首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although molecular techniques have identified Helicobacter pylori in drinking water-associated biofilms, there is a lack of studies reporting what factors affect the attachment of the bacterium to plumbing materials. Therefore, the adhesion of H. pylori suspended in distilled water to stainless steel 304 (SS304) coupons placed on tissue culture plates subjected to different environmental conditions was monitored. The extent of adhesion was evaluated for different water exposure times, using epifluorescence microscopy to count total cell numbers. High shear stresses—estimated through computational fluid dynamics—negatively influenced the adhesion of H. pylori to the substrata (P < 0.001), a result that was confirmed in similar experiments with polypropylene (P < 0.05). However, the temperature and inoculation concentration appeared to have no effect on adhesion (P> 0.05). After 2 hours, H. pylori cells appeared to be isolated on the surface of SS304 and were able to form small aggregates with longer exposure times. However, the formation of a three-dimensional structure was only very rarely observed. This study suggests that the detection of the pathogen in well water described by other authors can be related to the increased ability of H. pylori to integrate into biofilms under conditions of low shear stress. It will also allow a more rational selection of locations to perform molecular or plate culture analysis for the detection of H. pylori in drinking water-associated biofilms.  相似文献   

2.
AIM: The main aim of this work was to study and compare the adhesion of water exposed Helicobacter pylori to six different substrata and correlate any changes in morphology, physiology, ability to form aggregates and cultivability when in the planktonic or in the sessile phase. METHODS AND RESULTS: The number of total cells adhered for different water exposure times and modifications in the cell shape were evaluated using epifluorescence and scanning electron microscopy, and physiology assessed using Syto9 and propidium iodide (PI) cellular uptake. All abiotic surfaces were rapidly colonized by H. pylori, and colonization appeared to reach a steady state after 96 h with levels ranging from 2.3 x 10(6) to 3.6 x 10(6) total cells cm(-2). Cell morphology was largely dependent on the support material, with spiral bacteria, associated with the infectious form of H. pylori, subsisting in a higher percentage on nonpolymeric substrata. Also, sessile bacteria were generally able to retain the spiral shape for longer when compared with planktonic bacteria, which became coccoid more quickly. The formation of large aggregates, which may act as a protection mechanism against the negative impact of the stressful external environmental conditions, was mostly observed on the surface of copper coupons. However, Syto9 and PI staining indicates that most of H. pylori attached to copper or SS304 have a compromised cell membrane after only 48 h. Cultivability methods were only able to detect the bacteria up to the 2 h exposure-time and at very low levels (up to 500 CFU cm(-2)). CONCLUSIONS: The fact that the pathogen is able to adhere, retain the spiral morphology for longer and form large aggregates when attached to different plumbing materials appeared to point to pipe materials in general, and copper plumbing in particular, as a possible reservoir of virulent H. pylori in water distribution systems. However, the Syto9/PI staining results and cultivability methods indicate that the attached H. pylori cells quickly enter in a nonviable physiological state. SIGNIFICANCE AND IMPACT OF THE STUDY: This represents the first study of H. pylori behaviour in water-exposed abiotic surfaces. It suggests that co-aggregation with the autochthonous heterotrophic consortia present in water is necessary for a longer survival of the pathogen in biofilms associated to drinking water systems.  相似文献   

3.
A laboratory model system was utilised to investigate the persistence of Helicobacter pylori in mixed-species heterotrophic biofilms. A single-stage continuous culture vessel was linked to a modified-Robbins device (mRD) incorporating removable stainless steel coupons. The system was innoculated with H. pylori (NCTC 11637) and the fate of the organism monitored by polymerase chain reaction (PCR) analysis. Helicobacter pylori was detected in biofilm material for a period of up to 192 h. Theoretical washout would have occurred at around 48 h thus detection of H. pylori for a prolonged period after theoretical washout suggested that the organism possessed the ability to persist in the mixed-species heterotrophic biofilm. Preliminary studies using heat-inactivated H. pylori showed that the organism was not detected in biofilm material at any time post-challenge suggesting that the persistence of H. pylori in such material was a phenomenon requiring the organism to be in a viable state. Further investigations to assess the biological basis for the association of H. pylori with drinking water biofilms and the risk that this may pose to public health are being undertaken.  相似文献   

