首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study investigates the regulatory effects of glycosaminoglycans such as heparin and heparan sulfate on T cell proliferation induced by thymic stromal cell monolayer or its derived T cell growth factor (TCGF). A thymic stromal cell clone (MRL104.8a) supported the growth of Ag-specific, IL-2-dependent Th cell clone (9-16) in the absence of Ag and IL-2 by producing a unique TCGF designated as thymic stroma-derived T cell growth factor (TSTGF). The addition of heparin to cultures in which the growth of 9-16 Th cells was otherwise stimulated by the MRL104.8a monolayer or a semipurified sample of the TSTGF resulted in heparin dose-dependent inhibition of 9-16 Th proliferation. The dose of heparin required for inducing 50% reduction of TSTGF-induced proliferation of Th at a given cell number was found to be proportional to the magnitude of the TSTGF added to cultures, suggesting that heparin exerted its inhibitory effect by binding to the TSTGF rather than by acting on Th cells. A similar growth-inhibiting effect of heparin was observed in IL-7-dependent proliferation of pre-B cell line or Th, but not in IL-2-dependent T cell proliferation or IL-3-dependent myeloid cell proliferation. A strong affinity of TSTGF and IL-7 for heparin was confirmed by the fact that both TSTGF and IL-7 adhered to columns of heparin-agarose and were eluted by salt. When various glycosaminoglycans were tested for the heparin-like Th growth-regulatory capacity, heparan sulfate exhibited Th growth-inhibiting ability comparable to that observed for heparin. These results indicate that the activity of thymic and/or bone marrow stroma-derived lymphocyte growth factor (TSTGF/IL-7) but not of Th-producing TCGF (IL-2) is negatively regulated by heparin or heparan sulfate, which would represent major glycosaminoglycans in the extra-cellular matrix of stromal cells.  相似文献   

2.
Sulfated glycosaminoglycans (GAGs) are distributed in consistent and distinctive patterns between the cell surface and the growth medium of haemopoietically active long-term bone marrow cultures. Heparan sulfate is the main cell surface component and chondroitin sulfate is the major sulfated species in the medium. When the cultures are supplemented with beta-D-xylosides a significant increase in chondroitin sulfate synthesis is observed but no stimulation of heparan sulfate synthesis occurs. The chondroitin sulfate accumulates in the culture medium in beta-D-xyloside-treated cultures but the composition of sulfated GAGs in cell-surface derived material is unaffected. beta-D-xylosides also stimulate the production of haemopoietic cells without any apparent alteration in the adherent stromal cells of the marrow cultures. Equivalent increases are obtained in cells at all stages of development so that a fivefold increase in pluripotent stem cells (CFU-S) is matched by fivefold increase in the granulocyte-macrophage progenitors (GM-CFC) and in mature granulocytes. The stimulation persists for many weeks in beta-D-xyloside-treated cultures. These results indicate that the sulfated GAGs may play an important role in the regulation of haemopoiesis.  相似文献   

3.
A rat hepatoma cell line was shown to synthesize heparan sulfate and chondroitin sulfate proteoglycans. Unlike cultured hepatocytes, the hepatoma cells did not deposit these proteoglycans into an extracellular matrix, and most of the newly synthesized heparan sulfate proteoglycans were secreted into the culture medium. Heparan sulfate proteoglycans were also found associated with the cell surface. These proteoglycans could be solubilized by mild trypsin or detergent treatment of the cells but could not be displaced from the cells by incubation with heparin. The detergent-solubilized heparan sulfate proteoglycan had a hydrophobic segment that enabled it to bind to octyl- Sepharose. This segment could conceivably anchor the molecule in the lipid interior of the plasma membrane. The size of the hepatoma heparan sulfate proteoglycans was similar to that of proteoglycans isolated from rat liver microsomes or from primary cultures of rat hepatocytes. Ion-exchange chromatography on DEAE-Sephacel indicated that the hepatoma heparan sulfate proteoglycans had a lower average charge density than the rat liver heparan sulfate proteoglycans. The lower charge density of the hepatoma heparan sulfate can be largely attributed to a reduced number of N-sulfated glucosamine units in the polysaccharide chain compared with that of rat liver heparan sulfate. Hepatoma heparan sulfate proteoglycans purified from the culture medium had a considerably lower affinity for fibronectin-Sepharose compared with that of rat liver heparan sulfate proteoglycans. Furthermore, the hepatoma proteoglycan did not bind to the neoplastic cells, whereas heparan sulfate from normal rat liver bound to the hepatoma cells in a time-dependent reaction. The possible consequences of the reduced sulfation of the heparan sulfate proteoglycan produced by the hepatoma cells are discussed in terms of the postulated roles of heparan sulfate in the regulation of cell growth and extracellular matrix formation.  相似文献   

