首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Maintenance of the state of differentiation in serially cultured bovine epithelial lens cells has been investigated. The radioactive labelled soluble proteins were studied by gel filtration and gel electrophoresis. 1. In the lens epithelium on its capsule, preferential synthesis of alpha B2 vs alpha A2 crystallin subunits and synthesis of beta-crystallins (mainly beta Bp) were observed. 2. Epithelial lens cells cultured on plastic Petri dishes for up to 35 divisions still synthesized alpha B2 and beta Bp, but no longer alpha A2. Conversely, the same cells injected into nude mice synthesized alpha B and alpha A, but no beta-crystallin could be detected. 3. The ratio of non-crystallin proteins to crystallin polypeptides increased drastically with the number of cell divisions. Among these proteins, both Mr 45 000 and Mr 57 000 proteins are probably constituents of the water-soluble cytoskeletal proteins, respectively actin and vimentin. A Mr 17 000 polypeptide was observed and its relationship with a metabolic product of alpha-crystallin is proposed. 4. The polymerization process of crystallin polypeptides in these cells was studied and compared with crystallin aggregates found in the lens. Newly synthesized alpha crystallins were readily involved in high molecular aggregates. This process does not seem to require alpha A, since only alpha B was detected. Interestingly, non-crystallin-soluble proteins form the bulk of proteins found in high molecular weight (HMW) polymers. The time course of crystallin aggregate formation, in long-term culture cells, seems to be different for alpha- vs beta-polypeptides. These results allowed us to conclude that bovine epithelial lens cells in vitro, although they do not undergo terminal differentiation into fibers, are not dedifferentiated, since they still express specific features of the epithelium in situ.  相似文献   

2.
The soluble proteins from bovine lens homogenate were separated on Sepharose CL-6B (2 X 200 cm) in 0.05 M tris-NaHSO3 pH 8.2 buffer containing 20 mM EDTA. Five sharp and defined fractions (HM alpha, alpha, beta H, beta L, gamma) were obtained. Each crystallin fraction was further purified by rechromatography on the same column. Each protein fraction was pure as judged by ultracentrifugation and SDS-gel electrophoresis. The molecular weights of the five fractions were 3.04 x 10(6), 5.83 x 10(5), 1.58 x 10(5) , 4.59 x 10(4), 2.14 x 10(4) as determined from sedimentation coefficient and intrinsic viscosity data by Scheraga-Mandelkern equation, which was in close agreement with that obtained by gel filtration. The polypeptide composition of crystallins as determined by SDS-gel electrophoresis revealed one band for high molecular weight alpha (HM alpha) and alpha, three for beta H, two for beta L and one for gamma. The gross CD patterns of crystallins were about the same in the peptide region (200 nm similar to or approximately 250 nm) with a minimum centered at about 217 nm, indicative of a beta-sheet structure in all crystallins. The [theta] values at 217 nm ranged from --1700 to --3700 degrees cm2 per decimole. The CD spectra of these crystallins in the aromatic region (250 nm similar to or approximately 300 nm) were different, reflecting the different contributions of aromatic amino acids to the tertiary structure of crystallins.  相似文献   

3.
Summary Serially subcultured rat lens epithelial cells grow in different stages, which can be classified according to morphology, chromosome numbers and population kinetics. A lensspecific γ-crystallin appears in the diploid stage, when elongated cell types are observed. One of the β-crystallin bands (pH 5.7) disappears during aging in higher passage numbers of the diploid stage B. A weak band in the β-crystallin region (pH 6.4), which is present in all stages, becomes very intensive in aneuploid cells of stage D, which exhibit a fibroblast-like morphology. The work was supported by Deutsche Forschungsgemeinschaft, Grant Ri 285/3.  相似文献   

4.
Rat lens epithelial cells in vitro   总被引:2,自引:0,他引:2  
Summary Lens epithelial cells from rats aged 5 days were grown in long-term cultures. These cells age, differentiate and transform spontaneously. Morphological observations indicate five different stages (A-E). The epithelial character is lost after the first two passages. Elongated cells appearing afterwards are considered as cells that have started differentiation to fiberlike cells. Big flattened cells are considered as senescent cells that have lost their proliferative capacity. Data from population kinetics also reflect these five stages. Chromosome analysis shows that three of the five stages are no longer diploid. Two alternative modes of spontaneous transformation are possible. The proliferative capacity of rat lens epithelial cells is higher than that of rat embryonic fibroblast systems. The investigations were supported by the Deutsche Forschungsgemeinschaft (Biology of Aging, Grants Ri 285/2 and Ri 285/3).  相似文献   

