首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have applied the soluble pyridine nucleotide transhydrogenase of Pseudomonas fluorescens to a cell-free system for the regeneration of the nicotinamide cofactors NAD and NADP in the biological production of the important semisynthetic opiate drug hydromorphone. The original recombinant whole-cell system suffered from cofactor depletion resulting from the action of an NADP(+)-dependent morphine dehydrogenase and an NADH-dependent morphinone reductase. By applying a soluble pyridine nucleotide transhydrogenase, which can transfer reducing equivalents between NAD and NADP, we demonstrate with a cell-free system that efficient cofactor cycling in the presence of catalytic amounts of cofactors occurs, resulting in high yields of hydromorphone. The ratio of morphine dehydrogenase, morphinone reductase, and soluble pyridine nucleotide transhydrogenase is critical for diminishing the production of the unwanted by-product dihydromorphine and for optimum hydromorphone yields. Application of the soluble pyridine nucleotide transhydrogenase to the whole-cell system resulted in an improved biocatalyst with an extended lifetime. These results demonstrate the usefulness of the soluble pyridine nucleotide transhydrogenase and its wider application as a tool in metabolic engineering and biocatalysis.  相似文献   

2.
We have applied the soluble pyridine nucleotide transhydrogenase of Pseudomonas fluorescens to a cell-free system for the regeneration of the nicotinamide cofactors NAD and NADP in the biological production of the important semisynthetic opiate drug hydromorphone. The original recombinant whole-cell system suffered from cofactor depletion resulting from the action of an NADP+-dependent morphine dehydrogenase and an NADH-dependent morphinone reductase. By applying a soluble pyridine nucleotide transhydrogenase, which can transfer reducing equivalents between NAD and NADP, we demonstrate with a cell-free system that efficient cofactor cycling in the presence of catalytic amounts of cofactors occurs, resulting in high yields of hydromorphone. The ratio of morphine dehydrogenase, morphinone reductase, and soluble pyridine nucleotide transhydrogenase is critical for diminishing the production of the unwanted by-product dihydromorphine and for optimum hydromorphone yields. Application of the soluble pyridine nucleotide transhydrogenase to the whole-cell system resulted in an improved biocatalyst with an extended lifetime. These results demonstrate the usefulness of the soluble pyridine nucleotide transhydrogenase and its wider application as a tool in metabolic engineering and biocatalysis.  相似文献   

3.
The morphine alkaloids and their semisynthetic derivatives provide a diverse range of important pharmaceutical drugs. Current production of semisynthetic opiate drugs is by chemical means from naturally occurring morphine, codeine and thebaine. Although various microbial transformations of morphine alkaloids have been identified since the 1960s, more recently there has been considerable effort devoted to engineering biocatalytic routes for producing these important compounds. Such biocatalytic routes are attractive, as they would provide an alternative to the chemical production processes which suffer from limited supply of precursors, often low yields and toxic wastes. The biotransformation of morphine and codeine to the potent analgesic hydromorphone and the mild analgesic/antitussive hydrocodone, respectively, by recombinant Escherichia coli has been demonstrated and the problems encountered when engineering such a system will be discussed.  相似文献   

4.
Specific binding of 3H-naloxone to opiate receptors was found to be irreversibly inactivated by morphinone. This inactivation exhibited pseudo-first-order kinetics. The presence of sulfhydryl compounds or morphine during incubation with morphinone proved good protection. Morphinone-pretreated mice blocked the analgesic effect of morphine. The possible mechanism for these observations is proposed as foolows: morphinone binds covalently to sulfhydryl group of opiate receptors, and inactivates irreversibly opiate binding sites, thus blocking the analgesic effect of morphine.  相似文献   