4.
Proteoglycans deposited in the basal lamina of [14C] glucosamine-labeled normal and [3H]glucosamine-labeled transformed mouse mammary epithelial cells grown on type I-collagen gels, were extracted in 4 M guanidinium chloride and cofractionated over Sepharose CL 4B. The heparan sulfate chains carried by these proteoglycans were isolated by treatment with alkaline borohydride, protease K, chondroitinase ABC, and cetylpyridinium chloride precipitation. Heparan sulfate isolated from transformed cell cultures consistently eluted from DEAE-cellulose at lower salt concentrations and was of smaller apparent Mr when chromatographed over Sepharose CL 6B, than heparan sulfate of normal cell cultures. Experiments using doubly labeled cultures ([3H]glucosamine and [35S]sulfate) demonstrated an approximately 30% reduction in the sulfate/hexosamine ratio in heparan sulfate derived from transformed cultures. Both N- and O-sulfate were decreased. The decreased Mr and decreased sulfation of heparan sulfate upon transformation appear sufficient to explain the altered heparan sulfate/chondroitin sulfate ratios previously observed in these cells. These changes may have implications for the molecular interactions in which these proteoglycans are normally engaged during basal lamina assembly, and cause the poor basal lamina formation displayed by these transformed cells.  相似文献   

5.
The oligodendrocyte-type-2 astrocyte progenitor cells (precursors of oligodendrocytes and type-2 astrocytes) are an excellent system in which to study differentiation as they can be manipulated in vitro. Maintenance of oligodendrocyte-type-2 astrocyte progenitor cells requires basic fibroblast growth factor, a growth factor whose action normally depends on a heparan sulfate coreceptor. Biochemical analysis revealed a most surprising result: that the oligodendrocyte-type-2 astrocyte progenitors did not synthesize heparan sulfate, the near ubiquitous N-sulfated cell surface polysaccharide, but the chemically related heparin in a form that was almost completely N- and O-sulfated. The heparin was detected in the pericellular fraction of the cells and the culture medium. In contrast the differentiated glial subpopulations (oligodendrocytes and type-2 astrocytes) synthesized typical heparan sulfate but with distinctive fine structural features for each cell type. Thus heparin is a unique differentiation marker in the glial lineage. Previously heparin has been found only in a subset of mature mast cells called the connective tissue mast cells. Its presence within the developing nervous system on a precise population of progenitors may confer specific and essential recognition properties on those cells in relation to binding soluble growth and/or differentiation factors and the extracellular matrix.  相似文献   

6.
Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.  相似文献   

7.
This protocol describes a transwell culture system in which stromal cells support the growth and differentiation of B cell progenitors in the absence of direct contact. In this system, a confluent layer of S17 stromal cells pre-established in 0.4 microm transwells is placed over wells seeded with purified B cell progenitors. The stromal cell-derived factors and additional cytokines added to the culture medium support the differentiation of the progenitors in the lower chamber. B-1 B cell progenitors seeded in the presence of thymic stromal lymphopoietin undergo significant expansion and differentiation in this culture system. Since the expanded B-1 B lineage cells are not contaminated with stromal cells, no additional purification steps are required before subsequent phenotypic, functional or genetic analyses of these lymphoid cells are performed. Once the transwell cultures and B cell progenitors are available, cultures can be initiated in less than an hour. The overall procedure, however, takes approximately 10 h when the initiation of the S17 transwell cultures and the isolation of the B cell progenitors steps are included.  相似文献   

