the epidermis, we screened wild type and E2F-1(-/-) keratinocyte mRNA for genes differentially expressed in the two cell populations. We demonstrate the reduced expression of integrins alpha(5), alpha(6), beta(1), and beta(4) in E2F-1(-/-) keratinocytes associated with reduced activation of Jun terminal kinase and Erk upon integrin stimulation. As a consequence of altered integrin expression and function, E2F-1(-/-) keratinocytes also show impaired migration, adhesion to extracellular matrix proteins, and a blunted chemotactic response to transforming growth factor-gamma1. E2F-1(-/-) keratinocytes, but not dermal fibroblasts, exhibit altered patterns of proliferation, including significant delays in transit through both G(1) and S phases of the cell cycle. Recognizing that proliferation and migration are key for proper wound healing in vivo, we postulated that E2F-1(-/-) mice may exhibit abnormal epidermal repair upon injury. Consistent with our hypothesis, E2F-1(-/-) mice exhibited impaired cutaneous wound healing. This defect is associated with substantially reduced local inflammatory responses and rates of re-epithelialization. Thus, we demonstrate that E2F-1 is indispensable for a hitherto unidentified cell type-specific and unique role in keratinocyte proliferation, adhesion, and migration as well as in proper wound repair and epidermal regeneration in vivo.  相似文献   

15.
E2F-1 is the major cellular target of pRB and is regulated by pRB during cell proliferation. Interaction between pRB and E2F-1 is dependent on the phosphorylation status of pRB. Despite the fact that E2F-1 and pRB have antagonistic activities when they are overexpressed, the role of the E2F-1-pRB interaction in cell growth largely remains unknown. Ideally, it would be better to study the properties of a pRB mutant that fails to bind to E2F, but retains all other activities. To date, no pRB mutation has been characterized in sufficient detail to show that it specifically eliminates E2F binding but leaves other interactions intact. An alternative approach to this issue is to ask whether mutations that change E2F proteins binding affinity to pRB are sufficient to change cell growth in aspect of cell cycle and tumor formation. Therefore, we used the E2F-1 mutants including E2F-1/S332-7A, E2F-1/S375A, E2F-1/S403A, E2F-1/Y411A and E2F-1/L132Q that have different binding affinities for pRB to better understand the roles of the E2F-1 phosphorylation and E2F-1-pRB interaction in the cell cycle, as well as in transformation and gene expression. Data presented in this study suggests that in vivo phosphorylation at amino acids 332-337, 375 and 403 is important for the E2F-1 and pRB interaction in vivo. However, although E2F-1 mutants 332-7, 375 and 403 showed similar binding affinity to pRB, they showed different characteristics in transformation efficiency, G0 accumulation, and target gene experiments.  相似文献   

16.
17.
Negative regulation of E2F-1 DNA binding function by cyclin A kinase represents part of an S-phase checkpoint control system that, when activated, leads to apoptosis. In this study, we examined the cellular sensitivity and resistance of isogenic mouse fibrosarcoma cell lines, differing primarily in their p53 status, to ectopic expression of wild-type (wt) E2F-1 and cyclin A kinase binding-defective mutants of it. We found that E2F-1 (wt) potently affected the survival of p53+/+ tumor cells but not that of p53-/- cells. In contrast, expression of cyclin A kinase binding-defective E2F-1 species interfered with cell survival of fibrosarcoma cells irrespective of their p53 status. Finally, expression of E2F-1 (wt) in p53-/- fibrosarcoma cells enhanced the cytotoxic effect of ionizing radiation in vitro and in vivo in a mouse tumor model. These results suggest that E2F-1-dependent activation of an S-phase checkpoint is p53 independent and that E2F-1 possesses radiosensitizing properties in the absence of p53.  相似文献   

18.
Mutations of the retinoblastoma tumor suppressor, pRb, or its cyclin-cyclin-dependent kinase (CDK) regulatory kinases or CDK inhibitors, allows unrestrained E2F activity, leading to unregulated cell cycle progression. However, overexpression of E2F-1 also sensitizes cells to apoptosis, suggesting that targeting this pathway may be of therapeutic benefit. Enforced expression of E2F-1 in interleukin-3-dependent myeloid cells led to preferential sensitivity to the topoisomerase II inhibitor, etoposide, which was independent of p53 accumulation. Pretreatment of the E2F-1-expressing cells with ICRF-193, a second topoisomerase II inhibitor that does not cause DNA damage, protected these cells against etoposide-induced apoptosis. However, ICRF-193 cooperated with other DNA-damaging agents to induce apoptosis. Enforced expression of E2F-1 led to accumulation of p53 protein. An E2F-1 mutant that is defective in inducing cell cycle progression also induced p53, suggesting that p53 was responding directly to E2F, and not to secondary events caused by inappropriate cell cycle progression (i.e., DNA damage). Thus, topoisomerase II inhibition and DNA damage cooperate to selectively induce apoptosis in cells that have mutations in the pRb pathway.  相似文献   

19.
E2F-1-deleted mutant, 'truncated E2F' (E2Ftr, E2F-1[1-375]), lacking the carboxy-terminal transactivation domain, was shown to be more potent at inducing cancer cell apoptosis than wild-type E2F-1 (wtE2F-1; full-length E2F-1). Mechanisms by which wtE2F-1 and E2Ftr induce apoptosis, however, are not fully elucidated. Our study demonstrates molecular effects of pro-apoptotic BH3-only Bcl-2 family member Harakiri (Hrk) in wtE2F-1- and E2Ftr-induced melanoma cell apoptosis. We found that Hrk mRNA and Harakiri (HRK) protein expression was highly up-regulated in melanoma cells in response to wtE2F-1 and E2Ftr overexpression. HRK up-regulation did not require the E2F-1 transactivation domain. In addition, Hrk gene up-regulation and HRK protein expression did not require p53 in cancer cells. Hrk knockdown by Hrk siRNA was associated with significantly reduced wtE2F-1- and E2Ftr-induced apoptosis. We also found that an upstream factor, 'downstream regulatory element antagonist modulator' (DREAM), may be involved in HRK-mediated apoptosis in response to wtE2F-1 and E2Ftr overexpression. DREAM expression levels increased following wtE2F-1 and E2Ftr overexpression. Western blotting detected increased DREAM primarily in dimeric form. The homodimerization of DREAM resulting from wtE2F-1 and E2Ftr overexpression may contribute to the decreased binding activity of DREAM to the 3'-untranslated region of the Hrk gene as shown by electromobility shift assay. Results showed wtE2F-1- and E2Ftr-induced apoptosis is partially mediated by HRK. HRK function is regulated in response to DREAM. Our findings contribute to understanding the mechanisms that regulate wtE2F-1- and E2Ftr-induced apoptosis and provide insights into the further evaluation of how E2Ftr-induced apoptosis may be used for therapeutic gain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号