5.
Morphine 6-dehydrogenase, which catalyzes the dehydrogenation of morphine to morphinone, has been purified about 440-fold from the soluble fraction of guinea pig liver with a yield of 38%. The purified enzyme was a homogeneous protein on polyacrylamide gel disc electrophoresis and isoelectric focusing. The molecular weight and isoelectric point of the enzyme were 29,000 and 7.6, respectively. The enzyme utilizes both NAD and NADP as a cofactor, and the Km values were 0.12 mM for NAD and 0.42 mM for NADP. The Vmax values for morphine were 588 milliunits/mg of protein (with NAD) and 1600 milliunits/mg of protein (with NADP). The Km values for morphine were 0.12 mM (with NAD) and 0.49 mM (with NADP). The enzyme also exhibited activity for morphine-related compounds: nalorphine, normorphine, codeine, and ethylmorphine; however, 7,8-saturated congeners such as dihydromorphine and dihydrocodeine were poor substrates. The enzyme was inactivated by removal of 2-mercaptoethanol from the enzyme solution. The inactivated enzyme was rapidly recovered by the addition of 2-mercaptoethanol. Phenylarsine oxide and CdCl2 (dithiol modifiers) inhibited competitively toward cofactor binding and noncompetitively toward morphine binding. These results suggest that the enzyme possesses the essential thiol groups, probably vicinal dithiol, at or near the cofactor-binding site. Using the partially purified enzyme, 8-(2-hydroxyethylthio)dihydromorphinone was isolated as the product and identified by UV, mass, and NMR spectra. It was confirmed that morphinone proposed as the dehydrogenation product was nonenzymatically and covalently bound to 2-mercaptoethanol. Accordingly, the isolated morphinone-2-mercaptoethanol conjugate must be formed by two steps: enzymatic production of morphinone from morphine and then nonenzymatic binding of 2-mercaptoethanol to morphinone.  相似文献   

6.
The ability of sulfhydryl compounds to provide protection against the acute toxicity of morphinone was investigated in mice. Subcutaneous administration of morphinone produced a reduction of hepatic non-protein sulfhydryl concentration. Pretreatments of mice with glutathione or cysteine significantly increased the survival rate of mice given a lethal dose of morphinone, whereas morphinone lethality was markedly potentiated by diethyl maleate. On the other hand, the administration of morphine produced a dose dependent reduction of hepatic non-protein sulfhydryl contents. However, neither glutathione nor cysteine protected mice from the acute toxicity of morphine. A possible explanation for these observations was proposed as follows: morphine is oxidized by morphine 6-dehydrogenase to morphinone, and the morphinone thus produced decreases the sulfhydryl contents in the liver. This mechanism is supported by the fact that morphinone reacts easily with glutathione and cysteine in vitro.  相似文献   

7.
Morphine 6-dehydrogenase, which catalyzes the dehydrogenation of morphine to morphinone, was purified 815-fold to a homogeneous protein from the soluble fraction of hamster liver with a yield of 15%. The enzyme was a monomeric protein with a molecular weight of 38 kDa and an isoelectric point of 5.6. Although both NAD and NADP served as cofactors, the enzyme activity with NADP was less than 5% that found with NAD at pH 7.4. With NAD, the enzyme gave the maximal activity at pH 9.3, and the K(m) and V(max) values toward morphine were 1.0 mM and 0.43 unit/mg protein, respectively. Among morphine congeners, normorphine exhibited higher activity than morphine, but codeine and ethylmorphine were poor substrates, and dihydromorphine and dihydrocodeine showed no detectable activity. The enzyme also exhibited significant activity for a variety of cyclic and alicyclic alcohols. In addition to xenobiotics, the enzyme catalyzed the dehydrogenation of 17beta-hydroxysteroids with much higher affinities than morphine. In the reverse reaction, the enzyme exhibited high activity for o-quinones, but morphinone, naloxone, and aromatic aldehydes and ketones were reduced at slow rates. Sulfhydryl reagents and ketamine strongly inhibited the enzyme, whereas pyrazole, barbital, and indomethacin had little effect on enzyme activity. 17beta-Hydroxysteroids inhibited the enzyme in a competitive manner against morphine. A total of 302 amino acid residues, which comprised approximately 94% of whole protein, were identified by sequencing of the peptides obtained by proteolytic digestion. This amino acid sequence of the enzyme showed significant homology to members of the aldo-keto reductase (AKR) superfamily and shared 63-64% identity with members of the AKR1C subfamily. These findings indicate that the enzyme is a new member of the AKR superfamily that is involved in steroid metabolism as 17beta-hydroxysteroid dehydrogenase as well as xenobiotic metabolism.  相似文献   

