首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Using stable transgenic rice plants, the promoters of 15 genes expressed in rice seed were analysed for their spatial and temporal expression pattern and their potential to promote the expression of recombinant proteins in seeds. The 15 genes included 10 seed storage protein genes and five genes for enzymes involved in carbohydrate and nitrogen metabolism. The promoters for the glutelins and the 13 kDa and 16 kDa prolamins directed endosperm-specific expression, especially in the outer portion (peripheral region) of the endosperm, whilst the embryo globulin and 18 kDa oleosin promoters directed expression in the embryo and aleurone layer. Fusion of the GUS gene to the 26 kDa globulin promoter resulted in expression in the inner starchy endosperm tissue. It should be noted that the 10 kDa prolamin gene was the only one tested that required both the 5' and 3' flanking regions for intrinsic endosperm-specific expression. The promoters from the pyruvate orthophosphate dikinase (PPDK) and ADP-glucose pyrophosphorylase (AGPase) small subunit genes were active not only in the seed, but also in the phloem of vegetative tissues. Within the seed, the expression from these two promoters differed in that the PPDK gene was only expressed in the endosperm, whereas the AGPase small subunit gene was expressed throughout the seed. The GUS reporter gene fused to the alanine aminotransferase (AlaAT) promoter was expressed in the inner portion of the starchy endosperm, whilst the starch branching enzyme (SBE1) and the glutamate synthase (GOGAT) genes were mainly expressed in the scutellum (between the endosperm and embryo). When promoter activities were examined during seed maturation, the glutelin GluB-4, 26 kDa globulin and 10 kDa and 16 kDa prolamin promoters exhibited much higher activities than the others. The seed promoters analysed here exhibited a wide variety of activities and expression patterns, thus providing many choices suitable for various applications in plant biotechnology.  相似文献   

2.
本实验旨在研究水稻光合作用蛋白中各基因的表达模式. 采用RT-PCR和定量real-time PCR数据分析水稻不同组织的mRNA表达水平.结果显示,PsaK和PsbR3基因仅在茎、叶等绿色组织表达,而胚、胚乳部分均不表达.通过其启动子克隆、植物表达载体构建,以及农杆菌介导转化后,GUS组织染化分析和GUS荧光定量分析表明,两启动子均为组织特异性优势表达,PsbR3启动报告酶GUS在叶片中的表达活性为Actin启动子的3.29倍,而PsaK启动报告酶GUS在叶片中的表达活性低于Actin启动子的.这些初步结果提示,PsbR3启动子决定水稻绿色组织茎叶的优势表达,PsbR3基因可能参与水稻光合作用.  相似文献   

3.
竹节花黄斑驳病毒启动子的缺失分析及功能   总被引:4,自引:0,他引:4  
竹节花黄斑驳病毒(CoYMV)是侵染单子叶植物竹节花的一 种双链环状DNA病毒,它的启动子可介导外源基因在烟草韧皮部特异表达。为了研究其组织 特异性表达的最佳启动子区域,对CoYMV启动子进行了5′端五种不同长度的缺失分析,用不同长度的启动子片段与GUS基因及NOS3′端转录中止序列构建了全长启动子及5 个缺失启动子序列的六个嵌合GUS基因植物表达载体。利用农杆菌将上述嵌合基因转化烟草 外植体后,每种表达载体都获得了一批转基因烟草植株。转化再生烟草植株的PCR分析、GUS 酶活测定及GUS组织染色的结果表明六种类型的嵌合基因已整合到烟草染色体中,并有五种 表达出GUS活性。缺失到870bp的启动子比全长启动子(1040bp)的活性约高78%,870bp比585bp启动子介导的GUS活性略高但差别不明显,缺失到447和232时GUS活性有明显下 降,但仍具有韧皮部特异表达的特性。当缺失到TATA box附近的44bp时启动子丧失组织特 异性,GUS活性也降低到测不出来的水平。以上结果表明CoYMV启动子从转录起始位点上游 870bp~230bp及232bp下游区分别与启动子的活性和韧皮部组织特异性密切相关,870bp上游可能存在一个负调控序列,所以该启动子的活性和组织特异性的最佳调控区应在87 0bp或585bp的下游区。CoYMV启动子与35S启动子驱动GUS基因在烟草中表达的活性相比, 前者为后者的70%左右,考虑到前者仅在韧皮部细胞表达而后者为组成型表达,所以CoYMV启 动子在韧皮部的活性可能与35S启动子相当或更高。CoYMV启动子在其它转基因植物中驱动外 源基因表达的特点正在研究中。  相似文献   

