首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adenoviruses offer great potential as gene therapy agents but are limited by the strong inflammatory response that occurs in response to the recombinant virus. Since the degree of inflammation correlates in part with the potential of the viral vector for replication, we constructed a preterminal protein (pTP) deletion mutant adenovirus type 5 vector, Ad5dl308ΔpTPβ-gal, that is replication incompetent due to deletion of the pTP gene and that has the E1 genes replaced by the Escherichia coli lacZ reporter gene under the control of the cytomegalovirus major immediate-early promoter. This virus was compared with a first-generation, replication-defective adenovirus vector, Ad5dl308β-gal, that is isogenic except that it contains a wild-type pTP gene. To examine transduction efficiency and induction of inflammation, we developed a novel system involving intradermal injection of BALB/c mouse ears. Mouse ears can be accurately measured to determine the degree of edema as an indirect measurement of inflammation. Edema and inflammation were induced in a dose- and time-dependent manner by both viruses and correlated well. LacZ activity correlated inversely with edema and inflammation. The pTP-defective vector Ad5dl308ΔpTPβ-gal transduced mouse ears much more efficiently and induced edema and inflammatory cell infiltration approximately 10-fold less efficiently than the first-generation vector Ad5dl308β-gal. The diminished inflammatory response and increased efficiency of transduction observed with Ad5dl308ΔpTPβ-gal indicate its promise as a gene therapy agent for other tissues. The results also demonstrate that the mouse ear model offers potential for the study of adenovirus-induced inflammation because of the ready access of the ears, the relative ease of continuous measurement, and the sensitivity to adenovirus transducing vectors.  相似文献   

2.
Adenovirus (Ad) precursor terminal protein (pTP) in a complex with Ad DNA polymerase (pol) serves as a primer for Ad DNA replication. During initiation, pol covalently couples the first dCTP with Ser-580 of pTP. By using an in vitro reconstituted replication system comprised of purified proteins, we demonstrate that the conserved Asp-578 and Asp-582 residues of pTP, located close to Ser-580, are important for the initiation activity of the pTP/pol complex. In particular, the negative charge of Asp-578 is essential for this process. The introduced pTP mutations do not alter the binding capacity to DNA or polymerase, suggesting that the priming mechanism is affected. The Asp-578 or Asp-582 mutations increase the Km for dCTP incorporation, and higher dCTP concentrations or Mn2+ replacing Mg2+ partially relieve the initiation defect. Moreover, the kcat/Km values are reduced as a consequence of the pTP mutations. These observations demonstrate that pTP influences the catalytic activity of pol in initiation. Since both Asp residues are situated close to the pol active site during initiation, they may contribute to correct positioning of the OH group in Ser-580. Our results indicate that specific amino acids of the protein primer influence the ability of Ad5 DNA polymerase to initiate DNA replication.  相似文献   

3.
First-generation adenovirus (Ad) vectors that had been rendered replication defective by removal of the E1 region of the viral genome (ΔE1) or lacking the Ad E3 region in addition to E1 sequences (ΔE1ΔE3) induced G2 cell cycle arrest and inhibited traverse across G1/S in primary and immortalized human bronchial epithelial cells. Cell cycle arrest was independent of the cDNA contained in the expression cassette and was associated with the inappropriate expression and increase in cyclin A, cyclin B1, cyclin D, and cyclin-dependent kinase p34cdc2 protein levels. In some instances, infection with ΔE1 or ΔE1ΔE3 Ad vectors produced aneuploid DNA histogram patterns and induced polyploidization as a result of successive rounds of cell division without mitosis. Cell cycle arrest was absent in cells infected with a second-generation ΔE1Ad vector in which all of the early region E4 except the sixth open reading frame was also deleted. Consequently, E4 viral gene products present in ΔE1 or ΔE1ΔE3 Ad vectors induce G2 growth arrest, which may pose new and unintended consequences for human gene transfer and gene therapy.  相似文献   

4.
Oncolytic viruses based on adenovirus type 5 (Ad5) have been developed as a new class of therapeutic agents for cancers that are resistant to conventional therapies. Clinical experience shows that these agents are safe, but virotherapy alone has not achieved long-term cure in cancer patients. The vast majority of oncolytic adenoviruses used in clinical trials to date have deletion of the E3B genes. It has been demonstrated that the antitumor potency of the E3B-deleted mutant (dl309) is inferior to adenovirus with E3B genes intact. Tumors treated with dl309 show markedly greater macrophage infiltration than E3B-intact adenovirus. However, the functional mechanisms for this were not previously known. Here, we demonstrate that deletion of E3B genes increases production of chemokines by monocytes after adenovirus infection and increases monocyte migration. The E3B 14,700-Da protein (E3B-14.7K) inhibits STAT1 function by preventing its phosphorylation and nuclear translocation. The STAT1 inhibitor, fludarabine, rescues the effect of E3B-14.7K deletion by downregulating target chemokine expression in human and murine monocytes and results in an enhanced antitumor efficacy with dl309 in vivo. These findings have important implications for clinical use of E3B-deleted oncolytic adenovirus and other E3B-deleted adenovirus vector-based therapy.  相似文献   