8.
Zheng M  McErlane KM  Ong MC 《Life sciences》2004,75(26):3129-3146
The main objective of this paper is to report the identification and synthesis of norhydromorphone, a novel metabolite of hydromorphone, and its antinociceptive activities when tested in the formalin test as compared to other known analgesics. In addition, we are reporting for the first time the lack of antinociceptive activities of hydromorphone-3-glucuronide, dihydromorphine-3-glucuronide and dihydroisomorphine-3-glucuronide in the rat formalin test. Norhydromorphone was isolated and identified as a metabolite of hydromorphone in a cancer patient's urine. An authentic standard of norhydromorphone was synthesized. The identity of norhydromorphone in the urine sample was confirmed by comparing the LC retention time and MS ion fragmentation with the synthetic standard using a liquid chromatographic-mass spectrometric-mass spectrometric (LC-MS-MS) assay. Norhydromorphone was found to be a minor metabolite of hydromorphone in the urine. Additionally, the antinociceptive activities of norhydromorphone, hydromorphone, morphine, dihydromorphine, dihydroisomorphine, hydromorphone-3-glucuronide, dihydromorphine-3-glucuronide and dihydroisomorphine-3-glucuronide were determined in the rat formalin test following intraperitoneal (i.p.) administration. Only limited antinociception was observed and no significant increase in antinociception was detected at the three doses tested. The increased polarity of norhydromorphone as compared to hydromorphone due to the primary piperidine nitrogen may make it less favorable to cross the blood-brain-barrier (BBB), which may be partly responsible. In addition, lower intrinsic antinociceptive activity, which remains to be determined, could also contribute to the low antinociception. Our results also show that hydromorphone was five times as potent as morphine in the formalin test, while dihydromorphine and dihydroisomorphine were equipotent to and 36% as potent as morphine, respectively. Hydromorphone-3-glucuronide, dihydromorphine-3-glucuronide and dihydroisomorphine-3-glucuronide did not exhibit any antinociceptive effect at the doses tested. The results further underscore the importance of a free C3-OH to the analgesic effect of morphine alkaloids.  相似文献   

9.
Mu receptor binding of some commonly used opioids and their metabolites.   总被引:8,自引:1,他引:7  
The binding affinity to the mu receptor of some opioids chemically related to morphine and some of their metabolites was examined in rat brain homogenates with 3H-DAMGO. The chemical group at position 6 of the molecule had little effect on binding (e.g. morphine-6-glucuronide Ki = 0.6 nM; morphine = 1.2 nM). Decreasing the length of the alkyl group at position 3 decreased the Ki values (morphine less than codeine less than ethylmorphine less than pholcodine). Analgesics with high clinical potency containing a methoxyl group at position 3 (e.g. hydrocodone, Ki = 19.8 nM) had relatively weak receptor binding, whilst their O-demethylated metabolites (e.g. hydromorphone, Ki = 0.6 nM) had much stronger binding. Many opioids may exert their pharmacological actions predominantly through metabolites.  相似文献   

10.
A strain of Pseudomonas putida was isolated by selective enrichment with morphine that was capable of utilising morphine as a primary source of carbon and energy for growth. Experiments with whole cells showed that both morphine and codeine, but not thebaine, could be utilised. A novel NADP-dependent dehydrogenase, morphine dehydrogenase, was purified from crude cell extracts and was shown to be capable of oxidising morphine and codeine to morphinone and codeinone, respectively. This NADP-dependent morphine dehydrogenase was not observed in any other species of pseudomonads examined and was quite distinct from the -hydroxysteroid dehydrogenase found in Pseudomonas testosteroni, which had previously been shown to have activity against morphine.  相似文献   

11.
Codeinone reductase (COR) catalyzes the reversible NADPH‐dependent reduction of codeinone to codeine as the penultimate step of morphine biosynthesis in opium poppy (Papaver somniferum). It also irreversibly reduces neopinone, which forms by spontaneous isomerization in aqueous solution from codeinone, to neopine. In a parallel pathway involving 3‐O‐demethylated analogs, COR converts morphinone to morphine, and neomorphinone to neomorphine. Similar to neopine, the formation of neomorphine by COR is irreversible. Neopine is a minor substrate for codeine O‐demethylase (CODM), yielding morphine. In the plant, neopine levels are low and neomorphine has not been detected. Silencing of CODM leads to accumulation of upstream metabolites, such as codeine and thebaine, but does not result in a shift towards higher relative concentrations of neopine, suggesting a mechanism in the plant for limiting neopine production. In yeast (Saccharomyces cerevisiae) engineered to produce opiate alkaloids, the catalytic properties of COR lead to accumulation of neopine and neomorphine as major products. An isoform (COR‐B) was isolated from opium poppy chemotype Bea's Choice that showed higher catalytic activity than previously characterized CORs, and it yielded mostly neopine in vitro and in engineered yeast. Five catalytically distinct COR isoforms (COR1.1–1.4 and COR‐B) were used to determine sequence–function relationships that influence product selectivity. Biochemical characterization and site‐directed mutagenesis of native COR isoforms identified four residues (V25, K41, F129 and W279) that affected protein stability, reaction velocity, and product selectivity and output. Improvement of COR performance coupled with an ability to guide pathway flux is necessary to facilitate commercial production of opiate alkaloids in engineered microorganisms.  相似文献   