4.
Although the route of transmission of Helicobacter pylori remains unknown, drinking water has been considered a possible transmission vector. It has been shown previously that, in water, biofilms are a protective niche for several pathogens, protecting them from stressful conditions, such as low carbon concentration, shear stress, and less-than-optimal temperatures. In this work, the influence of these three parameters on the persistence and cultivability of H. pylori in drinking-water biofilms was studied. Autochthonous biofilm consortia were formed in a two-stage chemostat system and then inoculated with the pathogen. Total numbers of H. pylori cells were determined by microscopy using a specific H. pylori 16S rRNA peptide nucleic acid probe, whereas cultivable cells were assessed by standard plating onto selective H. pylori medium. Cultivable H. pylori could not be detected at any time point, but the ability of H. pylori cells to incorporate, undergo morphological transformations, persist, and even agglomerate in biofilms for at least 31 days without a noticeable decrease in the total cell number (on average, the concentration was between 1.54 x 10(6) and 2.25 x 10(6) cells cm(-2)) or in the intracellular rRNA content may indicate that the loss of cultivability was due to entry into a viable but noncultivable state. Unlike previous results obtained for pure-culture H. pylori biofilms, shear stress did not negatively influence the numbers of H. pylori cells attached, suggesting that the autochthonous aquatic bacteria have an important role in retaining this pathogen in the sessile state, possibly by providing suitable microaerophilic environments or linking biomolecules to which the pathogen adheres. Therefore, biofilms appear to provide not only a safe haven for H. pylori but also a concentration mechanism so that subsequent sloughing releases a concentrated bolus of cells that might be infectious and that could escape routine grab sample microbiological analyses and be a cause of concern for public health.  相似文献   

5.
AIMS: To provide evidence of water quality as a risk factor for acquisition of Helicobacter pylori in early life, and to identify evidence for its presence within pots used to store drinking water. METHODS AND RESULTS: A prospective cohort study of 65 infants was conducted in the rural village of Keneba, The Gambia. Age of H. pylori colonization was determined and water pot biofilms were tested for H. pylori by sequencing of amplified DNA. Use of supplemental water was a strong risk factor for H. pylori colonization in infants (OR 4.71, 95% CI 1.17-22.5). DNA with 95% homology to the 16S rRNA gene of H. pylori was isolated from biofilms of water pots. CONCLUSIONS: Drinking water may be a reservoir for H. pylori in areas of the developing world where water quality is poor. Early introduction of water, particularly if stored in, or collected from contaminated sources, may be associated with an increased rate of H. pylori colonization.  相似文献   

6.
In a human gastric biopsy specimen, 30% of adhering Helicobacter pylori strain AF4 (cagA and VacA positive) was associated with adhesion pedestals. In an AGS cell assay, only a few percent of this type I strain was found to be associated with adhesion pedestals. Nevertheless, a larger proportion of the type I strain was found to invade AGS cells (P < 0.03) and to attach with depressions in the AGS cell membrane (P < 0.03) than a type II strain (cagA and VacA negative). Incubation of AGS cells and H. pylori without adding fetal calf serum (FCS) to the culture medium increased actin accumulations (FITC-phalloidin stained) beneath adhering H. pylori, and decreased H. pylori invasion of AGS cells significantly (P < 0.01). However, no increase in the number of adhesion pedestals was observed by electron microscopy. Proteinase K treatment of FCS eliminated the H. pylori invasion promoting effect (P < 0.01). Our results suggest differences in the ability of H. pylori to induce adhesion pedestals in human gastric epithelial cells and in AGS cells, but a correlation between adhesion pedestal formation in vivo and H. pylori invasion in vitro can be speculated. In addition, H. pylori invasion into AGS cells was found to be mediated by proteins in FCS.  相似文献   