5.
6.
The adenovirus (Ad) fiber protein largely determines viral tropism through interaction with specific cell surface receptors. This molecule may also be involved in virion assembly or maturation, as some previously characterized fiber mutants were defective for processing of viral structural proteins. We previously described packaging cell lines that express Ad type 5 (Ad5) fiber and can complement the temperature-sensitive Ad fiber mutant H5ts142. We have now used these packaging cells to construct a new adenoviral vector (Ad5.βgal.ΔF) with E1, E3, and L5 (fiber) deleted and analyzed the fiber null phenotype. Ad5.βgal.ΔF growth was completely helper independent, and fiberless particles were produced by a single final round of growth in 293 cells. Cryoelectron microscopic studies and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the structure and composition of these particles was nearly identical to those of first-generation Ad vectors. As expected, fiberless particles had reduced infectivity on epithelial cells, but they retained the ability to infect monocytic cells via an integrin-dependent pathway. These studies provide a novel approach to developing retargeted Ad gene therapy vectors.  相似文献   

7.
Adenovirus type 5 (Ad5) host range mutants dl312 and hr-1, with lesions in region E1A (0 to 4.5 map units) of the viral genome, fail to accumulate virus-specific early RNA during infection in HeLa cells. In a recent report, we showed that the addition of anisomycin, a stringent inhibitor of protein synthesis, at 1 h after infection of HeLa cells with hr-1 virus resulted in the accumulation of properly spliced and translatable mRNA from all early regions (M. G. Katze, H. Persson, and L. Philipson, Mol. Cell. Biol. 1:807-813, 1981). Based on these results we proposed a model in which expression of early mutant RNA was achieved through inactivation of a cellular protein normally causing a reduction in the amount of viral RNA. These studies have been extended in the present report, which shows that early viral proteins can be detected in Ad5 dl312- and Ad5 hr-1-infected HeLa cells which have been treated for several hours with anisomycin either shortly after infection or before infection. A pulse of drug treatment also resulted in expression of substantial amounts of adenovirus structural proteins after infection with both Ad5 hr-1 and Ad5 dl312, whereas in drug-free controls no late proteins were detected. The Ad5 hr-1 virus previously reported to be DNA replication negative in nonpermissive HeLa cells was found to replicate its DNA, albeit at low levels, when anisomycin was present either from 1 to 5 h postinfection or for 5 h before infection. When infectious virus production was examined in mutant-infected cells the titer of Ad5 dl312 virus was found to increase at least 500-fold in anisomycin-treated HeLa cells. Taken together, these and our previous results suggest that the block in gene expression characteristic for complementation group I Ad5 host range mutants in HeLa cells can be overcome by inactivating cellular gene products serving as negative regulators of viral gene expression.  相似文献   

8.
Collaco RF  Cao X  Trempe JP 《Gene》1999,238(2):397-405
Adeno-associated virus (AAV) is a human parvovirus that is currently receiving widespread attention for its potential use as a gene therapy vector. Construction of the recombinant AAV vector (rAAV) involves replacing most of the viral genome with a transgene of interest and then packaging this recombinant genome into an infectious virion. Most current protocols for generating rAAV entail the co-transfection of a vector plasmid and a packaging plasmid that expresses the viral replication and structural genes onto adenovirus (Ad) infected cells growing in culture. Limitations of this procedure include (1) contamination of rAAV with the Ad helper virus, (2) low yields of rAAV and (3) production of replication-competent AAV. In this report we describe new helper plasmids (pSH3 and pSH5) that eliminate the Ad co-infection requirement. The helper plasmids express the AAV rep and cap genes and the Ad E2A, VAI and E4 genes. When the helper plasmids are co-transfected onto human 293 cells with a vector plasmid in the absence of Ad infection, the rAAV vector yield is up to 80-fold greater than those obtained with the pAAV/Ad packaging plasmid. Moreover, replication competent AAV in the rAAV preparations is less than 0.00125%. The major advantages of this system are (1) the absence of infectious adenovirus and (2) the use of only two plasmids, which enhances transfection efficiencies and hence vector production. We believe that this two-plasmid transfection system will allow for more widespread use of the AAV vector system because of its simplicity and high yields. This system will be especially useful for preclinical analyses of multiple rAAV vectors.  相似文献   

