首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Histochemical and electrophoretic examinations of the effect of Biseptol 480 on lactate dehydrogenase in the rat heart muscle were carried out on white male rats of Wistar strain of about 300 g in weight. The rats were divided into 2 groups: experimental group of 10 rats and a control one of 5 rats. Experimental rats were given, by stomach tube, 80 g of Biseptol 480, suspended in 1 cm3 of distilled water for 7 consecutive d. Control rats were given 1 cm3 of distilled water for 7 consecutive d too. Samples were taken from the experimental and control rats to examine lactate dehydrogenase and to make isoenzyme separation. The lack of differences between the experimental rat samples and those control ones permitted to conclude that Biseptol 480 administered to rats, did not bring about significant histoenzymatic and electrophoretic changes suggesting a disbalance in the examined stage of metabolism in the rat heart muscle.  相似文献   

2.
The present experiments are stimulated by some reports suggesting disturbances in the liver metabolism after application of Biseptol 480. 10 a ago, Biseptol has been widely used in the treatment of some inflammatory states of the respiratory and urinary systems, the alimentary canal, the genitals, and of some bacterial skin infection. The examinations were carried out on 15 white male rats of Wistar strain which were treated by 80 mg of the sulphonamide Biseptol 480 for 7 consecutive days, by stomach tube. Histochemical activity of lactate dehydrogenase (LDH) and isoenzymatic composition of LDH were estimated in the liver's experimental sections. The results show a decrease of LDH activity in the liver tissue and the absence of LDH-5 and LDH-1 fractions in the experimental electrophoregrams. They confirm some authors' supposition of some disturbances in the liver metabolism following application of Biseptol 480.  相似文献   

3.
The study aimed to find out the effect of sulfonamide combined with Trimetaprim-Biseptol 480 on the adrenal cortex in post-operative shock after removal of SPIGELian lobe (lobectomy of the lobus caudatus and unilaterally of one kidney with its suprarenal gland. The study was performed on a material of white rats which were post-operatively administered Biseptol 480 in doses 5 times bigger than those given to men. It was attempted to determine histochemically the intensity of the adrenal cortex' function by testing the number of lipid droplets, activity of the main enzyme of steroidogenesis (beta-hydroxy steroid dehydrogenase) and the level of alpha-ketols (as the final stage of steroidogenesis). Pathomorphologic examinations were also performe. On the basis of the present study's results, it was observed that - in the case of liver-lobectomy - the zona fasciculata and zona reticularis are functionally stimulated but the zona glomerulosa becomes insufficient. In the case of nephrectomy plus suprarenal gland's removal, all the adrenal cortex becomes insufficient. Administration of Biseptol in the 1st case contributed to hormonal inactivation of the zone glomerulosa cells, but in the 2nd case, it caused an increased activity of steroid dehydrogenase and an increase of the alpha-ketol level in the zona fasciculata.  相似文献   

4.
The effect of Biseptol on the mucous membrane of the stomach of an unoperated white rat was analysed and also the effect after liver lobectomy or unilateral nephrectomy. There were performed histochemical reactions to mucopolysaccharides and nucleic acids as well as staining with hematoxyline ond eosine. After administration of Biseptol in a dose of 270 mg/kg b.w. for 7 consecutive d, increased secretion of mucous and inflammation in gastric mucous membrane was observed. No intensification of these symptoms was found after administration of Biseptol to operated animals. It may be supposed that hepatectomy and nephrectomy are not counterindications for the use of Biseptol.  相似文献   

5.
The purpose of this study was to determine if the perturbations in two glycolytic metabolites that occur during hemorrhagic shock can be used as discriminatory postmortem indicators of death resulting from severe hemorrhagic shock. Two groups of male albino Sprague-Dawley rats were hemorrhaged by withdrawing either 40% (Group I) or 45% (Group II) of the total blood volume. Glycogen and lactate concentrations were determined at 0 and 48 hr postmortem in the following tissues and organs: diaphragm, heart, liver, kidney cortex, and kidney medulla. The differences in lactate and glycogen in Group I at 0 hr were not significantly different from the nonhemorrhaged controls, with the exception of the lower liver glycogen concentration (58% of control). In Group II glycogen concentration was significantly reduced at 0 hr in the diaphragm (70% of control), liver (37%), and kidney medulla (55%). Lactate concentration was higher in all tissues examined by 270-640%; within 48 hr all tissues for both control and hemorrhaged animals had declined to baseline levels of glycogen concentration, whereas lactate levels had increased as much as 34-fold. There were no highly significant differences in glycogen at 48 hr between the control and hemorrhaged groups. In Group II the lactates were similar for both the control and hemorrhaged animals with the exception of the higher concentrations in the kidney cortex (54%) and medulla (41%). It was concluded from these findings that although significant metabolic perturbations are present at the time of death due to hemorrhage these differences do not persist up to 48 hr postmortem, with the possible exception of the kidney lactate concentrations.  相似文献   

