首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lumbar spinal cord of rats contains the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB). In males, the growth of SNB dendrites is steroid-dependent: dendrites fail to grow after castration, but grow in castrates treated with androgens or estrogens. Blocking estradiol synthesis or estrogen receptors in gonadally intact males attenuates SNB dendritic growth, suggesting that estrogens are required and must be able to act at their receptors to support normal masculine dendritic growth. However, SNB motoneurons do not accumulate estrogens, suggesting that estrogens act indirectly to support SNB dendritic growth. In this experiment, we examined whether local estrogen action in the neuromuscular periphery was involved in the postnatal development of SNB motoneurons. Motoneuron morphology was assessed in gonadally intact and castrated males. Gonadally intact males were left untreated or given either blank or tamoxifen implants sutured to the target musculature, or tamoxifen interscapular implants. Castrated males were left untreated or were given estradiol by muscle or interscapular implants or systemic injection during the period of SNB dendritic growth. At postnatal day 28, when SNB dendritic length is normally maximal, SNB motoneurons were retrogradely labeled with cholera toxin-HRP and reconstructed in three dimensions. While interscapular tamoxifen implants were ineffective, blocking estrogen receptors at the target musculature resulted in attenuation of SNB dendritic growth. In contrast, while interscapular implants of estradiol were ineffective, local treatment with estradiol at the target musculature in castrated males resulted in masculinization of dendritic growth. Thus, estrogens may act by an indirect action in the neuromuscular periphery to support SNB dendritic growth.  相似文献   

2.
The lumbar spinal cord of rats contains the sexually dimorphic, steroid‐sensitive spinal nucleus of the bulbocavernosus (SNB). Androgens are necessary for the development of the SNB neuromuscular system, and in adulthood, continue to influence the morphology and function of the motoneurons and their target musculature. However, estrogens are also involved in the development of the SNB system, and are capable of maintaining function in adulthood. In this experiment, we assessed the ability of testosterone metabolites, estrogens and nonaromatizable androgens, to maintain neuromuscular morphology in adulthood. Motoneuron and muscle morphology was assessed in adult normal males, sham‐castrated males, castrated males treated with testosterone, dihydrotestosterone, estradiol, or left untreated, and gonadally intact males treated with the 5α‐reductase inhibitor finasteride or the aromatase inhibitor fadrozole. After 6 weeks of treatment, SNB motoneurons were retrogradely labeled with cholera toxin‐HRP and reconstructed in three dimensions. Castration resulted in reductions in SNB target muscle size, soma size, and dendritic morphology. Testosterone treatment after castration maintained SNB soma size, dendritic morphology, and elevated target muscle size; dihydrotestosterone treatment also maintained SNB dendritic length, but was less effective than testosterone in maintaining both SNB soma size and target muscle weight. Treatment of intact males with finasteride or fadrozole did not alter the morphology of SNB motoneurons or their target muscles. In contrast, estradiol treatment was completely ineffective in preventing castration‐induced atrophy of the SNB neuromuscular system. Together, these results suggest that the maintenance of adult motoneuron or muscle morphology is strictly mediated by androgens. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 70: 206–221, 2010.  相似文献   

3.
The lumbar spinal cord of rats contains the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB). Dendritic development of SNB motoneurons in male rats is biphasic, initially showing exuberant growth through 4 weeks of age followed by a retraction to mature lengths by 7 weeks of age. The initial growth is steroid dependent, attenuated by castration or aromatase inhibition, and supported by hormone replacement. Dendritic retraction is also steroid sensitive and can be prevented by testosterone treatment, but is unaffected by aromatase inhibition. Together, these results suggest a role for estrogens during the initial growth phase of SNB development. In this study, we tested whether ovarian hormones could support SNB somal and dendritic development. Motoneuron morphology was assessed in normal males and in females perinatally masculinized with dihydrotestosterone and then either ovariectomized or left intact. SNB motoneurons were retrogradely labeled with cholera toxin-HRP at 4 or 7 weeks of age and reconstructed in three dimensions. Initial growth of SNB dendrites was reduced after ovariectomy in masculinized females. However, no differences in dendritic length were seen at 7 weeks of age between intact and ovariectomized masculinized females, and lengths in both groups were significantly lower than those of normal males. Together with previous findings, these results suggest that estrogens are involved in the early growth of SNB dendrites, but not in their subsequent retraction.  相似文献   

