首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The agent of Lyme disease, Borrelia burgdorferi, produces membrane lipoproteins possessing potent inflammatory properties linked to disease pathology. The recent association of toll-like receptors (TLR) 2 and 4 with LPS responses prompted the examination of TLR involvement in lipoprotein signaling. The ability of human cell lines to respond to lipoproteins was correlated with the expression of TLR2. Transfection of TLR2 into cell lines conferred responsiveness to lipoproteins, lipopeptides, and sonicated B. burgdorferi, as measured by nuclear translocation of NF-kappaB and cytokine production. The physiological importance of this interaction was demonstrated by the 10-fold greater sensitivity of TLR2-transfected cells to lipoproteins than LPS. Futhermore, TLR2-dependent signaling by lipoproteins was facilitated by CD14. These data indicate that TLR2 facilitates the inflammatory events associated with Lyme arthritis. In addition, the widespread expression of lipoproteins by other bacterial species suggests that this interaction may have broad implications in microbial inflammation and pathogenesis.  相似文献   

2.
3.
There are several pieces of evidence supporting the important role that essential fatty acids (EFAs) and their metabolites play in regulating calcium and bone metabolism, and their relevance to the pathobiology of bone disease, with particular reference to modulating effects on cytokines. We found that arachidonic acid (AA) triggers a cell signal in osteoblasts and leads to the expression of IL-6. To explore the biochemical pathways involved in AA induction of cytokine gene expression, we evaluated the potential protein kinase C (PKC) dependent mechanism accounting for the AA effect on IL-6 gene expression. The osteoblast-like cell line MG-63 was pretreated with calphostin C, a PKC inhibitor, or phorbol 12-myristate 13-acetate (PMA) for an extended period, a condition which causes PKC downregulation, and subsequently with AA. After these treatments, IL-6 gene expression was no longer evident. We also showed that PKC and, in particular, PKC alpha, which are both recruited to the particulate fraction, undergo proteolysis and autophosphorylation; all of these steps are required for PKC activation and, subsequently, for AA-induced signaling. It is interesting that other unsaturated fatty acids, such as oleic acid (OA) or eicosapentaenoic acid (EPA), are unable to induce either PKC activation or IL-6 gene expression.  相似文献   

4.
In this study we investigated the mechanisms of neuronal cell death induced by lipoteichoic acid (LTA) and muramyl dipeptide (MDP) from Gram-positive bacterial cell walls using primary cultures of rat cerebellum granule cells (CGCs) and rat cortical glial cells (astrocytes and microglia). LTA (+/- MDP) from Staphylococcus aureus induced a strong inflammatory response of both types of glial cells (release of interleukin-1beta, tumour necrosis factor-alpha and nitric oxide). The death of CGCs was caused by activated glia because in the absence of glia (treatment with 7.5 microm cytosine-d-arabinoside to inhibit non-neuronal cell proliferation) LTA + MDP did not cause significant cell death (less than 20%). In addition, staining with rhodamine-labelled LTA confirmed that LTA was bound only to microglia and astrocytes (not neurones). Neuronal cell death induced by LTA (+/- MDP)-activated glia was partially blocked by an inducible nitric oxide synthase inhibitor (1400 W; 100 microm), and completely blocked by a superoxide dismutase mimetic [manganese (III) tetrakis (4-benzoic acid)porphyrin chloride; 50 microm] and a peroxynitrite scavenger [5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron (III); 100 microm] suggesting that nitric oxide and peroxynitrite contributed to LTA-induced cell death. Moreover, neuronal cell death was inhibited by selective inhibitors of caspase-3 (z-DEVD-fmk; 50 microm) and caspase-8 (z-Ile-Glu(O-Me)-Thr-Asp(O-Me) fluoromethyl ketone; 50 microm) indicating that they were involved in LTA-induced neuronal cell death.  相似文献   