8.
The androgen-induced proliferation of S115 mouse mammary tumor cells has been suggested to involve autocrinic fibroblast growth factor signaling. Heparan sulfate proteoglycans are required for fibroblast growth factor signaling, presumably due to their ability to alter binding of fibroblast growth factors to their receptors. We have investigated the role of heparan sulfate proteoglycans in the testosterone-induced proliferation of S115 cells. We demonstrate that when the cells are treated with sodium chlorate, which inhibits the sulfation of endogenous heparan sulfate proteoglycans, cell growth becomes dependent on exogenous heparin. The shortest heparin oligosaccharides supporting cell growth were octasaccharides, whereas dodecasaccharides were almost as effective as native heparin. The N-, 2-O-, and 6-O-sulfate groups of heparin were all required for full testosterone response. Treatment of S115 cells with chlorate or testosterone did not alter the expression of fibroblast growth factor receptors 1 or 3, whereas the expression of fibroblast growth factor receptor 2 was down-regulated. We have previously shown that overexpression of syndecan-1 heparan sulfate proteoglycan renders S115 cells insensitive to testosterone and now demonstrate that this effect can be overcome by sodium chlorate treatment in combination with exogenous heparin. Our results suggest that heparin-like molecules are intimately involved in the androgen-mediated proliferation of S115 cells.  相似文献   

9.
Many matrix metalloproteinases (MMPs) are tightly bound to tissues; matrilysin (MMP-7), although the smallest of the MMPs, is one of the most tightly bound. The most likely docking molecules for MMP-7 are heparan sulfate proteoglycans on or around epithelial cells and in the underlying basement membrane. This is established by extraction experiments and confocal microscopy. The enzyme is extracted from homogenates of postpartum rat uterus by heparin/heparan sulfate and by heparinase III treatment. The enzyme is colocalized with heparan sulfate in the apical region of uterine glandular epithelial cells and can be released by heparinase digestion. Heparan sulfate and MMP-7 are expressed at similar stages of the rat estrous cycle. The strength of heparin binding by recombinant rat proMMP-7 was examined by affinity chromatography, affinity coelectrophoresis, and homogeneous enzyme-based binding assay; the K(D) is 5-10 nM. Zymographic measurement of MMP-7 activity is greatly enhanced by heparin. Two putative heparin-binding peptides have been identified near the C- and N-terminal regions of proMMP-7; however, molecular modeling suggests a more extensive binding track or cradle crossing multiple peptide strands. Evidence is also found for the binding of MMP-2, -9, and -13. Binding of MMP-7 and other MMPs to heparan sulfate in the extracellular space could prevent loss of secreted enzyme, provide a reservoir of latent enzyme, and facilitate cellular sensing and regulation of enzyme levels. Binding to the cell surface could position the enzyme for directed proteolytic attack, for activation of or by other MMPs and for regulation of other cell surface proteins. Dislodging MMPs by treatment with compounds such as heparin might be beneficial in attenuating excessive tissue breakdown such as occurs in cancer metastasis, arthritis, and angiogenesis.  相似文献   

10.
Ligand-induced BCR association with detergent-resistant plasma membrane compartments (lipid rafts) has been argued to be essential for initiating and/or sustaining Igalpha/Igbeta-dependent BCR signaling. Because a fraction of the BCR and an even larger fraction of the preBCR associates with lipid rafts in the apparent absence of ligand stimulation, it has been proposed that raft-associated receptor complexes mediate the ligand-independent basal signaling events observed in resting B lineage cells. However, there is no direct evidence that localization of Igalpha/Igbeta-containing complexes to detergent-resistant membrane compartments is absolutely required for the signaling events that drive B cell development. To address these issues we have designed surrogate preBCR/Igalpha/Igbeta complexes that are incapable of ligand-induced aggregation and that are preferentially targeted to either raft or nonraft compartments. An analysis of their ability to promote the preBCR-dependent proB-->preB cell transition of murine B cell progenitors revealed that expression of these surrogate receptor complexes at levels that approximate that of the conventional preBCR can drive B cell development in a manner independent of both aggregation and lipid raft localization.  相似文献   