12.
The crystal structure of the NADH-dependent bacterial flavoenzyme morphinone reductase (MR) has been determined at 2.2-A resolution in complex with the oxidizing substrate codeinone. The structure reveals a dimeric enzyme comprising two 8-fold beta/alpha barrel domains, each bound to FMN, and a subunit folding topology and mode of flavin-binding similar to that found in Old Yellow Enzyme (OYE) and pentaerythritol tetranitrate (PETN) reductase. The subunit interface of MR is formed by interactions from an N-terminal beta strand and helices 2 and 8 of the barrel domain and is different to that seen in OYE. The active site structures of MR, OYE, and PETN reductase are highly conserved reflecting the ability of these enzymes to catalyze "generic" reactions such as the reduction of 2-cyclohexenone. A region of polypeptide presumed to define the reducing coenzyme specificity is identified by comparison of the MR structure (NADH-dependent) with that of PETN reductase (NADPH-dependent). The active site acid identified in OYE (Tyr-196) and conserved in PETN reductase (Tyr-186) is replaced by Cys-191 in MR. Mutagenesis studies have established that Cys-191 does not act as a crucial acid in the mechanism of reduction of the olefinic bond found in 2-cyclohexenone and codeinone.  相似文献   

13.
目的:比较吗啡与氢吗啡酮在小儿静脉自控镇痛(PCIA)应用中的镇痛效果及副作用。方法:选取40名6~10岁择期行下肢骨科手术的患儿,术毕即予PCIA,随机分为两组:M组(吗啡背景剂量15μg/kg/h,PCA剂量15μg/kg)和H组(氢吗啡酮背景剂量3μg/kg/h,PCA剂量3μg/kg),每组20例。记录患儿PCIA后3、6、12、24和48h的FLACC疼痛评分、Ramsay镇静评分、PCA次数及不良反应的发生情况(恶心呕吐、皮肤瘙痒、尿潴留、过度镇静、呼吸抑制)。结果:两组患儿各时间点FLACC疼痛评分、Ramsay镇静评分比较均无统计学差异(P均0.05)。术后第二天,M组PCA次数少于H组,差异存在统计学意义(P0.05)。M组皮肤瘙痒发生率(15%)显著高于H组(0%)(P0.05),两组其余不良反应的发生情况比较均无统计学差异(P均0.05)。结论:氢吗啡酮与吗啡用于小儿术后PCIA的镇痛效果和安全性相当。  相似文献   

14.
Glycerol trinitrate (GTN) reductase, which enables Agrobacterium radiobacter to utilize GTN and related explosives as sources of nitrogen for growth, was purified and characterized, and its gene was cloned and sequenced. The enzyme was a 39-kDa monomeric protein which catalyzed the NADH-dependent reductive scission of GTN (Km = 23 microM) to glycerol dinitrates (mainly the 1,3-isomer) with a pH optimum of 6.5, a temperature optimum of 35 degrees C, and no dependence on metal ions for activity. It was also active on pentaerythritol tetranitrate (PETN), on isosorbide dinitrate, and, very weakly, on ethyleneglycol dinitrate, but it was inactive on isopropyl nitrate, hexahydro-1,3,5-trinitro-1,3,5-triazine, 2,4,6-trinitrotoluene, ammonium ions, nitrate, or nitrite. The amino acid sequence deduced from the DNA sequence was homologous (42 to 51% identity and 61 to 69% similarity) to those of PETN reductase from Enterobacter cloacae, N-ethylmaleimide reductase from Escherichia coli, morphinone reductase from Pseudomonas putida, and old yellow enzyme from Saccharomyces cerevisiae, placing the GTN reductase in the alpha/beta barrel flavoprotein group of proteins. GTN reductase and PETN reductase were very similar in many respects except in their distinct preferences for NADH and NADPH cofactors, respectively.  相似文献   

15.
High-performance liquid chromatography has become an important analytical tool for the quantitation of opioid drugs. Using solid-phase extraction and coulometric electrochemical detection, we have developed a chromatographic method for the simultaneous measurement of morphine and hydromorphone which is both sensitive and specific. Using 1 ml of plasma, intra-assay and inter-assay data show that the detection limit for accurate quantitation of these compounds is about 1.2 ng/ml (coefficient of variation 11.6%) for morphine and 2.5 ng/ml (coefficient of variation 10.5%) for hydromorphone. The method is simple and readily adaptable to most pharmacokinetic studies and toxic screens involving these drugs.  相似文献   