5.
Xiaomei Yang 《FEBS letters》2010,584(11):2207-2212
The beta-2 adrenergic receptor (β2AR) has a carboxyl terminus motif that can interact with PSD-95/discs-large/ZO1 homology (PDZ) domain-containing proteins. In this paper, we identified membrane-associated guanylate kinase inverted-3 (MAGI-3) as a novel binding partner of β2AR. The carboxyl terminus of β2AR binds with high affinity to the fifth PDZ domain of MAGI-3, with the last four amino acids (D-S-L-L) of the receptor being the key determinants of the interaction. In cells, the association of full-length β2AR with MAGI-3 occurs constitutively and is enhanced by agonist stimulation of the receptor. Our data also demonstrated that β2AR-stimulated extracellular signal-regulated kinase-1/2 (ERK1/2) activation was substantially retarded by MAGI-3 expression. These data suggest that MAGI-3 regulates β2AR-mediated ERK activation through the physical interaction between β2AR and MAGI-3.

Structured summary

MINT-7716556: beta2AR (uniprotkb:P07550) physically interacts (MI:0915) with MAGI-3 (uniprotkb:Q5TCQ9) by anti tag coimmunoprecipitation (MI:0007)MINT-7716593: beta2AR (uniprotkb:P18762) physically interacts (MI:0915) with MAGI-3 (uniprotkb:Q9EQJ9) by anti bait coimmunoprecipitation (MI:0006)MINT-7716630: MAGI-3 (uniprotkb:Q5TCQ9) and beta2AR (uniprotkb:P07550) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7716382, MINT-7716335: MAGI-3 (uniprotkb:Q5TCQ9) physically interacts (MI:0915) with beta2AR (uniprotkb:P07550) by pull down (MI:0096)MINT-7716320, MINT-7716422, MINT-7716502, MINT-7716450, MINT-7716470: beta2AR (uniprotkb:P07550) binds (MI:0407) to MAGI-3 (uniprotkb:Q5TCQ9) by pull down (MI:0096)  相似文献   

6.
The alginate capsule produced by the human pathogen Pseudomonas aeruginosa is composed mainly of mannuronic acid polymers (poly-M) that have immunostimulating properties. Poly-M shares with lipopolysaccharide the ability to stimulate cytokine production from human monocytes in a CD14-dependent manner. In the present study we examined the role of Toll-like receptor (TLR) 2 and TLR4 in responses to poly-M. Blocking antibodies to TLR2 and TLR4 partly inhibited tumor necrosis factor production induced by poly-M in human monocytes, and further inhibition was obtained by combining the antibodies. By transiently transfecting HEK293 cells, we found that membrane CD14 together with either TLR2 or TLR4/MD-2 could mediate activation by poly-M. Transfection of HEK293 cells with TLR2 and fluorescently labeled TLR4 followed by co-patching of TLR2 with an antibody revealed no association of these molecules on the plasma membrane. However, macrophages from the Tlr4 mutant C3H/HeJ mice and TLR4 knockout mice were completely non-responsive to poly-M, whereas the tumor necrosis factor release from TLR2 knockout macrophages was half of that seen with wild type cells. Taken together the results suggest that both TLR2 and TLR4 are involved in cell activation by poly-M and that TLR4 may be required in primary murine macrophages.  相似文献   

7.
8.
Recent studies indicate that Toll-like receptors (TLRs), originally identified as infectious agent receptors, also mediate sterile inflammatory responses during tissue damage. In this study, we investigated the role of TLR2 in excitotoxic hippocampal cell death using TLR2 knock-out (KO) mice. TLR2 expression was up-regulated in microglia in the ipsilateral hippocampus of kainic acid (KA)-injected mice. KA-mediated hippocampal cell death was significantly reduced in TLR2 KO mice compared with wild-type (WT) mice. Similarly, KA-induced glial activation and proinflammatory gene expression in the hippocampus were compromised in TLR2 KO mice. In addition, neurons in organotypic hippocampal slice cultures (OHSCs) from TLR2 KO mouse brains were less susceptible to KA excitotoxicity than WT OHSCs. This protection is partly attributed to decreased expression of proinflammatory genes, such as TNF-α and IL-1β in TLR2 KO mice OHSCs. These data demonstrate conclusively that TLR2 signaling in microglia contributes to KA-mediated innate immune responses and hippocampal excitotoxicity.  相似文献   