4.
The lumbar spinal cord of rats contains the sexually dimorphic, steroid‐sensitive spinal nucleus of the bulbocavernosus (SNB). Dendritic development of SNB motoneurons in male rats is biphasic, initially showing exuberant growth through 4 weeks of age followed by a retraction to mature lengths by 7 weeks of age. The initial growth is steroid dependent, attenuated by castration or aromatase inhibition, and supported by hormone replacement. Dendritic retraction is also steroid sensitive and can be prevented by testosterone treatment, but is unaffected by aromatase inhibition. Together, these results suggest a role for estrogens during the initial growth phase of SNB development. In this study, we tested whether ovarian hormones could support SNB somal and dendritic development. Motoneuron morphology was assessed in normal males and in females perinatally masculinized with dihydrotestosterone and then either ovariectomized or left intact. SNB motoneurons were retrogradely labeled with cholera toxin‐HRP at 4 or 7 weeks of age and reconstructed in three dimensions. Initial growth of SNB dendrites was reduced after ovariectomy in masculinized females. However, no differences in dendritic length were seen at 7 weeks of age between intact and ovariectomized masculinized females, and lengths in both groups were significantly lower than those of normal males. Together with previous findings, these results suggest that estrogens are involved in the early growth of SNB dendrites, but not in their subsequent retraction. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 301–314, 2001  相似文献   

5.
The spinal cord of rats contains the sexually dimorphic, steroid‐sensitive motoneurons of the spinal nucleus of the bulbocavernosus (SNB). In males, SNB dendrite growth is dependent on gonadal steroids: dendrite growth is inhibited after castration, but supported in androgen‐ or estrogen‐treated castrated males. Furthermore, estrogenic support of SNB dendrite growth is mediated by estrogen action at the target musculature, inhibited by estrogen receptor (ER) blockade at the muscle and supported by local estradiol treatment. However, this estrogenic support is restricted to the early postnatal period, after which the morphology of SNB dendrites is insensitive to estrogens. To test if the developmentally restricted effects of estrogens on SNB dendrite growth coincide with the transient expression of ER in the target musculature, ERα expression was assessed during development and in adulthood. ERα expression in extra‐Muscle fiber cells was greatest from postnatal day 7 (P7) to P14 and declined after P21. Because this pattern of ERα expression coincided with the period of estrogen‐dependent dendrite growth, we tested if limiting hormone exposure to the period of maximal ERα expression in extra‐muscle fiber cells could fully support estrogen‐dependent SNB dendrite growth. We restricted estradiol treatment in castrated males from P7 to P21 and assessed SNB dendritic morphology at P28. Treating castrates with estradiol implants at the muscle from P7 to P21 supported dendrite growth to normal levels through P28. These data suggest that the transient ERα expression in target muscle could potentially define the critical period for estrogen‐dependent dendrite growth in SNB motoneurons. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