4.
Protoplasts of a barley ( Hordeum vulgare L. cv. Golden Promise) suspension cell line were used for PEG-mediated gene transfer. Transient gene expression in barley protoplasts was studied using a chimeric CaMV 35S cat construct, which was only poorly expressed in barley cells. However, insertion of exon 1 and intron 1 of the maize Shrunken-1 (Sh1) gene in the 5'-untranslated leader of the construct strongly stimulated gene expression. By using the optimized chimeric cat construction the amount of CAT protein that was reached 19 hours after DNA uptake was 0.5% of total protein, which was calculated from western blot data.
As an alternative marker gene for expression studies, we also tested the firefly luciferase gene in barley protoplasts. Low level expression of chimeric CaMV 35S luciferase genes could be highly stimulated when Sh1 exon1 and intron1 were inserted in the 5'-untranslated leader of the constructs. Enhanced luciferase gene expression by Shrunken-1 intronic sequences enabled us to monitor gene integration events early after DNA uptake using a promoterless luciferase marker gene, which could only be expressed after integration behind an endogenous promoter.  相似文献   

5.
6.
7.
Enzyme-linked immunosorbent assay was used to measure the concentration of potato leafroll virus (PLRV) antigen in different parts of field-grown secondarily infected plants of three potato genotypes known to differ in resistance to infection. The antigen concentration in leaves of cv. Maris Piper (susceptible) was 10–30 times greater than that in cv. Pentland Crown or G 7445(1), a breeder's line (both resistant). Differences between genotypes in antigen concentration were smaller in petioles and tubers (5–10-fold) and in above-ground stems (about 4-fold), and were least in below-ground stems, stolons and roots (about 2-fold). PLRV antigen, detected by fluorescent antibody staining of tissue sections, was confined to phloem companion cells. In Pentland Crown, the decrease in PLRV antigen concentration in leaf mid-veins and petioles, relative to that in Maris Piper, was proportional to the decrease in number of PLRV-containing companion cells; this decrease was greater in the external phloem than in the internal phloem. The spread of PLRV infection within the phloem system seems to be impaired in the resistant genotypes. Green peach aphids (Myzuspersicae) acquired < 2800 pg PLRV/aphid when fed for 4 days on infected field-grown Maris Piper plants and < 58% of such aphids transmitted the virus to Physalis floridana test plants. In contrast, aphids fed on infected Pentland Crown plants acquired <120 pg PLRV/aphid and <3% transmitted the virus to P. floridana. The ease with which M. persicae acquired and transmitted PLRV from field-grown Maris Piper plants decreased greatly after the end of June without a proportionate drop in PLRV concentration. Spread of PLRV in potato crops should be substantially decreased by growing cultivars in which the virus multiplies to only a limited extent.  相似文献   

8.
The distribution of virus-infected cells was examined, by fluorescence microscopy, within plants of a range of potato clones infected with potato leafroll luteovirus (PLRV). This range included nine PLRV-resistant clones, of which four were transgenic lines carrying the PLRV coat protein gene and five were conventionally bred. Plants of these clones were resistant to PLRV multiplication and accumulated less virus antigen in leaf tissue than did susceptible clones. Indirect fluorescent antibody staining of thin sections from carbodiimide-fixed petiole tissue revealed that in plants of PLRV-susceptible clones, virus-infected cells were abundant within both external (abaxial) and internal (adaxial) phloem bundles. In plants of the PLRV-resistant conventionally bred clones and in resistant transgenic lines of cv. Pentland Squire, virus-infected cells were much fewer in number and largely restricted to internal phloem bundles. In resistant transgenic lines of cv. Désirée, this restricted distribution of PLRV antigen was only detected in petioles of young leaves. The results suggest that the transgenic and a host-mediated type of resistance that restricts virtis multiplication have underlying similarities.  相似文献   

9.
10.
Hachtel  Wolfgang  Strater  Tim 《Plant and Soil》2000,221(1):33-38
A 1535 bp promoter of the nitrate reductase gene (nia) from birch (Betula pendula) and a series of 5′ deletions were fused to the β-glucuronidase (GUS) gene and introduced into Nicotiana plumbaginifolia. In transgenic plants the NR promoter sequences directed strong GUS expression in the root epidermal hair cells, and in phloem cells of leaf and stem vascular tissue. The NR promoter confers also a significant stimulation of the GUS gene expression by nitrate. These findings might indicate that nitrate flow is one of the signals involved into tissue and cell specific expression of the NR promoter GUS fusions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
目的:分析骨肉瘤组织中RASSF1A基因甲基化状况。方法:运用甲基化特异性PCR(MSP)分别检测44例骨肉瘤组织及相应的癌旁组织中RASSF1A基因启动子甲基化状态并分析其临床病理意义。结果:骨肉瘤组织中RASSF1A基因异常甲基化率(61.4%)显著高于癌旁正常骨组织中RASSF1A基因的异常甲基化率(20.5%),二者之间差异具有统计学意义(P〈0.05)。RASSF1A基因异常甲基化导致组织中RASSF1A基因mRNA和蛋白表达水平均显著降低。另外,RASSF1A基因异常甲基化和肿瘤组织分化程度及全身有无转移情况有相关性(P值分别为0.022和0.016),而与患者年龄、性别、肿瘤位置及大小等临床特征无关(P值分别为0.6944,0.977,0.786和0.831)。结论:RASSF1A基因启动子高甲基化可能是导致其在骨肉瘤中表达水平降低的分子机制之一,有望成为骨肉瘤早期辅助诊断的一个重要分子标志物。  相似文献   