9.
Oncolytic adenoviruses have shown promising efficacy in clinical trials targeting prostate cancers that frequently develop resistance to all current therapies. The replication-selective mutants AdΔΔ and dl922–947, defective in pRb-binding, have been demonstrated to synergise with the current standard of care, mitoxantrone and docetaxel, in prostate cancer models. While expression of the early viral E1A gene is essential for the enhanced cell killing, the specific E1A-regions required for the effects are unknown. Here, we demonstrate that replicating mutants deleted in small E1A-domains, binding pRb (dl1108), p300/CBP (dl1104) and p400/TRRAP or p21 (dl1102) sensitize human prostate cancer cells (PC-3, DU145, 22Rv1) to mitoxantrone and docetaxel. Through generation of non-replicating mutants, we demonstrate that the small E1A12S protein is sufficient to potently sensitize all prostate cancer cells to the drugs even in the absence of viral replication and the E1A transactivating domain, conserved region (CR) 3. Furthermore, the p300/CBP-binding domain in E1ACR1 is essential for drug-sensitisation in the absence (AdE1A1104) but not in the presence of the E1ACR3 (dl1104) domain. AdE1A1104 also failed to increase apoptosis and accumulation of cells in G2/M. All E1AΔCR2 mutants (AdE1A1108, dl922–947) and AdE1A1102 or dl1102 enhance cell killing to the same degree as wild type virus. In PC-3 xenografts in vivo the dl1102 mutant significantly prolongs time to tumor progression that is further enhanced in combination with docetaxel. Neither dl1102 nor dl1104 replicates in normal human epithelial cells (NHBE). These findings suggest that additional E1A-deletions might be included when developing more potent replication-selective oncolytic viruses, such as the AdΔCR2-mutants, to further enhance potency through synergistic cell killing in combination with current chemotherapeutics.  相似文献   

10.
Recent reports suggest that an early region 1B (E1B) 55,000-molecular-weight polypeptide (55K)-null adenovirus type 5 (Ad5) mutant (dl1520) can replicate to the same extent as wild-type (wt) Ad5 in cells either deficient or mutated in p53, implicating p53 in limiting viral replication in vivo. In contrast, we show here that the replicative capacity of Ad5 dl1520 is wholly independent of host cell p53 status, as is the replicative capacity of comparable Ad12 E1B 54K-null adenoviruses (Ad12 dl620 and Ad12 hr703). Furthermore, we show that there is no requirement for complex formation between p53 and Ad5 E1B 55K or Ad12 E1B 54K for a productive infection, such that wt Ad5 and wt Ad12 will both replicate in cells which are null for p53. In addition, we find that these Ad5 and Ad12 mutant viruses induce S phase irrespective of the p53 status of the cell and that, therefore, S-phase induction does not correlate with the replicative capacity of the virus. Interestingly, the replicative capacities of the large E1B-null adenoviruses correlated positively with the ability to express E1B 19K and were related to the ability to repress premature adenovirus-induced apoptosis. Infection of primary human cells indicated that Ad5 dl1520, wt Ad5, and wt Ad12 replicated better in cycling normal human skin fibroblasts (HSFs) than in quiescent HSFs. Thus, the cell cycle status of the host cell, upon infection, also influences viral yield.  相似文献   

11.
12.
Replication-defective adenovirus (Ad) vectors can vary considerably in genome length, but whether this affects virion stability has not been investigated. Helper-dependent Ad vectors with a genome size of ~30 kb were 100-fold more sensitive to heat inactivation than their parental helper virus (>36 kb), and increasing the genome size of the vector significantly improved heat stability. A similar relationship between genome size and stability existed for Ad with early region 1 deleted. Loss of infectivity was due to release of vertex proteins, followed by disintegration of the capsid. Thus, not only does the viral DNA encode all of the heritable information essential for virus replication, it also plays a critical role in maintaining capsid strength and integrity.  相似文献   