5.
Summary The intracellular pH (pH i ) of tissue-cultured bovine lens epithelial cells was measured in small groups of 6 to 10 cells using the trapped fluorescent dye 2,7-bis-(2-,carboxyethyl)-5 (and 6)carboxyfluorescein (BCECF). When perifused at 35°C with artificial aqueous humour solution (AAH) containing 16 mM HCO 3 - and 5% CO2, pH 7.25, pH i was 7.19±0.02 (sem, n = 95). On removing HCO 3 - and CO2 there was an initial transient alkalinization followed by a fall in pH to a steady value of 6.97±0.03 (sem, n = 54). Addition of 0.25 mM 4,4-diisothiocyanatostilbene2, 2-disulfonic acid (DIDS) to AAH containing HCO 3 - and CO2 led to a rapid and pronounced fall in pH. Exposure to Na+-free AAH again led to a marked fall in pH i , but in this case the addition of DIDS did not produce a further fall. Substitution of the impermeant anion gluconate for Cl in the presence of HCO 3 - led to a rise in pH i , while substitution in the absence of HCO 3 - led to a fall in pH i . The above data indicate a significant role for a sodium-dependent Cl-HCO 3 - exchange mechanism in the regulation of pH i . Addition of 1 mM amiloride to control AAH in both the presence and absence of HCO 3 - led to a marked fall in pH i , indicating that a Na+/H+ exchange mechanism also has a significant role in the regulation of pH i . There is evidence for a lactic acid transport mechanism in bovine lens cells, as addition of lactate to the external medium produced a rapid fall in pH i . Larger changes in pH i were observed in control compared to HCO 3 - -free AAH and in the latter case a pronounced alkalinizing overshoot was obtained on removing external lactate. Tissue-cultured bovine lens cells thus possess at least three membrane transport mechanisms that are involved in pH regulation. The buffering capacity of the lens cells was measured by perturbing pH i with either NH 4 + or procaine. The values obtained were similar in both cases and the intrinsic buffering capacity measured in the absence of external HCO 3 - was 5 mm/pH unit (procaine). However, in the presence of HCO 3 - and CO2 the buffer capacity increases approximately fourfold, indicating that HCO 3 - is the principal intracellular buffer.We acknowledge financial support from the Wellcome Trust and the Humane Research Trust for this project. M.R. Williams was in receipt of a Science & Engineering Research Council studentship.  相似文献   

6.
The in vivo differentiation of embryonic chicken lens epithelial cells into lens fibers is accompanied by a marked decrease in the rate of degradation of phosphatidylinositol. The present experiments were undertaken to determine whether a similar change in phosphatidylinositol metabolism occurs during in vitro lens fiber formation in cultured explants of embryonic chicken lens epithelia. Lens epithelial cells in the explants differentiate into lens fibers following the addition of fetal calf serum, insulin or chicken vitreous humor to the culture medium. The results show that phosphatidylinositol is degraded with a half-life of 3-6 h in cultured lens epithelia that are not stimulated to differentiate. In contrast, no degradation occurs for at least 6 h in lens epithelia stimulated to form lens fibers. The stabilization of phosphatidylinositol is apparent within 4 h after the onset of fiber cell formation, and thus represents an early event in differentiation. The rapid degradation of phosphatidylinositol in lens epithelia is accompanied by comparably rapid synthesis. During this metabolic turnover only the phosphorylinositol portion of the molecule is renewed, as expected if hydrolysis occurs by the action of a phospholipase C, such as phosphatidylinositol phosphodiesterase. Thus, these data suggest that agents which produce in vitro differentiation of embryonic chicken lens epithelial cells into lens fibers lead to a reduction in either the amount or the activity of phospholipase C.  相似文献   

7.
Bovine lenses from animals of different ages were separated into two epithelial sections, a cortical region and the lens nucleus. Both the 10000 g supernatant fraction and pellet of these sections were analysed by electrophoresis in SDS-containing polyacrylamide gels. When comparing total protein patterns of the cytoskeletal preparations from the different parts of lenses of different ages a decrease in the amount of vimentin, the protein subunit of lens intermediate-sized filaments (IF), was observed upon lens cell differentiation and aging. Amounts of monomeric (G) and filamentous (F) actin in the different stages of lens cell differentiation were quantitated using the DNase I inhibition technique. A significant increase in the relative amount of F-actin was observed upon fibre cell formation. A slight, but significant increase in the total amount of actin relative to the total amount of cellular protein was observed when passing from the central part of the lens epithelium to the epithelial cells in the elongation zone. In the fibre cells the amount of total actin decreased from cortex to nucleus. A possible function of microfilament-assembly in the process of lens cell differentiation is suggested.  相似文献   