6.
A specific cytotoxicity assay has been developed for carp using the Epithelioma Papulosum Cyprini (EPC) cell line as target cells and the release of lactate dehydrogenase (LDH) as read out system. Non-specific cytotoxicity against EPC was not observed, but animals immunized with EPC clearly showed specific killing by effector cells present in kidney, blood and spleen. This killing was strongly calcium dependent, suggesting the utilization of a perforin/granzyme-like pathway. However, blocking with EGTA was not complete indicating the existence of other additional killing routes.  相似文献   

7.
Melatonin was injected into intact and eyestalk-ablated fiddler crabs (Uca pugilator), and its effects on hemolymph glucose and lactate levels were studied. In intact crabs, glucose and lactate levels cycled simultaneously, with peaks occurring during early and late photophase. Melatonin caused a shift in the glucose and lactate cycles, with only one peak occurring closer to mid-photophase. In eyestalk-ablated animals, the glucose rhythmicity was lost; lactate cycled, but levels were significantly lower than in intact animals. Melatonin caused a delayed hyperglycemia in eyestalk-ablated animals, with concurrent but much lower increases in lactate. Overall, melatonin demonstrated delayed hyperglycemic effects that do not appear to be mediated solely via eyestalk factors such as crustacean hyperglycemic hormone (CHH), though involvement of the eyestalks cannot be ruled out. An influence on extra-eyestalk CHH secretion is a potential mechanism of melatonin activity.  相似文献   

8.
The activities of various ammoniagenic, gluconeogenic, and glycolytic enzymes were measured in the renal cortex and also in the liver of rats made diabetic with streptozotocin. Five groups of animals were studied: normal, normoglycemic diabetic (insulin therapy), hyperglycemic, ketoacidotic, and ammonium chloride treated rats. Glutaminase I, glutamate dehydrogenase, glutamine synthetase, phosphoenolpyruvate carboxykinase (PEPCK), hexokinase, phosphofructokinase, fructose-1,6-diphosphatase, malate dehydrogenase, malic enzyme, and lactate dehydrogenase were measured. Renal glutaminase I activity rose during ketoacidosis and ammonium chloride acidosis. Glutamate dehydrogenase in the kidney rose only in ammonium chloride treated animals. Glutamine synthetase showed no particular variation. PEPCK rose in diabetic hyperglycemic animals and more so during ketoacidosis and ammonium chloride acidosis. It also rose in the liver of the diabetic animals. Hexokinase activity in the kidney rose in diabetic insulin-treated normoglycemic rats and also during ketoacidosis. The same pattern was observed in the liver of these diabetic rats. Renal and hepatic phosphofructokinase activities were elevated in all groups of experimental animals. Fructose-1,6-diphosphatase and malate dehydrogenase did not vary significantly in the kidney and the liver. Malic enzyme was lower in the kidney and liver of the hyperglycemic diabetic animals and also in the liver of the ketoacidotic rats. Lactate dehydrogenase fell slightly in the liver of diabetic hyperglycemic and NH4Cl acidotic animals. The present study indicates that glutaminase I is associated with the first step of increased renal ammoniagenesis during ketoacidosis. PEPCK activity is influenced both by hyperglycemia and ketoacidosis, acidosis playing an additional role. Insulin appears to prevent renal gluconeogenesis and to favour glycolysis. The latter would seem to remain operative in hyperglycemic and ketoacidotic diabetic animals.  相似文献   