16.
The oxidation of morphine by washed-cell incubations of Pseudomonas putida M10 gave rise to a large number of transformation products including hydromorphone (dihydromorphinone), 14 beta-hydroxymorphine, 14 beta-hydroxymorphinone, and dihydromorphine. Similarly, in incubations with oxymorphone (14 beta-hydroxydihydromorphinone) as substrate, the major transformation product was identified as oxymorphol (14 beta-hydroxydihydromorphine). The identities of all these biological products were confirmed by mass spectrometry and 1H nuclear magnetic resonance spectroscopy. This is the first report describing structural evidence for the biological synthesis of 14 beta-hydroxymorphine and 14 beta-hydroxymorphinone. These products have applications as intermediates in the synthesis of semisynthetic opiate drugs.  相似文献   

17.
Eznyme preparations from Pseudomonas testosteroni containing alpha- and beta- hydroxysteroid dehydrogenases catalyzed the oxidation of morphine and codeine by nicotinamide adenine dinucleotide. Morphine was converted in relatively low yield into 14-hydroxymorphinone probably via morphinone as an intermediate. Codeine was converted to codeinone and 14-hydroxycodeinone. Only the conversions at the 6-position were carred out by the hydroxysteroid dehydrogenase. Hydroxylation at the 14-position did occur spontaneously (or enzymatically with a contaminating enzyme) ater oxidation at the 6-position.  相似文献   

18.
High-performance liquid chromatographic assays for the O- and N-demethylated oxidative metabolites of hydrocodone and oxycodone formed in human liver microsomes are described. A solvent-solvent extraction/re-extraction procedure followed by reversed-phase HPLC with UV detection at 210 nm allows for the quantification of hydromorphone, norhydrocodone, oxymorphone and noroxycodone. Calibration curve concentration ranges were 0.63-400 microM (0.18-114 microg/ml) and 1.25-400 microM (0.36-114 microg/ml) for hydromorphone and norhydrocodone, respectively and 0.13-20 microM (0.04-6.03 microg/ml) and 1-200 microM (0.30-60 microg/ml) for oxymorphone and noroxycodone, respectively. Assay performance was determined by intra- and inter-assay precision and inaccuracies for quality control samples and was <15% for all metabolites at each quality control concentration. These methods provide good precision, accuracy and sensitivity for use in in vitro kinetic studies investigating the oxidative metabolism of hydrocodone and oxycodone in human liver microsomes.  相似文献   

19.
The mechanism of flavin reduction in morphinone reductase (MR) and pentaerythritol tetranitrate (PETN) reductase, and flavin oxidation in MR, has been studied by stopped-flow and steady-state kinetic methods. The temperature dependence of the primary kinetic isotope effect for flavin reduction in MR and PETN reductase by nicotinamide coenzyme indicates that quantum mechanical tunneling plays a major role in hydride transfer. In PETN reductase, the kinetic isotope effect (KIE) is essentially independent of temperature in the experimentally accessible range, contrasting with strongly temperature-dependent reaction rates, consistent with a tunneling mechanism from the vibrational ground state of the reactive C-H/D bond. In MR, both the reaction rates and the KIE are dependent on temperature, and analysis using the Eyring equation suggests that hydride transfer has a major tunneling component, which, unlike PETN reductase, is gated by thermally induced vibrations in the protein. The oxidative half-reaction of MR is fully rate-limiting in steady-state turnover with the substrate 2-cyclohexenone and NADH at saturating concentrations. The KIE for hydride transfer from reduced flavin to the alpha/beta unsaturated bond of 2-cyclohexenone is independent of temperature, contrasting with strongly temperature-dependent reaction rates, again consistent with ground-state tunneling. A large solvent isotope effect (SIE) accompanies the oxidative half-reaction, which is also independent of temperature in the experimentally accessible range. Double isotope effects indicate that hydride transfer from the flavin N5 atom to 2-cyclohexenone, and the protonation of 2-cyclohexenone, are concerted and both the temperature-independent KIE and SIE suggest that this reaction also proceeds by ground-state quantum tunneling. Our results demonstrate the importance of quantum tunneling in the reduction of flavins by nicotinamide coenzymes. This is the first observation of (i) three H-nuclei in an enzymic reaction being transferred by tunneling and (ii) the utilization of both passive and active dynamics within the same native enzyme.  相似文献   

20.
The 8beta-unsubstituted and substituted analogues of hydrocodone indole and hydromorphone indole were synthesized and their binding affinities to opioid receptors were determined. Introduction of an 8beta-methyl group into the indolomorphinan nucleus increased affinity at all opioid receptors. 6,7-Dehydro-4,5alpha-epoxy-8beta-methyl-6,7,2',3'-indolomorphinan (9) was found to be a delta antagonist with subnanomolar affinity (0.7 nM) for the delta-opioid receptor, and to have good delta-selectivity (mu/delta=322).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号