7.
The effect of low doses of free chlorine on the detection of Helicobacter pylori (H. pylori) cells by qPCR in tap water was monitored. Detection of sequences targeted to the ureA gene from preparations containing 107 cells/ml decreased about 2-4 logs by days 9 and 14, respectively. When duplicate suspensions of the 107 cells/ml were exposed to higher levels of chlorine, 0.2-2.2 mg/l, by day 9 and 14 there were 5 and 6 log decreases, respectively, in the detection of ureA gene. H. pylori target sequences (within suspended, intact cells at densities of 102-103 cells /ml) were rendered undetectable by qPCR analysis after 17 h of continuous exposure to low chlorine levels common to treated drinking water distribution systems. The persistence of DNA sequences within treated distribution systems detectable by qPCR may be as brief as 17 h especially for bacteria such as H. pylori which are known to occur in very low numbers within treated distribution systems. This study suggests that degradation of H. pylori DNA target sequences by chlorine levels commonly found within treated water distribution systems occurs within the average water retention times (2-3 days) commonly found in these systems.  相似文献   

8.
AIMS: To study the influence of some metallic elements of stainless steel 304 (SS 304) on the development and activity of a sulfate-reducing bacterial biofilm, using as comparison a reference nonmetallic material polymethylmethacrylate (PMMA). METHODS AND RESULTS: Desulfovibrio desulfuricans biofilms were developed on SS 304 and on a reference nonmetallic material, PMMA, in a flow cell system. Steady-state biofilms were metabolically more active on SS 304 than on PMMA. Activity tests with bacteria from both biofilms at steady state also showed that the doubling time was lower for bacteria from SS 304 biofilms. The influence of chromium and nickel, elements of SS 304 composition, was also tested on a cellular suspension of Des. desulfuricans. Nickel decreased the bacterial doubling time, while chromium had no significant effect. CONCLUSIONS: The following mechanism is hypothesized: a Des. desulfuricans biofilm grown on a SS 304 surface in anaerobic conditions leads to the weakening of the metal passive layer and to the dissolution in the bulk phase of nickel ions that have a positive influence on the sulfate-reducing bacteria metabolism. This phenomenon may enhance the biocorrosion process. SIGNIFICANCE AND IMPACT OF THE STUDY: A better understanding of the interactions between metallic surfaces such as stainless steel and bacteria commonly implied in the corrosion phenomena which is primordial to fight biocorrosion.  相似文献   

9.
In the environment, many microorganisms coexist in communities competing for resources, and they are often associated as biofilms. The investigation of bacterial ecology and interactions may help to improve understanding of the ability of biofilms to persist. In this study, the behaviour of Bacillus cereus and Pseudomonas fluorescens in the planktonic and sessile states was compared. Planktonic tests were performed with single and dual species cultures in growth medium with and without supplemental FeCl3. B. cereus and P. fluorescens single cultures had equivalent growth behaviours. Also, when in co-culture under Fe-supplemented conditions, the bacteria coexisted and showed similar growth profiles. Under Fe limitation, 8 h after co-culture and over time, the number of viable B. cereus cells decreased compared with P. fluorescens. Spores were detected during the course of the experiment, but were not correlated with the decrease in the number of viable cells. This growth inhibitory effect was correlated with the release of metabolite molecules by P. fluorescens through Fe-dependent mechanisms. Biofilm studies were carried out with single and dual species using a continuous flow bioreactor rotating system with stainless steel (SS) substrata. Steady-state biofilms were exposed to a series of increasing shear stress forces. Analysis of the removal of dual species biofilms revealed that the outer layer was colonised mainly by B. cereus. This bacterium was able to grow in the outermost layers of the biofilm due to the inhibitory effect of P. fluorescens being decreased by the exposure of the cells to fresh culture medium. B. cereus also constituted the surface primary coloniser due to its favourable adhesion to SS. P. fluorescens was the main coloniser of the middle layers of the biofilm. Single and dual species biofilm removal data also revealed that B. cereus biofilms had the highest physical stability, followed by P. fluorescens biofilms. This study highlights the inadequacy of planktonic systems to mimic the behaviour of bacteria in biofilms and shows how the culturing system affects the action of antagonist metabolite molecules because dilution and consequent loss of activity occurred in continuously operating systems. Furthermore, the data demonstrate the biocontrol potential of P. fluorescens on the planktonic growth of B. cereus and the ability of the two species to coexist in a stratified biofilm structure.  相似文献   