8.
A differential scanning calorimetric study of the bovine lens crystallins   总被引:3,自引:0,他引:3  
Differential scanning calorimetry was performed on the five major lens crystallin fractions [HM-alpha, alpha, beta H, beta L, and (beta s + gamma)] of the bovine lens as well as on more purified forms of alpha- and gamma-crystallins. All were found to be relatively thermally stable although the alpha-crystallin were found to at least partially unfold at an approximately 10 degrees C lower temperature than the beta and gamma fractions. Increasing protein concentration had little effect on gamma-crystallin thermograms but had marked effects on those of the alpha- and beta-crystallins. Increases in the thermal stability with increasing protein concentration for the beta-crystallins can be explained most simply by the known beta L/beta H equilibrium, but, in the case of the alpha-crystallins, excluded volume effects may be an important factor. In both cases, the increased stability at high concentrations could be of physiological relevance. As well as the expected endothermic unfolding transitions, all of the lens crystallins revealed exothermic peaks that correlate with protein precipitation. Interestingly, this phenomenon occurs only after extensive structural alteration in the case of the alpha-crystallins but is present very early in the initial stages of structural perturbation of the beta- and gamma-crystallins.  相似文献   

9.
1. Radioactivity from [3H]glucosamine is rapidly incorporated into cellular fractions of lens epithelial cells cultured in vitro. The incorporated isotope appears largely in glycoproteins of the cell surface that are exposed to trypsin and are released into a soluble form by proteolysis of intact cells. Glycoproteins are also secreted by cultured cells and can be recovered in the culture fluids. Sodium dodecysulphate-polyacrylamide gell electrophoresis shows that a range of glycoproteins with apparent molecular weights from approximately 14000 to 120000 are present. The relationships of these glycoproteins to collagen and the non-collagenous glycoproteins of lens basement membranes are discussed. 2. A plasma membrane fraction obtained from non-trypsinised lens epithelial cells contains one major glycoprotein of apparent molecular weight 120000. A major non-glycosylated polypeptide of molecular weight about 38000 detectable by Bloemendal et al. (1972) in plasma membranes of differentiated lens fibre cells was not prominent in lens epithelial cell membranes. 3. Examination of lens basement membranes extracted in various ways failed to reveal major glycoproteins of low molecular weight. Higher molecular weight glycoproteins, some of them related to collagen, were present.  相似文献   

10.
Hydrogen peroxide-induced DNA damage in bovine lens epithelial cells   总被引:3,自引:0,他引:3  
The present investigation was undertaken to determine the types and extent of DNA damage resulting from incubation of primary cultures of bovine lens epithelial cells with hydrogen peroxide. Significant numbers of DNA single-strand breaks were detected by alkaline elution after exposure to as little as 25 microM H2O2 for 5 min at 37 degrees C. The extent of single-strand breakage was concentration dependent and linear from 25 to 200 microM H2O2. The observed single-strand breaks appear primarily due to the action of the hydroxyl radical via a Fenton reaction as both an iron chelator, 1,10-phenanthroline and OH. scavengers, including DMSO, KI and glycerol, significantly inhibited the DNA-damaging effect of H2O2. Diethyldithiocarbamate, an inhibitor of superoxide dismutase, further potentiated the DNA-damaging effects of H2O2, presumably by increasing the steady-state concentration of Fe2+. DNA-protein cross-linking was not observed. In addition, significant levels of 5,6-saturated thymine residues or pyrimidine dimers were not detected after modification of the alkaline elution methodology to allow the use of either E. coli endonuclease III or bacteriophage T4 endonuclease V, respectively. No double-strand breaks were detected after incubation of epithelial cell cultures with H2O2 concentrations of up to 400 microM for 10 min and subsequent neutral filter elution. Since, in vivo, the lens epithelium contains populations of both quiescent and dividing cells, the degree of susceptibility to oxidative damage was also studied in actively growing and plateau-phase cultures. Reduced levels of single-strand breakage were observed when plateau-phase cultures were compared to actively growing cells. In contrast, essentially no differences in repair rates were noted at equitoxic doses of H2O2. The above results suggest that lens epithelial cells may be particularly sensitive to oxidative damage and thus are a good model system in which to study the effects of oxidative stress.  相似文献   