9.
The increased level of LDL and its modification into oxLDL has been regarded as an important risk factor for the development of cardiovascular diseases such as atherosclerosis. Although some scavenger receptors including CD36 and RAGE have been considered as target receptors for oxLDL, involvement of other receptors should be investigated for oxLDL-induced pathological responses. In this study, we found that oxLDL-induced foam cell formation was inhibited by formyl peptide receptor 2 (FPR2) antagonist WRW4. oxLDL also stimulated calcium signaling and chemotactic migration in FPR2-expressing RBL-2H3 cells but not in vector-expressing RBL-2H3 cells. Moreover, oxLDL stimulated TNF-α production, which was also almost completely inhibited by FPR2 antagonist. Our findings therefore suggest that oxLDL stimulates macrophages, resulting in chemotactic migration, TNF-α production, and foam cell formation via FPR2 signaling, and thus likely contributes to atherogenesis.  相似文献   

10.
Signaling events induced by lipopolysaccharide-activated toll-like receptor 2.   总被引:30,自引:0,他引:30  
Human Toll-like receptor 2 (TLR2) is a signaling receptor that responds to LPS and activates NF-kappaB. Here, we investigate further the events triggered by TLR2 in response to LPS. We show that TLR2 associates with the high-affinity LPS binding protein membrane CD14 to serve as an LPS receptor complex, and that LPS treatment enhances the oligomerization of TLR2. Concomitant with receptor oligomerization, the IL-1R-associated kinase (IRAK) is recruited to the TLR2 complex. Intracellular deletion variants of TLR2 lacking C-terminal 13 or 141 aa fail to recruit IRAK, which is consistent with the inability of these mutants to transmit LPS cellular signaling. Moreover, both deletion mutants could still form complexes with wild-type TLR2 and act in a dominant-negative (DN) fashion to block TLR2-mediated signal transduction. DN constructs of myeloid differentiation protein, IRAK, TNF receptor-associated factor 6, and NF-kappaB-inducing kinase, when coexpressed with TLR2, abrogate TLR2-mediated NF-kappaB activation. These results reveal a conserved signaling pathway for TLR2 and IL-1Rs and suggest a molecular mechanism for the inhibition of TLR2 by DN variants.  相似文献   

11.
Lipoteichoic acids (LTAs) are Gram-positive bacterial cell wall components that elicit mononuclear cell cytokine secretion. Cytokine-stimulating activity is thought to be dependent on retaining a high level of ester-linked D-alanine residues along the polyglycerol phosphate backbone. However, Streptococcus pyogenes LTA essentially devoid of D-alanine caused human and mouse cells to secrete as much IL-6 as LTA with a much higher D-alanine content. Furthermore, hemoglobin (Hb) markedly potentiates the stimulatory effect of various LTAs on mouse macrophages or human blood cells, regardless of their d-alanine content. LTA and Hb appear to form a molecular complex, based on the ability of each to affect the other's migration on native acrylamide gels, their comigration on these gels, and the ability of LTA to alter the absorption spectra of Hb. Because S. pyogenes is known to release LTA and secrete at least two potent hemolytic toxins, LTA-Hb interactions could occur during streptococcal infections and might result in a profound alteration of the local inflammatory response.  相似文献   