9.
The present study was undertaken to evaluate the metabolic response of the kidney to lactic acidosis. Four types of lactic acidosis were induced in the dog: infusion of lactic acid, infusion of lactic acid with phenformin, administration of phenformin alone, and hypoxia by breathing 95% nitrogen. In all groups of animals, the same degree of acidosis was observed with plasma bicarbonate ranging from 12.8 to 14.9 mM. Plasma lactate concentration ranged from 3.0 to 8.1 mumol/mL. Renal ammoniagenesis failed to be influenced by lactic acidosis. As a matter of fact, it fell during anoxia. The extraction of glutamine by the kidney rose except during anoxia where it fell. The renal production of alanine rose during the infusion of lactic acid with and without phenformin. This coincided with the extraction of glutamine. The renal extraction of lactate rose in all forms of acidosis as well as the production of pyruvate. In the renal cortical tissue, the concentration of malate, pyruvate, and lactate rose. Alanine also rose except during anoxia. An important fall in cytosolic redox potential (NAD+/NADH lactate dehydrogenase) was observed, as well as a fall in mitochondrial redox (NAD+/NADH beta-hydroxybutyrate dehydrogenase). Lactate also accumulated in the liver and in the muscle. We propose that the kidney is unable to respond to lactic acidosis in terms of ammonia production and that this phenomenon is explained by transamination of pyruvate and glutamate into alanine and also by the observed fall in cytosolic redox potential. It is likely that renal gluconeogenesis is also inhibited and this is reflected by the rise in the concentration of malate in the kidney.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The relationship of lactate metabolism to renal function was studied in the isolated perfused rat kidney. A new radioisotopic method has been developed that enables the simultaneous measurement of lactate production and consumption in the presence of physiological concentrations of both lactate and glucose. In kidneys from fed rats, when glucose was absent, lactate production was only 12 mumol/h per g dry wt, and in kidneys from starved rats there was no lactate production, indicating that neither the phosphoenolpyruvate/pyruvate substrate cycle nor other analogous cycles for the recycling of lactate carbon are operating in the intact kidney cortex. Lactate production from glucose occurred at a high rate, at the same time as lactate consumption, demonstrating that lactate recycling between renal cortex and medulla can occur in the intact kidney. Lactate production from glucose correlated with glomerular filtration rate (P less than 0.001), urine flow rate (P less than 0.01) and sodium reabsorption (P less than 0.05). There was significant basal lactate production at zero glomerular filtration rate. Lactate consumption was not correlated with any renal function. When Na+ reabsorption was inhibited with the diuretic frusemide, or when filtration was entirely prevented (the 'non'-filtering kidney'), lactate production was decreased by 39% and 50% respectively. Basal lactate production determined in this way was the same as that calculated above by linear regression. Prevention of filtration, but not the addition of frusemide, significantly inhibited lactate consumption. It is concluded that glycolysis is required for medullary Na+ transport, and that some different transport function(s) require lactate oxidation.  相似文献   

11.
Enhanced efficiency of lactate removal after endurance training   总被引:1,自引:0,他引:1  
The effects of endurance training (running 1 h/day at 40 m/min, 10% grade) on net lactate removal at various lactate concentrations were assessed in resting rats by use of constant exogenous lactate infusion (0, 69.3, 123.6, and 175.0 mumol.kg-1.min-1). No consistent difference in resting lactate concentrations, 1.17 +/- 0.09 mM, was observed between control and trained animals with no exogenous infusion of lactate. With increasing lactate infusion rates, control animals demonstrated a twofold greater increase in blood lactate concentration (range 1.2-11.4 mM) compared with trained animals (range 1.0-5.5 mM). This response resulted from a more rapid rise in net lactate removal with changes in blood lactate concentration for trained animals. The estimated maximal reaction velocity for net lactate removal in trained animals was 19% lower than in control animals; however, the Michaelis-Menten constant was greater than 66% lower in trained animals (4 mM) compared with controls (12 mM). Control animals also demonstrated a twofold greater increase in lactate concentration as a function of the tracer-estimated lactate turnover. The ratio of 14CO2 yield to lactate specific activity as a function of total tracer removal was not significantly different between groups, suggesting that the relative contributions of oxidation and gluconeogenesis to lactate removal were similar for both groups. At blood concentrations greater than 1 mM, trained animals achieve higher rates of lactate removal for any given lactate concentration.  相似文献   

12.
Ultrastructural features of juxtaglomerular cells have been correlated with plasma and kidney analyses from non-hibernating, hibernating and awakening ground squirrels. Juxtaglomerular cells in kidneys from hibernating animals show signs of increased activity. Plasma samples from hibernating animals show a significant increase in magnesium. Kidney analyses from hibernating animals, show glycogen increases and lactate and inorganic phosphate decrease significantly. Adenosine triphosphate remains the same. Maintenance of high-energy phosphates in the hibernating kidney is essential to maintaining sodium transport and osmotic pressure. This coupled with a functional renin-angiotensin system regulates water and electrolyte balance.  相似文献   