12.
The Brassica napus extensin A gene is highly expressed in root tissue of oilseed rape. In an attempt to identify an effective root-specific promoter for biotechnological applications, we have examined the ability of the –940 extA promoter to drive expression of the gusA reporter gene in the vegetative tissues of apple (Malus pumila Mill cv. Greensleeves). Transgenic apple lines were produced by Agrobacterium tumefaciens-mediated transformation and GUS activity was analysed both quantitatively and qualitatively. The extA promoter was active in all tissues of young plants in all 15 clones examined. However Southern blot data suggested that only a proportion of the population contained the entire promoter and that others had suffered deletions of unknown length. This may have contributed to the variation seen in the quantitative and qualitative expression of GUS. Specific GUS activity was highest in the stems where it approached, and in some clones, exceeded that using the constitutive CaMV 35S promoter. Histochemical analysis confirmed that GUS was localised to tissues involved in structural support of the stem. Staining was particularly intense at nodal junctions where high tensile stress is exerted on the tissues. Maturing phloem tissues showed localisation of expression to the phloem parenchyma cells and phloem fibres. Transverse sections of the root revealed staining of primary procambial tissues including the young endodermis but no staining was seen in the cortex. Although the –940 extA promoter is clearly not root-specific in apple, it is likely to have useful biotechnological applications in tree species.  相似文献   

13.
启动子是基因表达调控的重要顺式元件,也是基因工程表达载体的一个重要元件。一个无启动子的带有UidA基因的质粒pPLGUS通过基因枪转化进tritordeum材料中,对转基因材料的多种不同组织进行了X-gluc显色来检测不同组织中的GUS活性,有一个株系的花药组织特异性启动子已被证明成功捕获,并通过PCR方法将其分离。提取叶片的总DNA作模板,上游使用水稻花药启动子分离的引物P1,以UidA基因的部分序列为下游引物P2,PCR扩增UidA基因的上游旁侧序列。已经获得一条长667 bp的目的片断,含有部分UidA基因的序列和一段UidA基因的上游旁侧序列,该序列中具有植物启动子的一些必备元件,初步断定它是一段花药组织特异性启动子序列。  相似文献   

14.
Core promoter types differ in the extent to which RNA polymerase II (Pol II) pauses after initiation, but how this affects their tissue‐specific gene expression characteristics is not well understood. While promoters with Pol II pausing elements are active throughout development, TATA promoters are highly active in differentiated tissues. We therefore used a genomics approach on late‐stage Drosophila embryos to analyze the properties of promoter types. Using tissue‐specific Pol II ChIP‐seq, we found that paused promoters have high levels of paused Pol II throughout the embryo, even in tissues where the gene is not expressed, while TATA promoters only show Pol II occupancy when the gene is active. The promoter types are associated with different chromatin accessibility in ATAC‐seq data and have different expression characteristics in single‐cell RNA‐seq data. The two promoter types may therefore be optimized for different properties: paused promoters show more consistent expression when active, while TATA promoters have lower background expression when inactive. We propose that tissue‐specific genes have evolved to use two different strategies for their differential expression across tissues.  相似文献   

15.
16.
Constitutive promoters are widely used to functionally characterise plant genes in transgenic plants, but their lack of specificity and poor control over protein expression can be a major disadvantage. On the other hand, promoters that provide precise regulation of temporal or spatial transgene expression facilitate such studies by targeting over-expression or knockdown of target genes to specific tissues and/or at particular developmental stages. Here, we used the uidA (beta-glucuronidase, GUS) reporter gene to demonstrate that the barley Hvhsp17 gene promoter can be induced by heat treatment of 38-40 °C for 1-2 h in transgenic wheat. The GUS enzyme was expressed only in those tissues directly exposed to heat and not in neighbouring leaf tissues. The induction of HSP::GUS was demonstrated in all organs and tissues tested, but expression in older tissues was lower. Generally, proximal root sections showed less GUS activity than in root tips. This heat-inducible promoter provides the ability to investigate the function of candidate genes by overexpression or by down-regulation of target gene expression (for example by RNAi) in selected tissues or developmental stages of a transgenic plant, limited only by the ability to apply a heat shock to the selected tissues. It also allows the investigation of genes that would be lethal or reduce fertility if expressed constitutively.  相似文献   

17.
18.
利用PCR技术从哥伦比亚型拟南芥基因组DNA中分离了AtSTP3绿色组织特异表达的启动子,序列分析表明,扩增片段(1774bp)与已报道序列的相应区域同源性达99.9%。将其与GUS报告基因融合在一起,构建了植物表达载体,并由农杆菌介导法导入水稻品种‘中花11’中。对转基因水稻植株中的GUS活性进行定性与定量测定结果表明,AtSTP3启动子可驱动GUS报告基因在转基因水稻植株叶片中特异性表达,而在根和种子等器官中不表达或表达活性极弱,AtSTP3启动子表现出明显的组织特异性。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号