6.
The spinal cord of rats contains the sexually dimorphic motoneurons of the spinal nucleus of the bulbocavernosus (SNB). In males, SNB dendrites fail to grow after castration, but androgen or estrogen treatment supports dendritic growth in castrated males. Estrogenic support of SNB dendrite growth is mediated by estrogen receptors (ER) in the target muscle. ERα expression in cells lacking a basal lamina (referred to as “extra‐muscle fiber cells”) of the SNB target musculature coincides with the period of estrogen‐dependent SNB dendrite growth. In the SNB target muscle, extra‐muscle fiber ERα expression declines with age and is typically absent after postnatal (P) day 21 (P21). Given that estradiol downregulates ERα in skeletal muscle, we tested the hypothesis that depleting gonadal hormones would prevent the postnatal decline in ERα expression in the SNB target musculature. We castrated male rats at P7 and assessed ERα immunolabeling at P21; ERα expression was significantly greater in castrated males compared with normal animals. Because ERα expression in SNB target muscles mediates estrogen‐dependent SNB dendrogenesis, we further hypothesized that the castration‐induced increase in muscle ERα would heighten the estrogen sensitivity of SNB dendrites. Male rats were castrated at P7 and treated with estradiol from P21 to P28; estradiol treatment in castrates resulted in dendritic hypertrophy in SNB motoneurons compared with normal males. We conclude that early castration results in an increase in ERα expression in the SNB target muscle, and this upregulation of ERα supports estrogen sensitivity of SNB dendrites, allowing for hypermasculinization of SNB dendritic arbors. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 921–935, 2013  相似文献   

7.
The rat lumbar spinal cord contains a sexually dimorphic motor nucleus, the spinal nucleus of the bulbocavernosus (SNB), whose motoneurons innnervate perineal muscles involved in copulatory reflexes. Dendritic development of SNB motoneurons is biphasic and androgen dependent. During the first 4 postnatal weeks, SNB dendrites grow exuberantly, and subsequently retract to mature lengths by 7 weeks of age. After early postnatal castration, SNB dendrites fail to grow, and testosterone replacement restores this growth. In other systems, testosterone and its metabolites, dihydrotestosterone and estrogen, are important for somatic and neural sexual differentiation. The purpose of the present study was to examine the effects of castration and dihydrotestosterone or estrogen replacement on the growth of SNB motoneuron somata and dendritic arbors. Male rat pups were castrated on postnatal (P) day 7 and treated daily with either dihydrotestosterone propionate (DHTP; 2 mg) or estradiol benzoate (EB; 100 μg) until P28 or P49. By using cholera toxin horseradish peroxidase (BHRP) histochemistry, the soma size, dendritic length, dendritic extent, and arbor area of BHRP-labeled SNB motoneurons were measured and analyzed. Both DHTP and EB treatment supported the initial exuberant growth of SNB dendrites through P28, but EB treatment was ineffective in maintaining mature, adult lengths at P49. The possible sites of hormone action and functional implications of these hormonal treatments are discussed. 1994 John Wiley & Sons, Inc.  相似文献   

8.
We have previously demonstrated that brain‐derived neurotrophic factor (BDNF) interacts with testosterone to regulate dendritic morphology of motoneurons in the highly androgen‐sensitive spinal nucleus of the bulbocavernosus (SNB). Additionally, in adult male rats testosterone regulates BDNF in SNB motoneurons and its target muscle, the bulbocavernosus (BC). Because BDNF is retrogradely transported from skeletal muscles to spinal motoneurons, we hypothesized that testosterone could regulate BDNF in SNB motoneurons by acting locally at the BC muscle. To test this hypothesis, we restricted androgen manipulation to the SNB target musculature. After castration, BDNF immunolabeling in SNB motoneurons was maintained at levels similar to those of gonadally intact males by delivering testosterone treatment directly to the BC muscle. When the same implant was placed interscapularly in castrated males it was ineffective in supporting BDNF immunolabeling in SNB motoneurons. Furthermore, BDNF immunolabeling in gonadally intact adult males given the androgen receptor blocker hydroxyflutamide delivered directly to the BC muscle was decreased compared with that of gonadally intact animals that had the same hydroxyflutamide implant placed interscapularly, or when compared with castrated animals that had testosterone implants at the muscle. These results demonstrate that the BC musculature is a critical site of action for the androgenic regulation of BDNF in SNB motoneurons and that it is both necessary and sufficient for this action. Furthermore, the local action of androgens at the BC muscle in regulating BDNF provides a possible mechanism underlying the interactive effects of testosterone and BDNF on motoneuron morphology. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 587–598, 2013  相似文献   