13.
Vacuolar proton-translocating ATPase (V-ATPase) is a central regulator of cellular pH homeostasis, and inactivation of all V-ATPase function has been shown to prevent infectivity in Candida albicans. V-ATPase subunit a of the Vo domain (Voa) is present as two fungal isoforms: Stv1p (Golgi) and Vph1p (vacuole). To delineate the individual contribution of Stv1p and Vph1p to C. albicans physiology, we created stv1Δ/Δ and vph1Δ/Δ mutants and compared them to the corresponding reintegrant strains (stv1Δ/ΔR and vph1Δ/ΔR). V-ATPase activity, vacuolar physiology, and in vitro virulence-related phenotypes were unaffected in the stv1Δ/Δ mutant. The vph1Δ/Δ mutant exhibited defective V1Vo assembly and a 90% reduction in concanamycin A-sensitive ATPase activity and proton transport in purified vacuolar membranes, suggesting that the Vph1p isoform is essential for vacuolar V-ATPase activity in C. albicans. The vph1Δ/Δ cells also had abnormal endocytosis and vacuolar morphology and an alkalinized vacuolar lumen (pHvph1Δ/Δ = 6.8 versus pHvph1Δ/ΔR = 5.8) in both yeast cells and hyphae. Secreted protease and lipase activities were significantly reduced, and M199-induced filamentation was impaired in the vph1Δ/Δ mutant. However, the vph1Δ/Δ cells remained competent for filamentation induced by Spider media and YPD, 10% FCS, and biofilm formation and macrophage killing were unaffected in vitro. These studies suggest that different virulence mechanisms differentially rely on acidified vacuoles and that the loss of both vacuolar (Vph1p) and non-vacuolar (Stv1p) V-ATPase activity is necessary to affect in vitro virulence-related phenotypes. As a determinant of C. albicans pathogenesis, vacuolar pH alone may prove less critical than originally assumed.  相似文献   

14.
15.
In the presence of Mn2+, an activity in a preparation of purified Bacillus subtilis RecN degrades single-stranded (ss) DNA with a 3′ → 5′ polarity. This activity is not associated with RecN itself, because RecN purified from cells lacking polynucleotide phosphorylase (PNPase) does not show the exonuclease activity. We show here that, in the presence of Mn2+ and low-level inorganic phosphate (Pi), PNPase degrades ssDNA. The limited end-processing of DNA is regulated by ATP and is inactive in the presence of Mg2+ or high-level Pi. In contrast, the RNase activity of PNPase requires Mg2+ and Pi, suggesting that PNPase degradation of RNA and ssDNA occur by mutually exclusive mechanisms. A null pnpA mutation (ΔpnpA) is not epistatic with ΔrecA, but is epistatic with ΔrecN and Δku, which by themselves are non-epistatic. The addA5, ΔrecO, ΔrecQrecJ), ΔrecU and ΔrecG mutations (representative of different epistatic groups), in the context of ΔpnpA, demonstrate gain- or loss-of-function by inactivation of repair-by-recombination, depending on acute or chronic exposure to the damaging agent and the nature of the DNA lesion. Our data suggest that PNPase is involved in various nucleic acid metabolic pathways, and its limited ssDNA exonuclease activity plays an important role in RecA-dependent and RecA-independent repair pathways.  相似文献   

16.
A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6ΔΔ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin architectural proteins Nhp6A/Nhp6B, accumulate intron-containing pre-mRNA at the restrictive temperature. In addition, we demonstrate that rsc8-ts16 nhp6ΔΔ cells contain low levels of U6 snRNA and U4/U6 di-snRNA that is further exacerbated after two hours growth at the restrictive temperature. This change in U6 snRNA and U4/U6 di-snRNA levels in rsc8-ts16 nhp6ΔΔ cells is indicative of splicing deficient conditions. We identify MRN1 (multi-copy suppressor of rsc nhp6ΔΔ) as a growth suppressor of rsc nhp6ΔΔ synthetic sickness. Mrn1 is an RNA binding protein that localizes both to the nucleus and cytoplasm. Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309Δ, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing.  相似文献   

17.
A series of adenovirus type 5 precursor terminal protein (pTP) and DNA polymerase (Ad pol) genes with linker insertion mutations were separately introduced into the vaccinia virus genome under the control of a late vaccinia virus promoter. The recombinant viruses were used for overexpression of the mutant genes in HeLa cells. In total, 22 different mutant pTP and 10 different Ad pol vaccinia virus recombinants were constructed, including some that expressed carboxyl-terminus-truncated forms of both proteins and one that produced the mutant H5ts149 Ad pol. To investigate the structure-function relationships of both proteins, extracts from cells infected with the recombinant viruses were tested for in vitro complementation of the initiation and elongation steps in adenovirus DNA replication. The results were in accordance with those of earlier in vivo experiments with these insertion mutants and indicate that multiple regions of both proteins are essential for adenovirus DNA replication. The carboxyl termini of both pTP and Ad pol were shown to be essential for proper functioning of these proteins during initiation of adenovirus DNA replication. Three different DNA replication-negative pTP mutants were shown to have residual activity in the initiation assay, suggesting not only that pTP is required for initiation but also that it may play a role in DNA replication after the deoxycytidylation step.  相似文献   