11.
Heparan sulfate glycosaminoglycan, isolated from the cell surface of nonadhering murine myeloma cells (P3X63-Ag8653), does not bind to plasma fibronectin, but binds partially to collagen type I, as assayed by affinity chromatography with proteins immobilized on cyanogen bromide-activated Sepharose 4B. Identical results were obtained when myeloma heparan sulfate was cochromatographed, on the same fibronectin and collagen columns, with cell surface heparan sulfates collagen columns, with cell surface heparan sulfates from adhering Swiss mouse 3T3 and SV3T3 cells. These latter heparan sulfates do, however, bind to both fibronectin and collagen, as reported earlier (Stamatoglou, S.C., and J.M. Keller, 1981, Biochim. Biophys. Acta., 719:90-97). Cell adhesion assays established that hydrated collagen substrata can support myeloma cell attachment, but fibronectin cannot. Saturation of the heparan sulfate binding sites on the collagen substrata with heparan sulfate or heparin, prior to cell inoculation, abolished the ability to support cell adhesion, whereas chondroitin 4 sulfate, chondroitin 6 sulfate, and hyaluronic acid had no effect.  相似文献   

12.
Heparan sulfate and heparin are highly sulfated polysaccharides consisting of repeating disaccharide units of glucuronic acid or iduronic acid that is linked to glucosamine. Heparan sulfate displays a range of biological functions, and heparin is a widely used anticoagulant drug in hospitals. It has been known to organic chemists that the chemical synthesis of heparan sulfate and heparin oligosaccharides is extremely difficult. Recent advances in the study of the biosynthesis of heparan sulfate/heparin offer a chemoenzymatic approach to synthesize heparan sulfate and heparin. Compared to chemical synthesis, the chemoenzymatic method shortens the synthesis and improves the product yields significantly, providing an excellent opportunity to advance the understanding of the structure and function relationships of heparan sulfate. In this review, we attempt to summarize the progress of the chemoenzymatic synthetic method and its application in heparan sulfate and heparin research.  相似文献   

13.
We studied binding and growth inhibitory properties of different glycosaminoglycans in growing and differentiated BC3H-1 muscle cells. Heparin (10 micrograms/ml) and heparan sulfate (10 micrograms/ml) significantly inhibited DNA synthesis in growing and differentiated cells, as monitored by [3H]thymidine incorporation. Binding of heparin to BC3H-1 cells was specific and time-dependent. Heparan sulfate was the only glycosaminoglycan able to displace [3H]heparin (IC50, 3.2 x 10(-7) M), although it was 10-fold less effective than heparin itself (IC50, 3.6 x 10(-8) M). Scatchard analysis revealed the existence of high-affinity heparin binding sites (Kd, 5 x 10(-8) M). Furthermore, heparin inhibited serum-induced stimulation of inositol lipid turnover. Taken together, these results indicate that heparin inhibits BC3H-1 cell growth by interacting with the cell surface, possibly disrupting the flow of growth factor-related mitogenic signalling.  相似文献   

14.
Heparan sulfate of the cell surface of cultured Chinese hamster cells (line CHO) was promptly released when the cells were incubated with balanced salt solutions containing heparin. The released heparan sulfate included multichain proteoglycan of high molecular weight. The data suggest that the cell-surface localization of heparan sulfate is dependent, at least in part, upon cell-surface receptors with binding sites for the sugar chain moieties of sulfated glycosaminoglycans.  相似文献   

15.
Herpes simplex virus type 2 (HSV-2) interacts with cell surface glycosaminoglycans during virus attachment. Glycoprotein B of HSV-2 can potentially mediate the interaction between the virion and cell surface glycosaminoglycans. To determine the specificity, kinetics, and affinity of these interactions, we used plasmon resonance-based biosensor technology to measure HSV-2 glycoprotein binding to glycosaminoglycans in real time. The recombinant soluble ectodomain of HSV-2 gB (gB2) but not the soluble ectodomain of HSV-2 gD bound readily to biosensor surfaces coated with heparin. The affinity constants (Kds) were determined for gB2 (Kd = 7.7 x 10(-7) M) and for gB2 deltaTM (Kd = 9.9 x 10(-7) M), a recombinant soluble form of HSV-2 gB in which only its transmembrane domain has been deleted. gB2 binding to the heparin surface was competitively inhibited by low concentrations of heparin (50% effective dose [ED50] = 0.08 microg/ml). Heparan sulfate and dermatan sulfate glycosaminoglycans have each been suggested as cell surface receptors for HSV. Our biosensor analyses showed that both heparan sulfate and dermatan sulfate inhibited gB2 binding (ED50 = 1 to 5 microg/ml), indicating that gB2 interacts with both heparin-like and dermatan sulfate glycosaminoglycans. Chondroitin sulfate A, in contrast, inhibited gB2 binding to heparin only at high levels (ED50 = 65 microg/ml). The affinity and specificity of gB2 binding to glycosaminoglycans demonstrated in these studies support its role in the initial binding of HSV-2 to cells bearing heparan sulfate or dermatan sulfate glycosaminoglycans.  相似文献   