10.
AIMS: To investigate treated water distribution systems in England as a source of Helicobacter pylori. METHODS AND RESULTS: Water and biofilms were obtained from 11 domestic and seven educational properties and from hydrants, reservoirs and water meters supplied by three water utilities. Samples were cultured on nonselective and antibiotic containing media combined with immunomagnetic separation concentration. Viable helicobacters were not detected in any of the 151 samples but Helicobacter-specific PCR assays detected DNA in 26% of samples from domestic properties, schools and hydrants with the highest frequency in biofilms (42%). Direct sequencing of six selected amplicons confirmed >95% sequence homology to H. pylori. CONCLUSIONS: While viable helicobacters were not isolated, evidence was obtained for the presence of Helicobacter DNA, including that of H. pylori. Biofilms on surfaces within water distribution systems may act either as sites for the passive accumulation of helicobacters or as potentially important reservoirs of infection. SIGNIFICANCE AND IMPACT OF THE STUDY: Our findings strengthen evidence that H. pylori may be transmitted through drinking water. However, there is currently no evidence that viable cells can survive the disinfection levels used in UK mains supplies and the health risk from this source remains unclear.  相似文献   

11.
Occurrence of Helicobacter pylori in surface water in the United States   总被引:4,自引:0,他引:4  
The primary mode of transmission of the human pathogen Helicobacter pylori is unresolved. This study examined the possibility that H. pylori is water-borne. Because methods for the direct culture of H. pylori from water samples remain elusive, a microscopic technique was used for detection of this organism. Actively respiring micro-organisms binding monoclonal anti-H. pylori antibody were found in the majority of surface and shallow groundwater samples tested (n = 62), indicating that H. pylori may be present in aquatic environments in the US and supporting a water-borne route of transmission for this organism. There was no significant correlation between the occurrence of either total coliforms or Escherichia coli in the water and the presence of H. pylori. Our results indicate that routine screening of water supplies for the presence of traditional indicator organisms may fail to protect the consumer from exposure to H. pylori.  相似文献   

12.
13.
We studied the potential inhibitory effect of Lactobacillus casei strain Shirota (from the fermented milk product Yakult [Yakult Ltd., Tokyo, Japan]) on Helicobacter pylori by using (i) in vitro inhibition assays with H. pylori SS1 (Sydney strain 1) and nine H. pylori clinical isolates and (ii) the in vivo H. pylori SS1 mouse model of infection over a period of 9 months. In vitro activity against H. pylori SS1 and all of the clinical isolates was observed in the presence of viable L. casei strain Shirota cells but not in the cell-free culture supernatant, although there was profound inhibition of urease activity. In vivo experiments were performed by oral administration of L. casei strain Shirota in the water supply over a period of 9 months to 6-week-old C57BL/6 mice previously infected with H. pylori SS1 (study group; n = 25). Appropriate control groups of H. pylori-infected but untreated animals (n = 25) and uninfected animals given L. casei strain Shirota (n = 25) also were included in the study. H. pylori colonization and development of gastritis were assessed at 1, 2, 3, 6, and 9 months postinfection. A significant reduction in the levels of H. pylori colonization was observed in the antrum and body mucosa in vivo in the lactobacillus-treated study group, as assessed by viable cultures, compared to the levels in the H. pylori-infected control group. This reduction was accompanied by a significant decline in the associated chronic and active gastric mucosal inflammation observed at each time point throughout the observation period. A trend toward a decrease in the anti-H. pylori immunoglobulin G response was measured in the serum of the animals treated with lactobacillus, although this decrease was not significant.  相似文献   