12.
Recently Toll-like receptors (TLRs) have been found to be involved in cellular activation by microbial products, including lipopolysaccharide, lipoproteins, and peptidoglycan. Although for these ligands the specific transmembrane signal transducers TLR-4, TLR-2, or TLR-2 and -6 have now been identified, the molecular basis of recognition of lipoteichoic acids (LTAs) and related glycolipids has not been completely understood. In order to determine the role of TLRs in immune cell activation by these stimuli, experiments involving TLR-2-negative cell lines, TLR-expression plasmids, macrophages from TLR-4-deficient C3H/HeJ-mice, and inhibitory TLR-4/MD-2 antibodies were performed. Glycolipids from Treponema maltophilum and Treponema brennaborense, as well as highly purified LTAs from Staphylococcus aureus and Bacillus subtilis exhibited TLR-2 dependence in nuclear factor kappaB activation and cytokine induction; however, T. brennaborense additionally appeared to signal via TLR-4. Fractionation of the T. brennaborense glycolipids by hydrophobic interaction chromatography and subsequent cell stimulation experiments revealed two peaks of activity, one exhibiting TLR-2-, and a second TLR-4-dependence. Furthermore, we show involvement of the signaling molecules MyD88 and NIK in cell stimulation by LTAs and glycolipids by dominant negative overexpression experiments. In summary, the results presented here indicate that TLR-2 is the main receptor for Treponema glycolipid and LTA-mediated inflammatory response.  相似文献   

13.
Oxidative tissue damage is a hallmark of many chronic inflammatory diseases. However, the precise mechanisms linking oxidative changes to inflammatory reactions remain unclear. Herein we show that Toll-like receptor 2 (TLR2) translates oxidative tissue damage into inflammatory responses by mediating the effects of oxidized phospholipids. Intraperitoneal injection of oxidized 1-palmitoyl-2-arachidonyl-sn-3-glycerophosphorylcholine (OxPAPC) resulted in upregulation of inflammatory genes in wild-type, but not in TLR2(-/-) mice. In vitro, OxPAPC induced TLR2 (but not TLR4)-dependent inflammatory gene expression and JNK and p38 signaling in macrophages. Induction of TLR2-dependent gene expression required reducible functional groups on sn-2 acyl chains of oxidized phospholipids, as well as serum cofactors. Finally, TLR2(-/-) mice were protected against carbon tetrachloride-induced oxidative tissue damage and inflammation, which was accompanied by accumulation of oxidized phospholipids in livers. Together, our findings demonstrate that TLR2 mediates cellular responses to oxidative tissue damage and they provide new insights into how oxidative stress is linked to acute and chronic inflammation.  相似文献   

14.
《Autophagy》2013,9(7):991-1003
Autophagic cell death has been observed in granulosa cell cultures via the oxLDL-dependent activation of lectin-like oxidized low density lipoprotein receptor 1 (LOX-1). This activation might differ for cytokeratin-positive (CK+) and CK- granulosa cells. In particular, LOX-1 and Toll-like receptor 4 (TLR4), one of the pattern recognition receptors of innate immunity, might be diversely regulated. Granulosa cell subtype cultures were established from the follicle harvests of patients undergoing in vitro fertilization (IVF) therapy. In response to oxLDL treatment, the fibroblast-like CK- cells upregulated LOX-1 and exhibited reparative autophagy, which could be blocked with anti-LOX-1 antibody. The epithelioid-like CK+ cells did not regulate LOX-1 expression upon oxLDL application, but the expression of TLR4 and CD14 increased between 0 and 36 h of oxLDL/nDL treatment. This up-regulation was associated with non-apoptotic cell death based on the absence of cleaved caspase-3. Reactive oxygen species (ROS) increased with 12 h oxLDL application and steroidogenic acute regulatory (StAR) protein expression was negligible. In CK- cells, the inhibition of TLR4 downregulated LOX-1 and induced apoptosis. We concluded that CK- granulosa cells are protected against oxLDL-dependent apoptosis by TLR4, whereas, in CK+ cells, oxLDL-induced TLR4 activation triggers non-apoptotic cell death. The CK+ cells might represent immune-like granulosa cells involved in ovarian remodeling processes.  相似文献   