16.
To delineate factors involved in NK cell development, we established an in vitro system in which lineage marker (Lin)-, c-kit+, Sca2+ bone marrow cells differentiate into lytic NK1.1+ but Ly49- cells upon culture in IL-7, stem cell factor (SCF), and flt3 ligand (flt3L), followed by IL-15 alone. A comparison of the ability of IL-7, SCF, and flt3L to generate IL-15-responsive precursors suggested that NK progenitors express the receptor for flt3L. In support of this, when Lin-, c-kit+, flt3+ or Lin-, c-kit+, flt3- progenitors were utilized, 3-fold more NK cells arose from the flt3+ than from the flt3- progenitors. Furthermore, NK cells that arose from flt3- progenitors showed an immature NK1.1dim, CD2-, c-kit+ phenotype as compared with the more mature NK1.1bright, CD2+/-, c-kit- phenotype displayed by NK cells derived from flt3+ progenitors. Both progenitors, however, gave rise to NK cells that were Ly49 negative. To test the hypothesis that additional marrow-derived signals are necessary for Ly49 expression on developing NK cells, flt3+ progenitors were grown in IL-7, SCF, and flt3L followed by culture with IL-15 and a marrow-derived stromal cell line. Expression of Ly49 molecules, including those of which the MHC class I ligands were expressed on the stromal or progenitor cells, as well as others of which the known ligands were absent, was induced within 6-13 days. Thus, we have established an in vitro system in which Ly49 expression on developing NK cells can be analyzed and possibly experimentally manipulated.  相似文献   

17.
The effect of IL-3 on the B lymphoid potential of human hemopoietic stem cells is controversial. Murine studies suggest that B cell differentiation from uncommitted progenitors is completely prevented after short-term exposure to IL-3. We studied B lymphopoiesis after IL-3 stimulation of uncommitted human CD34+CD38- cells, using the stromal cell line S17 to assay the B lymphoid potential of stimulated cells. In contrast to the murine studies, production of CD19+ B cells from human CD34+CD38- cells was significantly increased by a 3-day exposure to IL-3 (p < 0.001). IL-3, however, did not increase B lymphopoiesis from more mature progenitors (CD34+CD38+ cells) or from committed CD34-CD19+ B cells. B cell production was increased whether CD34+CD38- cells were stimulated with IL-3 during cocultivation on S17 stroma, on fibronectin, or in suspension. IL-3Ralpha expression was studied in CD34+ populations by RT-PCR and FACS. High IL-3Ralpha protein expression was largely restricted to myeloid progenitors. CD34+CD38- cells had low to undetectable levels of IL-3Ralpha by FACS. IL-3-responsive B lymphopoiesis was specifically found in CD34+ cells with low or undetectable IL-3Ralpha protein expression. IL-3 acted directly on progenitor cells; single cell analysis showed that short-term exposure of CD34+CD38- cells to IL-3 increased the subsequent cloning efficiency of B lymphoid and B lymphomyeloid progenitors. We conclude that short-term exposure to IL-3 significantly increases human B cell production by inducing proliferation and/or maintaining the survival of primitive human progenitors with B lymphoid potential.  相似文献   