9.
Cell number in the spinal nucleus of the bulbocavernosus (SNB) of rats was the first neural sex difference shown to differentiate under the control of androgens, acting via classical intracellular androgen receptors. SNB motoneurons reside in the lumbar spinal cord and innervate striated muscles involved in copulation, including the bulbocavernosus (BC) and levator ani (LA). SNB cells are much larger and more numerous in males than in females, and the BC/LA target muscles are reduced or absent in females. The relative simplicity of this neuromuscular system has allowed for considerable progress in pinpointing sites of hormone action, and identifying the cellular bases for androgenic effects. It is now clear that androgens act at virtually every level of the SNB system, in development and throughout adult life. In this review we focus on effects of androgens on developmental cell death of SNB motoneurons and BC/LA muscles; the establishment and maintenance of SNB motoneuron soma size and dendritic length; BC/LA muscle morphology and physiology; and behaviors controlled by the SNB system. We also describe new data on neurotherapeutic effects of androgens on SNB motoneurons after injury in adulthood.  相似文献   

10.
The dorsolateral nucleus (DLN) and the spinal nucleus of the bulbocavernosus (SNB) of the rat lumbar spinal cord are sexually dimorphic groups of motoneurons that innervate striated perineal muscles involved in male copulatory behavior. Androgens control the development of these motoneurons and their target muscles, and continue to influence the system in adulthood. Given that several features of SNB motoneuron morphology have been shown to be androgen sensitive in adult male rats, we examined the effects of androgen manipulations on the morphology of motoneurons in the DLN in adult rats. Adult male rats were castrated and implanted with testosterone-filled or blank implants, or were subjected to a sham-castration procedure. Six weeks after treatment, motoneurons in the DLN were retrogradely labeled with cholera toxin-horseradish peroxidase (HRP) after injection into the ischiocavernosus (IC) muscle and their morphology assessed. Measures of the radial extent and coverage of the dendritic arbor of DLN motoneurons projecting to the IC (DLN-IC motoneurons) were similar across the groups, indicating comparable degrees of HRP transport. However, DLN-IC motoneurons in castrates with blank implants possessed both shorter dendritic lengths and smaller somas than those of castrates treated with testosterone. Castrates with testosterone implants had DLN-IC motoneurons that were significantly larger than those of sham castrates in dendritic length and soma area. These results suggest that motoneurons in the DLN, like those in the SNB, possess a significant degree of structural plasticity in adulthood which is influenced by androgens.  相似文献   

11.
The dorsolateral nucleus (DLN) and the spinal nucleus of the bulbocavernosus (SNB) of the rat lumbar spinal cord are sexually dimorphic groups of motoneurons that innervate striated perineal muscles involved in male copulatory behavior. Androgens control the development of these motoneurons and their target muscles, and continue to influence the system in adulthood. Given that several features of SNB motoneuron morphology have been shown to be androgen sensitive in adult male rats, we examined the effects of androgen manipulations on the morphology of motoneurons in the DLN in adult rats. Adult male rats were castrated and implanted with testosterone-filled or blank implants, or were subjected to a sham-castration procedure. Six weeks after treatment, motoneurons in the DLN were retrogradely labeled with cholera toxin-horseradish peroxidase (HRP) after injection into the ischiocavernosus (IC) muscle and their morphology assessed. Measures of the radial extent and coverage of the dendritic arbor of DLN motoneurons projecting to the IC (DLN-IC motoneurons) were similar across the groups, indicating comparable degrees of HRP transport. However, DLN-IC motoneurons in castrates with blank implants possessed both shorter dendritic lengths and smaller somas than those of castrates treated with testosterone. Castrates with testosterone implants had DLN-IC motoneurons that were significantly larger than those of sham castrates in dendritic length and soma area. These results suggest that motoneurons in the DLN, like those in the SNB, possess a significant degree of structural plasticity in adulthood which is influenced by androgens.  相似文献   