15.
Mast cells play a central role in inflammatory and allergic reactions by releasing inflammatory mediators through two main pathways, immunoglobulin E-dependent and -independent activation. In the latter, mast cells are activated by a diverse range of basic molecules, including peptides and amines such as substance P, neuropeptide Y, and compound 48/80. These secretagogues are thought to activate the G proteins in mast cells through a receptor-independent mechanism. Here, we report that the basic molecules activate G proteins through the Mas-related gene (Mrg) receptors on mast cells, leading to mast cell degranulation. We suggest that one of the Mrg receptors, MrgX2, has an important role in regulating inflammatory responses to non-immunological activation of human mast cells.  相似文献   

16.
CD45 is the major protein tyrosine phosphatase receptor on T cell surfaces that functions as both a positive and a negative regulator of T cell receptor (TCR) signaling. Although CD45 is required for the activation of TCR-associated Src family kinases, it also dephosphorylates phosphoproteins involved in the TCR-signaling cascade. This study links CD45 to the inhibitory activity of placental protein 14 (PP14), a major soluble protein of pregnancy that is now known to be a direct modulator of T cells and to function by desensitizing TCR signaling. PP14 and CD45 co-capped with each other, pointing to a physical linkage between the two. Interestingly, however, the binding of PP14 to T cell surfaces was not restricted to CD45 alone, with evidence showing that PP14 binds to other surface molecules in a carbohydrate-dependent fashion. Notwithstanding the broader molecular binding potential of PP14, its interaction with CD45 appeared to have special functional significance. Using transfected derivatives of the HPB.ALL mutant T cell line that differ in CD45 expression, we established that the inhibitory effects of PP14 are dependent upon the expression of intact CD45 on T cell surfaces. Based upon these findings, we propose a new immunoregulatory model for PP14, wherein one of its surface molecular targets, CD45, mediates its T cell inhibitory activity, accounting for the intriguing capacity of PP14 to elevate TCR activation thresholds and thereby down-regulate T cell activation.  相似文献   

17.
Oh YS  Shin S  Lee YJ  Kim EH  Jun HS 《PloS one》2011,6(8):e23894

Background

Betacellulin (BTC), a member of the epidermal growth factor family, is known to play an important role in regulating growth and differentiation of pancreatic beta cells. Growth-promoting actions of BTC are mediated by epidermal growth factor receptors (ErbBs), namely ErbB-1, ErbB-2, ErbB-3 and ErbB-4; however, the exact mechanism for beta cell proliferation has not been elucidated. Therefore, we investigated which ErbBs are involved and some molecular mechanisms by which BTC regulates beta cell proliferation.

Methodology/Principal Findings

The expression of ErbB-1, ErbB-2, ErbB-3, and ErbB-4 mRNA was detected by RT-PCR in both a beta cell line (MIN-6 cells) and C57BL/6 mouse islets. Immunoprecipitation and western blotting analysis showed that BTC treatment of MIN-6 cells induced phosphorylation of only ErbB-1 and ErbB-2 among the four EGF receptors. BTC treatment resulted in DNA synthetic activity, cell cycle progression, and bromodeoxyuridine (BrdU)-positive staining. The proliferative effect was blocked by treatment with AG1478 or AG825, specific tyrosine kinase inhibitors of ErbB-1 and ErbB-2, respectively. BTC treatment increased mRNA and protein levels of insulin receptor substrate-2 (IRS-2), and this was blocked by the ErbB-1 and ErbB-2 inhibitors. Inhibition of IRS-2 by siRNA blocked cell cycle progression induced by BTC treatment. Streptozotocin-induced diabetic mice injected with a recombinant adenovirus expressing BTC and treated with AG1478 or AG825 showed reduced islet size, reduced numbers of BrdU-positive cells in the islets, and did not attain BTC-mediated remission of diabetes.