18.
Heparan sulfate was isolated form the cell surface, cell pellet, and culture medium of exponentially growing as well as postconfluent bovine aortic smooth muscle cells (SMCs). After chromatography on DEAE-Sephadex and Sepharose 4B, the various mucopolysaccharides were examined for their ability to cause growth inhibition in a SMC bioassay. The heparan sulfate isolated from the surface of postconfluent SMCs possessed approximately eight times the antiproliferative potency per cell of the heparan sulfate obtained from the surface of exponentially growing SMCs. Heparan sulfate isolated from other fractions of exponentially growing or postconfluent SMCs possesses little growth inhibitory activity. The difference in the antiproliferative activities of heparan sulfate obtained from the surface of SMCs in the two growth states could not be attributed to the synthesis of a greater mass of mucopolysaccharide by postconfluent SMCs. Indeed, heparan sulfate isolated from the surface of the postconfluent SMCs exhibits a specific antiproliferative activity which is 13-fold greater than mucopolysaccharide obtained from the surface of exponentially growing SMCs and more than 40-fold greater than commercially available heparin. In addition, exponentially growing SMCs did not exhibit an enhanced ability to degrade the complex carbohydrate. Furthermore, other investigations indicate that the small amount of growth inhibitory activity intrinsic to heparan sulfate isolated from the surface of exponentially growing SMCs is due to residual, biologically active, mucopolysaccharide produced by the primary postconfluent SMCs from which the exponentially growing SMCs were derived. These studies suggest that bovine aortic SMCs are capable of controlling their own growth by the synthesis of a specific form of heparan sulfate with antiproliferative potency.  相似文献   

19.
The ability of stromal cells in bone marrow to support B lymphopoiesis may be partially mediated by secretion of biologically active factors. The first cytokine with lymphopoietic activity to be molecularly cloned from stromal cells, IL-7, was originally identified by its growth-promoting activity on long term cultured lymphocytes. We now report that murine rIL-7 is a potent proliferative stimulus for B cell progenitors isolated from fresh bone marrow. Proliferation was initially most obvious among large precursor cells which bear the B lineage associated Ag, Ly5/220 and BP1. A majority of these also contained cytoplasmic Ig mu H chains. Extended culture with IL-7 resulted in a predominance of immature c mu- lymphocytes. No effect by IL-7 was observed on the proliferation of mature lymphocytes. It also did not induce maturation in a number of early B lineage cell lines, or promote the formation of LPS-responsive, clonable B cells from precursors. When incorporated into semisolid agar medium, IL-7 specifically and rapidly induced the formation of pre-B cell colonies in a linear fashion with respect to numbers of cells cultured from either purified B cell progenitor preparations or unfractionated bone marrow. In both liquid and agar culture conditions, the IL-7 proliferative activity was inhibitable by two related forms of transforming growth factor (TGF) beta, TGF-beta 1 and TGF-beta 2. Taken together, these results indicate that IL-7 is a stimulus for replication of normal B lineage cells at an early stage of differentiation, and its activity can be modulated by other cytokines. IL-7 also provides a means of studying the progeny of a single B cell progenitor, and of enumerating clonable pre-B cells in the absence of colony formation by other cell types in bone marrow.  相似文献   

20.
Notch signaling is critical for T cell development of multipotent hemopoietic progenitors. Yet, how Notch regulates T cell fate specification during early thymopoiesis remains unclear. In this study, we have identified an early subset of CD34high c-kit+ flt3+ IL-7Ralpha+ cells in the human postnatal thymus, which includes primitive progenitors with combined lymphomyeloid potential. To assess the impact of Notch signaling in early T cell development, we expressed constitutively active Notch1 in such thymic lymphomyeloid precursors (TLMPs), or triggered their endogenous Notch pathway in the OP9-Delta-like1 stroma coculture. Our results show that proliferation vs differentiation is a critical decision influenced by Notch at the TLMP stage. We found that Notch signaling plays a prominent role in inhibiting non-T cell differentiation (i.e., macrophages, dendritic cells, and NK cells) of TLMPs, while sustaining the proliferation of undifferentiated thymocytes with T cell potential in response to unique IL-7 signals. However, Notch activation is not sufficient for inducing T-lineage progression of proliferating progenitors. Rather, stroma-derived signals are concurrently required. Moreover, while ectopic IL-7R expression cannot replace Notch for the maintenance and expansion of undifferentiated thymocytes, Notch signals sustain IL-7R expression in proliferating thymocytes and induce IL-7R up-regulation in a T cell line. Thus, IL-7R and Notch pathways cooperate to synchronize cell proliferation and suppression of non-T lineage choices in primitive intrathymic progenitors, which will be allowed to progress along the T cell pathway only upon interaction with an inductive stromal microenvironment. These data provide insight into a mechanism of Notch-regulated amplification of the intrathymic pool of early human T cell progenitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号