12.
In rats, androgens in adulthood regulate the morphology of motoneurons in the spinal nucleus of the bulbocavernosus (SNB), including the size of their somata and the length of their dendrites. There are conflicting reports about whether androgens exert similar influences on SNB motoneurons in mice. We castrated or sham-operated C57BL6J mice at 90 days of age and, thirty days later, injected cholera toxin conjugated horseradish peroxidase into the bulbocavernosus muscle (to label SNB motoneurons) on one side, and into intrinsic foot muscles contralaterally (to label motoneurons of the retrodorsolateral nucleus (RDLN)). Castrated mice had significantly smaller SNB somas compared to sham-operated mice while there were no differences in soma size of RDLN motoneurons. Dendritic length in C57BL6J mice, estimated in 3-dimensions, also decreased significantly after adult castration. In rats, androgens act directly through androgen receptors (AR) in SNB motoneurons to control soma size and nearly all SNB motoneurons contain AR. Since SNB somata in C57BL6J mice shrank after adult castration, we used immunocytochemistry to characterize AR expression in SNB cells as well as motoneurons in the RDLN and dorsolateral nucleus (DLN). A pattern of labeling matched that seen previously in rats: the highest percentage of AR-immunoreactive motoneurons are in the SNB (98%), the lowest in the RDLN (25%) and an intermediate number in the DLN (78%). This pattern of AR labeling is consistent with the possibility that androgens also act directly on SNB motoneurons in mice to regulate soma size in mice.  相似文献   

13.
Changes in androgen levels can alter the structure of motoneurons in the spinal nucleus of the bulbocavernosus (SNB), a motor nucleus that innervates perineal muscles involved in copulatory behavior. While sexual activity can alter androgen levels in normal males, it has no effect on SNB motoneuron soma size or dendritic morphology (Beversdorf, Kurz, and Sengelaub, 1990). However, Breedlove (1997) reported reductions in the size of SNB somata, nuclei, and target muscles of copulating versus noncopulating castrated rats maintained on subphysiological testosterone. To reconcile the results obtained using intact versus implant paradigms, we tested the hypothesis that the implant/behavior paradigm could produce differences in hormone levels, potentially confounding sexual behavior effects on the morphology of this androgen-sensitive neuromuscular system. Young adult male rats were castrated and immediately given 5-mm Silastic implants containing crystalline testosterone. One week later, blood samples were drawn and the males were housed with receptive females (copulators) or nonreceptive females (noncopulators) or housed alone (singles). After 27 days, blood samples were drawn again, and SNB target muscles and spinal cords removed. No differences in target muscle weight or SNB somata and nuclei size were observed between copulators, noncopulators, or singles; as expected, all measures were significantly reduced relative to intact males. Radioimmunoassay showed that testosterone declined differentially over the course of the behavioral manipulation across groups, being greatest in copulators and least pronounced in single males. These data indicate that differences in sexual or housing experience can alter testosterone titers under these implant conditions, potentially confounding hormone-sensitive measures of morphology.  相似文献   

14.
Gonadal steroids exhibit neuroprotective and neurotherapeutic effects. The lumbar spinal cord of male rats contains a highly androgen-sensitive population of motoneurons, the spinal nucleus of the bulbocavernosus (SNB), whose morphology and function are dependent on testosterone in adulthood. Unilateral SNB motoneuron depletion induces dendritic atrophy in contralateral SNB motoneurons, but this atrophy is reversed in previously castrated males treated with testosterone. In the present experiment we test the hypothesis that the morphology of SNB motoneurons is protected from atrophy after contralateral motoneuron depletion by exogenous testosterone alone (i.e., with no delay between castration and testosterone replacement). We unilaterally depleted SNB motoneurons by intramuscular injection of cholera toxin conjugated saporin. Simultaneously, some saporin-injected rats were castrated and immediately given replacement testosterone. Four weeks later, contralateral SNB motoneurons were labeled with cholera toxin conjugated HRP, soma sizes were measured, and dendritic arbors were reconstructed. Contralateral SNB motoneuron depletion induced somal atrophy and dendritic retraction, but testosterone treatment prevented both of these effects. Thus, the presence of high-normal levels of testosterone prevents motoneuron atrophy induced by contralateral motoneuron depletion. These data support a therapeutic role for testosterone in preventing atrophy induced by motoneuron injury.  相似文献   