Conclusions/Significance

These results suggest that BTC exerts proliferative activity on beta cells through the activation of ErbB-1 and ErbB-2 receptors, which may increase IRS-2 expression, contributing to the regeneration of beta cells.  相似文献   

18.
Adenovirus E4orf4 protein has been shown to induce transformed cell-specific, protein phosphatase 2A-dependent, and p53-independent apoptosis. It has been further reported that the E4orf4 apoptotic pathway is caspase-independent in CHO cells. Here, we show that E4orf4 induces caspase activation in the human cell lines H1299 and 293T. Caspase activation is required for apoptosis in 293T cells, but not in H1299 cells. Dominant negative mutants of caspase-8 and the death receptor adapter protein FADD/MORT1 inhibit E4orf4-induced apoptosis in 293T cells, suggesting that E4orf4 activates the death receptor pathway. Cytochrome c is released into the cytosol in E4orf4-expressing cells, but caspase-9 is not required for induction of apoptosis. Furthermore, E4orf4 induces accumulation of reactive oxygen species (ROS) in a caspase-8- and FADD/MORT1-dependent manner, and inhibition of ROS generation by 4,5-dihydroxy-1, 3-benzene-disulfonic acid (Tiron) inhibits E4orf4-induced apoptosis. Thus, our results demonstrate that E4orf4 engages the death receptor pathway to generate at least part of the molecular events required for E4orf4-induced apoptosis.  相似文献   

19.
Glucocorticoids, administered in pharmacological doses, potently modulate immune system function and are a mainstay therapy for many common human diseases. Physiologic production of glucocorticoids may play a role in optimization of the immune repertoire both centrally and peripherally. Possible effects include alteration of lymphocyte development and down-regulation of cytokine responses, but essential roles remain unclear. To determine the part that endogenous glucocorticoids play in thymocyte development, we used fetal liver from mice lacking the glucocorticoid receptor GRko for immunological reconstitution of lethally irradiated wild-type (WT) mice. We find normal numbers and subset distribution of GRko thymocytes. GRko thymocytes also exhibit similar sensitivity to apoptosis induced by activating anti-CD3epsilon Ab as WT thymocytes in vitro. Surprisingly, GRko thymocytes are significantly more resistant than WT thymocytes to anti-CD3epsilon-mediated thymocyte apoptosis in vivo. Consistent with this finding, in vivo TCR complex activation induces sustained high levels of glucocorticoids that correlate strongly with thymocyte apoptosis in WT mice. We find that while direct engagement of the TCR complex may cause death of a subset of thymocytes, glucocorticoids are required for deletion of the majority of thymocytes. Thus, TCR stimulation by Ab administration may more accurately reflect polyclonal T cell activation than negative selection in vivo.  相似文献   

20.
The activation of spinal cord glial cells has been implicated in the development of neuropathic pain upon peripheral nerve injury. The molecular mechanisms underlying glial cell activation, however, have not been clearly elucidated. In this study, we found that damaged sensory neurons induce the expression of tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, and inducible nitric-oxide synthase genes in spinal cord glial cells, which is implicated in the development of neuropathic pain. Studies using primary glial cells isolated from toll-like receptor 2 knock-out mice indicate that damaged sensory neurons activate glial cells via toll-like receptor 2. In addition, behavioral studies using toll-like receptor 2 knock-out mice demonstrate that the expression of toll-like receptor 2 is required for the induction of mechanical allodynia and thermal hyperalgesia due to spinal nerve axotomy. The nerve injury-induced spinal cord microglia and astrocyte activation is reduced in the toll-like receptor 2 knock-out mice. Similarly, the nerve injury-induced pro-inflammatory gene expression in the spinal cord is also reduced in the toll-like receptor 2 knock-out mice. These data demonstrate that toll-like receptor 2 contributes to the nerve injury-induced spinal cord glial cell activation and subsequent pain hypersensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号