14.
15.
This study describes the molecular makeup of the cell-wall lipopolysaccharides (LPSs) (O-chain polysaccharide-->core oligosaccharide-->lipid A) from five Helicobacter pylori strains: H. pylori 26695 and J99, the complete genome sequences of which have been published, the established mouse model Sydney strain (SS1), and the symptomatic strains P466 and UA915. All chemical and serological experiments were performed on the intact LPSs. H. pylori 26695 and SS1 possessed either a low-Mr semi-rough-form LPS carrying mostly a single Ley type-2 blood-group determinant in the O-chain region covalently attached to the core oligosaccharide or a high-Mr smooth-form LPS, as did strain J99, with an elongated partially fucosylated type-2 N-acetyllactosamine (polyLacNAc) O-chain polymer, terminated mainly by a Lex blood-group determinant, connected to the core oligosaccharide. In the midst of semi-rough-form LPS glycoforms, H. pylori 26695 and SS1 also expressed in the O-chain region a difucosylated antigen, alpha-L-Fucp(1-3)-alpha-L-Fucp(1-4)-beta-D-GlcpNAc, and the cancer-cell-related type-1 or type-2 linear B-blood-group antigen, alpha-D-Galp(1-3)-beta-D-Galp(1-3 or 4)-beta-D-GlcpNAc. The LPS of H. pylori strain P466 carried the cancer-associated type-2 sialyl Lex blood-group antigen, and the LPS from strain UA915 expressed a type-1 Leb blood-group unit. These findings should aid investigations that focus on identifying and characterizing genes responsible for LPS biosynthesis in genomic strains 26695 and J99, and in understanding the role of H. pylori LPS in animal model studies. The LPSs from the H. pylori strains studied to date were grouped into specific glycotype families.  相似文献   

16.
The Helicobacter pylori cag pathogenicity island (cag PAI) encodes components of a type IV secretion system (T4SS) involved in host interaction and pathogenicity. Previously, seven cag PAI proteins were identified as homologs of Agrobacterium tumefaciens Vir proteins, which form a paradigm T4SS. The T pilus composed of the processed VirB2 pilin is an external structural part of the A. tumefaciens T4SS. In H. pylori, cag-dependent assembly of pili has not been observed so far, nor has a pilin (VirB2) ortholog been characterized. We have here identified, using a motif-based search, an H. pylori cag island protein (HP0546) that possesses sequence and predicted structural similarities to VirB2-like pilins of other T4SSs. The HP0546 protein displays interstrain variability in its terminal domains. HP0546 was expressed as a FLAG-tagged fusion protein in Escherichia coli, A. tumefaciens, and H. pylori and was detected as either two or three bands of different molecular masses in the insoluble fraction, indicating protein processing. As reported previously, isogenic H. pylori mutants in the putative cag pilin gene had reduced abilities to induce cag PAI-dependent interleukin-8 secretion in gastric epithelial cells. Fractionation analysis of H. pylori, using a specific antiserum raised against an N-terminal HP0546 peptide, showed that the protein is partially surface exposed and that its surface localization depended upon an intact cag system. By immunoelectron microscopy, HP0546 was localized in surface appendages, with surface exposure of an N-terminal epitope. Pronounced strain-to-strain variability of this predicted surface-exposed part of HP0546 indicates a strong selective pressure for variation in vivo.  相似文献   

17.
Helicobacter pylori is an important human pathogen and one of the most successful chronic colonizers of the human body. H. pylori uses diverse mechanisms to modulate its interaction with the host in order to promote chronic infection and overcome host immune response. Restriction-modification genes are a major part of strain-specific genes present in H. pylori. The role of N(6) - adenine methylation in bacterial gene regulation and virulence is well established but not much is known about the effect of C(5) -cytosine methylation on gene expression in prokaryotes. In this study, it was observed by microarray analysis and RT-PCR, that deletion of an orphan C(5) -cytosine methyltransferase, hpyAVIBM in H. pylori strains AM5and SS1 has a significant effect on the expression of number of genes belonging to motility, adhesion and virulence. AM5ΔhpyAVIBM mutant strain has a different LPS profile and is able to induce high IL-8 production compared to wild-type. hpyAVIBM from strain 26695 is able to complement mutant SS1 and AM5 strains. This study highlights a possible significance of cytosine methylation in the physiology of H. pylori.  相似文献   