13.
The effects of di-(2-ethylhexyl)-phthalate (DEPH) on the levels of cytochrome P-450 and b5 monooxygenases were studied in the rat kidney and liver in acute renal failure induced by glycerol. Intramuscular injection of glycerol (50%,10 ml x kg(-1)) to rats produced proximal tubular damage and acute renal failure. The indicators of renal function, serum urea and creatinine significantly increased (480 and 350 percent, respectively). In control and glycerol-treated animals DEPH had no significant effect on the concentrations of serum urea and creatinine. Twenty-four hours after glycerol injection the total amount of cytochrome P-450 and b5 significantly decreased in renal but increased in liver microsomal fractions. Moreover, 48 and 72 hours after glycerol injection the level of cytochrome P-450 and b5 significantly increased in both organs. A single dose of DEPH (2 ml x kg(-1), i.p.) also elevated the total cytochrome P-450 and b5 in control animals. This enhancing effect of DEPH was additive to that of glycerol in glycerol-induced acute renal failure. These results indicate that DEPH and glycerol evoked pathological changes may affect the metabolism of xenobiotics plus endogenous hormones in the liver and in kidney.  相似文献   

14.
Mancozeb, an ethylenebisdithiocarbamate fungicide was administered orally to male rats at doses 0, 500, 1000 and 1500 mg/kg/day for 90, 180 and 360 days produced dose dependent signs of poisoning, loss in body weight gain and mortality. However the signs of toxicity and mortality were more pronounced initially at 0-90 days as compared to 90-360 days of treatment period. A significant increase in the relative weight of liver and slight decrease in the kidney weight were observed in animals exposed to mancozeb (1000 and 1500 mg/kg/day) for 180 and 360 days associated with pathomorphological changes in liver, brain and kidney. Mancozeb has produced significant enzymatic changes in the activities of aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and acetylcholinesterase (AChE) throughout the period of study in a dose dependent manner. The alterations in the activity of enzymes associated with pathomorphological changes suggest that the chronic exposure of mancozeb produced significant toxicological effects in rats.  相似文献   

15.
High glucose consumption and lactate synthesis in aerobic glycolysis are a hallmark of cancer cells. They can form lactate also in glutaminolysis, but it is not clear how oxygen availability affects this process. We studied lactate synthesis at various oxygen levels in human primary (SW480) and metastatic (SW620) colon cancer cells cultured with L‐Ser and/or L‐Asp. Glucose and lactate levels were determined colorimetrically, amino acids by HPLC, expression of AST1‐mRNA and AST2‐mRNA by RT‐PCR. In both lines glucose consumption and lactate synthesis were higher at 10% than at 1% oxygen, and lactate/glucose ratio was increased above 2.0 by L‐Asp. AST1‐mRNA expression was independent on oxygen and cell line, but AST2‐mRNA was lower at hypoxia in SW480. We conclude that, in both cell lines at 1% hypoxia, lactate is formed mainly from glucose but at 10% normoxia also from L‐Asp. At 10% normoxia, lactate synthesis is more pronounced in primary than metastatic colon cancer cells.  相似文献   

16.
The biochemical background of ethanol-(ETOH) induced gastric mucosal damage was studied in rats with intact vagus and after acute surgical vagotomy. Observations were carried out on Sprague-Dawley (CFY) strain rats of both sexes. Gastric mucosal lesions were produced by intragastric administration of 1 ml 96% ethanol. Bilateral truncal surgical vagotomy was carried out 30 min before ETOH administration. The number and severity of gastric mucosal lesions was noted 1 h after ETOH administration. Biochemical measurements (gastric mucosal level of ATP, ADP, AMP, cAMP and lactate) were carried out from the total homogenized gastric mucosa. The adenylate pool (ATP + ADP + AMP), energy charge ((ATP + 0.5 ADP)/(ATP + ADP + AMP)) and ratio of ATP/ADP were calculated. It was found that: 1) ATP transformation into ADP increased, while ATP transformation in cAMP decreased in ethanol-treated animals with intact vagus nerve, while these transformations were quite the opposite in vagotomized animals; 2) no significant changes were found in the tissue level of lactate: and 3) the extent of biochemical changes was significantly less after surgical vagotomy. It is concluded that an intact vagus is basically necessary for the metabolic adaptation of gastric mucosa.  相似文献   