15.
Motoneurons in the spinal nucleus of the bulbocavernosus (SNB) and their target muscles, bulbocavernosus and levator ani (BC/LA), constitute an androgen-sensitive neuromuscular system. Testosterone regulates SNB soma size, SNB dendritic length, and BC/LA muscle mass in adult male rats. Recent evidence indicates that the cell death-regulatory protein, Bcl-2, may also play a role in adult neural plasticity. The present study examined whether gonadal hormones and/or the Bcl-2 protein influence the morphology of the SNB neuromuscular system in adult B6D2F1 mice. In Experiment 1, adult wild-type and Bcl-2 overexpressing males were castrated and implanted with silastic capsules containing testosterone or left blank. Six weeks after castration, cholera toxin-horseradish peroxidase was injected into the BC muscle to label SNB dendrites. Animals were killed 48 h later, and BC/LA muscle mass, SNB soma size, and SNB dendritic arbors were examined. In Experiment 2, wild-type and Bcl-2 overexpressing males were castrated or sham castrated, implanted with testosterone-filled or blank capsules, and examined 12 weeks later. In both experiments, BC/LA muscle mass and SNB soma size were significantly reduced in castrates receiving blank capsules. Surprisingly, however, there was no effect of hormone manipulation on any of several measures of dendritic length. Thus, the dendritic morphology of SNB motoneurons appears to be relatively insensitive to circulating androgen levels in B6D2F1 mice. Bcl-2 overexpression did not influence BC/LA muscle mass, SNB soma size, or SNB dendritic length, indicating that the morphology of this neuromuscular system and the response to castration are not altered by forced expression of the Bcl-2 protein.  相似文献   

16.
The striated bulbocavernosus (BC) muscles of the rodent perineum are innervated by motoneurons in the spinal nucleus of the bulbocavernosus (SNB). In adulthood, the BC muscles are present in males only. However, newborn female rats have BC muscles, and SNB cells have made both anatomical and functional contact with them. Nevertheless, both motoneurons and muscles will degenerate unless androgens are administered perinatally. Such androgen treatment appears to be acting primarily on the BC muscles themselves, since the muscles are spared by androgen even after the loss of supraspinal neural afferents or even the entire lumbosacral spinal cord. Furthermore, androgen can spare SNB motoneurons that are themselves androgen insensitive. Perinatal steroid treatments can also alter the final spinal location of SNB cells as determined by retrograde tracing studies. Androgen continues to modify the morphology of the SNB system in adulthood, altering the size of both motoneurons and targets, which may be important for the reproductive function of BC muscles. Finally, the sexually dimorphic character of motoneuronal groups innervating perineal muscles seems to be common in mammals, since the homologue of the SNB, Onuf's nucleus, has more cells in males than in females in both dogs and humans.  相似文献   

17.
Feral white-footed mice are seasonal breeders that undergo predictable cycles of reproductive function. Photoperiod-induced fluctuations in gonadal function of white-footed mice were associated with morphological changes in perineal muscles and their motoneurons. Exposure to short daylengths resulted in testicular regression, decreased perineal muscle mass, and shrinkage of somata and nuclei of motoneurons of the spinal nucleus of the bulbocavernosus (SNB). These effects were reversed by reinstatement of long daylengths. Similar reductions in muscle mass and SNB soma size were seen following gonadectomy of white-footed mice. In addition, dendritic trees of SNB motoneurons were reduced in gonadectomized mice compared with dendritic arbors of intact mice or castrates provided with testosterone capsules. Androgen-mediated annual changes in muscle mass and motoneuron morphology appear to be a natural part of this species' physiology.  相似文献   