18.
Biofilms can increase pathogenic contamination of drinking water, cause biofilm-related diseases, alter the sediment erosion rate, and degrade contaminants in wastewater. Compared with mature biofilms, biofilms in the early-stage have been shown to be more susceptible to antimicrobials and easier to remove. Mechanistic understanding of physical factors controlling early-stage biofilm growth is critical to predict and control biofilm development, yet such understanding is currently incomplete. Here, we reveal the impacts of hydrodynamic conditions and microscale surface roughness on the development of early-stage Pseudomonas putida biofilm through a combination of microfluidic experiments, numerical simulations, and fluid mechanics theories. We demonstrate that early-stage biofilm growth is suppressed under high flow conditions and that the local velocity for early-stage P. putida biofilms (growth time < 14 h) to develop is about 50 μm/s, which is similar to P. putida's swimming speed. We further illustrate that microscale surface roughness promotes the growth of early-stage biofilms by increasing the area of the low-flow region. Furthermore, we show that the critical average shear stress, above which early-stage biofilms cease to form, is 0.9 Pa for rough surfaces, three times as large as the value for flat or smooth surfaces (0.3 Pa). The important control of flow conditions and microscale surface roughness on early-stage biofilm development, characterized in this study, will facilitate future predictions and managements of early-stage P. putida biofilm development on the surfaces of drinking water pipelines, bioreactors, and sediments in aquatic environments.  相似文献   

19.
BACKGROUND: The beta and beta' subunits of RNA polymerase are fused in all Helicobacters, but separate in most other taxa. Prior studies had shown that this fusion is not essential for viability in culture or in vivo, but had not tested it for potentially important quantitative effects on phenotype. METHODS: The effect of separating rpoB and rpoC sequences on Helicobacter pylori growth was tested in culture and during mouse infection. RESULTS: Derivatives of strains X47 and SS1 carrying this "rpoBCsplit" allele colonized mice less vigorously than their wild-type parents in competition tests. With X47 rpoBCsplit, this reduced vigor was evident in wild-type mice, whereas with SS1 rpoBCsplit it was seen only in cytokine IL-10- and IL-12beta-deficient mice. In culture, the rpoBCsplit allele sensitized each of four strains tested (X47, SS1, 88-3887, and AM1) to urea, a metabolite that is secreted into the gastric mucosa; urea sensitization was more severe in X47 than in SS1 genetic backgrounds. The rpoBCsplit allele also caused poorer growth on Ham's F12 agar, a nutritionally limiting medium, but had little effect on sensitivity to mild acidity. CONCLUSIONS: H. pylori's normal RNA polymerase beta-beta' subunit fusion contributes quantitatively to fitness. We propose that urea, although important to H. pylori in vivo, also be considered inhibitory; and that H. pylori's natural beta-beta' subunit fusion helps it cope with urea exposure.  相似文献   

20.
Due to metabolic and morphological changes that can prevent Helicobacter pylori cells in water from growing on conventional media, an H. pylori-specific TaqMan quantitative PCR (qPCR) assay was developed that uses a 6-carboxyfluorescein-labeled probe (A. E. McDaniels, L. Wymer, C. Rankin, and R. Haugland, Water Res. 39:4808-4816, 2005). However, proper internal controls are needed to provide an accurate estimate of low numbers of H. pylori in drinking water. In this study, the 135-bp amplicon described by McDaniels et al. was modified at the probe binding region, using PCR mutagenesis. The fragment was incorporated into a single-copy plasmid to serve as a PCR-positive control and cloned into Escherichia coli to serve as a matrix spike. It was shown to have a detection limit of five copies, using a VIC dye-labeled probe. A DNA extraction kit was optimized that allowed sampling of an entire liter of water. Water samples spiked with the recombinant E. coli cells were shown to behave like H. pylori cells in the qPCR assay. The recombinant E. coli cells were optimized to be used at 10 cells/liter of water, where they were shown not to compete with 5 to 3,000 cells of H. pylori in a duplex qPCR assay. Four treated drinking water samples spiked with H. pylori (100 cells) demonstrated similar cycle threshold values if the chlorine disinfectant was first neutralized by sodium thiosulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号