17.
18.
Phosphorylation of adducin by Rho-kinase plays a crucial role in cell motility   总被引:16,自引:0,他引:16  
Adducin is a membrane skeletal protein that binds to actin filaments (F-actin) and thereby promotes the association of spectrin with F-actin to form a spectrin-actin meshwork beneath plasma membranes such as ruffling membranes. Rho-associated kinase (Rho- kinase), which is activated by the small guanosine triphosphatase Rho, phosphorylates alpha-adducin and thereby enhances the F-actin-binding activity of alpha-adducin in vitro. Here we identified the sites of phosphorylation of alpha-adducin by Rho-kinase as Thr445 and Thr480. We prepared antibody that specifically recognized alpha-adducin phosphorylated at Thr445, and found by use of this antibody that Rho-kinase phosphorylated alpha-adducin at Thr445 in COS7 cells in a Rho-dependent manner. Phosphorylated alpha-adducin accumulated in the membrane ruffling area of Madin-Darby canine kidney (MDCK) epithelial cells and the leading edge of scattering cells during the action of tetradecanoylphorbol-13-acetate (TPA) or hepatocyte growth factor (HGF). The microinjection of Botulinum C3 ADP-ribosyl-transferase, dominant negative Rho-kinase, or alpha-adducinT445A,T480A (substitution of Thr445 and Thr480 by Ala) inhibited the TPA-induced membrane ruffling in MDCK cells and wound-induced migration in NRK49F cells. alpha-AdducinT445D,T480D (substitution of Thr445 and Thr480 by Asp), but not alpha-adducinT445A,T480A, counteracted the inhibitory effect of the dominant negative Rho-kinase on the TPA-induced membrane ruffling in MDCK cells. Taken together, these results indicate that Rho-kinase phosphorylates alpha-adducin downstream of Rho in vivo, and that the phosphorylation of adducin by Rho-kinase plays a crucial role in the regulation of membrane ruffling and cell motility.  相似文献   

19.
Renal metabolism has been studied in eight dogs before and 48 hr after a 60-min period of renal ischemia induced by clamping the left renal artery with the simultaneous removal of the right kidney, and in 12 sham-operated animals. The study involved the measurement of renal uptake and production of lactate, glutamine, glutamate, alanine, ammonium, and oxygen, and the measurement of the tissue concentrations of ATP, glutamine, lactate, alpha-ketoglutarate, aspartate, and alanine in the renal cortex. Two days after a temporary renal ischemia, the remaining kidney showed a 22% decrease in glomerular filtration rate (GFR) and a 25% decrease in renal plasma flow. Fractional sodium and potassium excretions were similar to those of control dogs. Renal production or extraction of glutamine, glutamate, alanine, ammonium, and oxygen (all expressed by 100 ml of GFR) was not significantly different in basal conditions or 2 days after ischemia, but lactate extraction was reduced in postischemic kidneys (-101 +/- 29 vs -204 +/- 38 mumol/100 ml GFR in control dogs). The cortical concentrations of glutamine and glutamate were lower in postischemic than in control kidneys. No differences were found in cortical concentration of alpha-ketoglutarate, aspartate, lactate, pyruvate, or ATP, but total nucleotides and inorganic phosphate were decreased in postischemic kidneys. It is concluded that in the recovery phase of the ischemia, a decreased lactate uptake is the main metabolic change, and total ATP production is adapted to the decrease of GFR and sodium reabsorption.  相似文献   

20.
To evaluate the effects of endurance training on gluconeogenesis and blood glucose homeostasis, trained as well as untrained short-term-fasted rats were injected with mercaptopicolinic acid (MPA), a gluconeogenic inhibitor, or the injection vehicle. Glucose kinetics were assessed by primed-continuous venous infusion of [U-14C]- and [6-3H]glucose at rest and during submaximal exercise at 13.4 m/min on level grade. Arterial blood was sampled for the determination of blood glucose and lactate concentrations and specific activities. In resting untrained sham-injected rats, blood glucose and lactate were 7.6 +/- 0.2 and 1.3 +/- 0.1 mM, respectively; glucose rate of appearance (Ra) was 71.1 +/- 12.1 mumol.kg-1.min-1. MPA treatment lowered blood glucose, raised lactate, and decreased glucose Ra. Trained animals had significantly higher glucose Ra at rest and during exercise. At rest, trained MPA-treated rats had lower blood glucose, higher blood lactate, and similar glucose Ra and disappearance rates (Rd) than trained sham-injected animals. Exercising sham-injected untrained animals had increased blood glucose and glucose Ra compared with rest. Exercising trained sham-injected rats had increased blood glucose and glucose Ra and Rd but no change in blood lactate compared with untrained sham-injected animals. In the trained animals during exercise, MPA treatment increased blood lactate and decreased blood glucose and glucose Ra and Rd. There was no measurable glucose recycling in trained or untrained MPA-treated animals either at rest or during submaximal exercise. There was no difference in running time to exhaustion between trained and untrained MPA-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号