18.
A sexual dimorphism in the number of motoneurons in the spinal nucleus of the bulbocavernosus (SNB) of rats is engendered by a sex difference in ontogenetic cell death. Testicular secretions, specifically androgenic steroids, reduce SNB motoneuron death in males. The fate of the target muscles generally mirrors that of the motoneurons, and androgens appear to exert their effects upon the target muscles, sparing the motoneurons as a secondary consequence. Treatment with ciliary neurotrophic factor can also spare SNB motoneurons in newborn females, raising the possibility that this factor normally mediates androgen's effect upon motoneuron survival. The ontogeny of calcitonin gene-related peptide immunoreactivity is delayed in SNB cells compared with other motoneurons and is further delayed in the SNB cells of females. In both sexes, calcitonin gene-related peptide is detected after the period of SNB motoneuron death is complete. A sex difference in motoneuron number is also seen in the human homologue of the SNB and, because ontogenetic death of motoneurons in humans overlaps the period of androgen secretion, may arise in a manner similar to that in the rat SNB.  相似文献   

19.
Motoneurons in the spinal nucleus of the bulbocavernosus (SNB) and their target muscles, bulbocavernosus and levator ani (BC/LA), constitute an androgen‐sensitive neuromuscular system. Testosterone regulates SNB soma size, SNB dendritic length, and BC/LA muscle mass in adult male rats. Recent evidence indicates that the cell death‐regulatory protein, Bcl‐2, may also play a role in adult neural plasticity. The present study examined whether gonadal hormones and/or the Bcl‐2 protein influence the morphology of the SNB neuromuscular system in adult B6D2F1 mice. In Experiment 1, adult wild‐type and Bcl‐2 overexpressing males were castrated and implanted with silastic capsules containing testosterone or left blank. Six weeks after castration, cholera toxin‐horseradish peroxidase was injected into the BC muscle to label SNB dendrites. Animals were killed 48 h later, and BC/LA muscle mass, SNB soma size, and SNB dendritic arbors were examined. In Experiment 2, wild‐type and Bcl‐2 overexpressing males were castrated or sham castrated, implanted with testosterone‐filled or blank capsules, and examined 12 weeks later. In both experiments, BC/LA muscle mass and SNB soma size were significantly reduced in castrates receiving blank capsules. Surprisingly, however, there was no effect of hormone manipulation on any of several measures of dendritic length. Thus, the dendritic morphology of SNB motoneurons appears to be relatively insensitive to circulating androgen levels in B6D2F1 mice. Bcl‐2 overexpression did not influence BC/LA muscle mass, SNB soma size, or SNB dendritic length, indicating that the morphology of this neuromuscular system and the response to castration are not altered by forced expression of the Bcl‐2 protein. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 403–412, 2002  相似文献   

20.
The spinal nucleus of the bulbocavernosus (SNB) is a sexually dimorphic motor nucleus in the rat lumbar spinal cord. SNB motoneurons and their perineal target muscles are present in adult males but reduced or absent in females. This sexual dimorphism is due to the presence of androgen during development; females treated with testosterone (T) perinatally have a masculine SNB system. To assess whether masculinization of the SNB could involve the conversion of testosterone into its active metabolites, dihydrotestosterone (DHT) and estrogen, we examined the development of the SNB in females treated perinatally with estrogen alone or in combination with dihydrotestosterone. Counts of motoneurons in the developing SNB in all groups showed the typical prenatal increase followed by a differential postnatal decline; the incidence of degenerating cells reflected this decline. Motoneuron numbers and the frequency of degenerating cells in females treated with estrogen (E) alone did not differ from those of normal females, with both groups losing large numbers of motoneurons and having a high incidence of degenerating cells. In contrast, females treated with both estrogen and dihydrotestosterone did not show the female-typical decline in motoneuron number and had a low, masculine incidence of degenerating cells. By postnatal day 10, females treated with estrogen and dihydrotestosterone had a fully masculine SNB motoneuron number, suggesting that dihydrotestosterone alone or in conjunction with estrogen may be involved in the development of the sexually dimorphic SNB system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号