18.
Weis E 《Plant physiology》1982,70(5):1530-1534
The most heat-sensitive functions of chloroplasts in Spinacia oleracea L. including the stromal carboxylation reaction, the light-induced electrical field gradient across the thylakoid membrane, as well as the overall photosynthetic CO2 fixation were less affected by heat if chloroplasts were heated in the light: 50% inactivation occurred around 35°C in the dark and around 40°C in the light. Relative low light intensities were sufficient to obtain optimal protection against heat. In contrast, the light-induced ΔpH across the thylakoid membrane, the photophosphorylation, and the photochemical activity of photosystem II which were less sensitive to heat in the dark (50% inactivation above 40°C) were not protected by light. Photosystem II even was destabilized somewhat by light.

The effect of light on the heat sensitivity of the water-splitting reaction was dependent on the pH in the medium. Protection by light only occurred at alkaline pH, in which case heat sensitivity was high (50% inactivation at 33°C in the dark and at 38°C in the light). Protection was prevented by uncouplers. At pH 6.8 when the heat sensitivity was low in any case (50% inactivation at 41°C in the dark), light had no further protecting effect.

Protection by light has been discussed in terms of light-induced transport of protons from the stroma to the thylakoid space and related ion fluxes.

  相似文献   

19.
The rpoZ gene encodes the small ω subunit of RNA polymerase. A ΔrpoZ strain of the cyanobacterium Synechocystis sp. PCC 6803 grew well in standard conditions (constant illumination at 40 µmol photons m−2 s−1; 32°C; ambient CO2) but was heat sensitive and died at 40°C. In the control strain, 71 genes were at least two-fold up-regulated and 91 genes down-regulated after a 24-h treatment at 40°C, while in ΔrpoZ 394 genes responded to heat. Only 62 of these heat-responsive genes were similarly regulated in both strains, and 80% of heat-responsive genes were unique for ΔrpoZ. The RNA polymerase core and the primary σ factor SigA were down-regulated in the control strain at 40°C but not in ΔrpoZ. In accordance with reduced RNA polymerase content, the total RNA content of mild-heat-stress-treated cells was lower in the control strain than in ΔrpoZ. Light-saturated photosynthetic activity decreased more in ΔrpoZ than in the control strain upon mild heat stress. The amounts of photosystem II and rubisco decreased at 40°C in both strains while PSI and the phycobilisome antenna protein allophycocyanin remained at the same level as in standard conditions. The phycobilisome rod proteins, phycocyanins, diminished during the heat treatment in ΔrpoZ but not in the control strain, and the nblA1 and nblA2 genes (encode NblA proteins required for phycobilisome degradation) were up-regulated only in ΔrpoZ. Our results show that the ω subunit of RNAP is essential in heat stress because it is required for heat acclimation of diverse cellular processes.  相似文献   

20.
The human adenovirus type 5 (Ad5) E4orf4 product has been studied extensively although in most cases as expressed from vectors in the absence of other viral products. Thus, relatively little is known about its role in the context of an adenovirus infection. Although considerable earlier work had indicated that the E4orf4 protein is not essential for replication, a recent study using dl359, an Ad5 mutant believed to produce a nonfunctional E4orf4 protein, suggested that E4orf4 is essential for virus growth in primary small-airway epithelial cells (C. O'Shea, et al., EMBO J. 24:1211-1221, 2005). Hence, to examine further the role of E4orf4 during virus infection, we generated for the first time a set of E4orf4 virus mutants in a common Ad5 genetic background. Such mutant viruses included those that express E4orf4 proteins containing various individual point mutations, those defective entirely in E4orf4 expression, and a mutant expressing wild-type E4orf4 fused to the green fluorescent protein. E4orf4 protein was found to localize primarily in nuclear structures shown to be viral replication centers, in nucleoli, and in perinuclear bodies. Importantly, E4orf4 was shown not to be essential for virus growth in either human tumor or primary cells, at least in tissue culture. Unlike E4orf4-null virus, mutant dl359 appeared to exhibit a gain-of-function phenotype that impairs virus growth. The dl359 E4orf4 protein, which contains a large in-frame internal deletion, clustered in aggregates enriched in Hsp70 and proteasome components. In addition, the late viral mRNAs produced by dl359 accumulated abnormally in a nuclear punctate pattern. Altogether, our results indicate that E4orf4 protein is not essential for virus growth in culture and that expression of the dl359 E4orf4 product interferes with viral replication, presumably through interactions with structures in the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号