11.
Summary Although several proteases have been identified in homogenates of cultured epithelial cells of the eye lens and in lens tissues, there is little information regarding intracellular protein degradation in intact lens cells in vitro. Cultured lens cells may be useful in the study of intracellular protein degradation in the lens, a tissue with a wide range of protein half-lives. This is of interest because alterations in protein turnover in the lens have been implicated in cataract formation. This study examines intracellular protein degradation in cultured bovine lens epithelial cells (BLEC). Cell cultures were incubated with radiolabeled leucine to label intracellular proteins. Protein degradation was measured by monitoring the release of trichloroacetic-acid-soluble radioactivity into the culture medium. The average half-life of long-lived proteins (half-life >50 h) was typically about 57 h in serum-supplemented medium. Average rates of degradation of long-lived proteins increased by up to 73% when fetal bovine serum was withdrawn from the culture medium. Serum had no effect on the degradation of short-lived proteins (half-life <10 h). Degradation of long-lived proteins in the presence and absence of serum was further studied in cultured BLEC from population doubling level (PDL) 2 to 43. Average half-life of proteins in serum-supplemented medium was 52 to 58 h and did not vary significantly as a function of PDL. Degradation rates in serum-free medium increased approximately twofold up to PDL 7, but returned by PDL 25 to original levels, which were maintained through PDL 43. This work was supported in part by grants from U. S. Department of Agriculture contract 53-3K06-5-10, Massachusetts Lions Eye Research Fund, Inc., and the Daniel and Florence Guggenheim Foundation. D. A. E. is a recipient of a National Eye Institute postdoctoral fellowship.  相似文献   

12.
"Histone synthesis was compared in epithelial lens cells during exponential growth and in the stationary phase brought by contact inhibition. Double labelling experiments with 3H-lysine and 14C-lysine show a net turnover of histone H1 independent of DNA replication. The nucleosome core histones seem to turn over also, but much more slowly than H1".  相似文献   

13.
Lens epithelial cells isolated from adult bovine were maintained in long-term culture. They synthesised important extracellular fibrils which had a similar pattern to capsule-like material in electron microscopic pictures. These fibrils were sensitive to a highly purified collagenase. After addition of labelled proline in the culture medium, the solubilized material obtained from culture preparation contained radioactive hydroxyproline. When the culture was maintained at confluency for several months, extracellular fibres with a pattern similar to fibrous long spacing collagen were observed. The collagen newly synthesised by epithelial cells has been isolated from the cells and from the medium. It has been chromatographed on agarose A5m column and analysed on sodium dodecyl sulphate polyacrylamide gel electrophoresis. Confluent lens cells were stained with anti-serum to lens capsule collagen type IV, the anti-serum stained the fibrils which are shed between the cells. Thus the collagen newly synthesised by epithelial cells has been isolated and tentatively identified as basement membrane collagen.  相似文献   

14.
Summary In vitro culture conditions enabling rat tracheal epithelial (RTE) cells to differentiate to mucociliary, mucous, or squamous phenotypes are described. Medium composition for rapid cell growth to confluence in membrane insert cultures was determined, and the effects of major modifiers of differentiation were tested. Retinoic acid (RA), collagen gel substratum, and an air-liquid interface at the level of the cell layer were required for expression of a mucociliary phenotype which most closely approximated the morphology of the tracheal epithelium in vivo. Large quantities of high molecular weight, hyaluronidase-resistant glycoconjugates, most likely mucin glycoproteins, were produced in the presence of RA when the cells were grown with or without a collagen gel and in submerged as well as in interface cultures. However, extensive ciliagenesis was dependent on the simultaneous presence of RA, collagen gel, and an air-liquid interface. When RA was omitted from the media, the cells became stratified squamous and developed a cornified apical layer in air-liquid interface cultures. This phenotype was accompanied by loss of transglutaminase (TGase) type II and keratin 18 and expression of the squamous markers TGase type I and keratin 13. The ability to modulate RTE cell phenotypes in culture will facilitate future studies investigating molecular regulation of tracheal cell proliferation, differentiation, and function.  相似文献   

15.
16.
Alveolar type II epithelial cells rapidly lose characteristics of differentiated function when cultured on plastic dishes. We have attempted to circumvent this problem by culturing type II cells under conditions that might better reproduce their environment in vivo. Cell-matrix interactions were studied by culturing isolated adult rat type II cells on Engelbreth-Holm-Swarm (EHS) tumor basement membrane. Aggregates of type II cells formed on the surface of the matrix during 4 days in culture. Microscopic examination of these aggregates revealed cuboidal cells that retained more characteristics of differentiated type II cells than did cells cultured on plastic. Type II cells cultured on EHS matrix incorporated a higher percentage of acetate into phosphatidylcholine (PC) than did cells on plastic, and a higher percentage of this PC was saturated. Phosphatidylglycerol (PG) synthesis by these cells was no different from that seen in cells on plastic. The effects of cell-cell interactions and cell shape were evaluated by culturing type II cells on feeder layers that in turn were grown on collagen gels. The feeder layer cells included fetal rat lung fibroblasts, adult rat lung fibroblasts, fetal rat skin fibroblasts, bovine aortic endothelial cells, and rat mammary tumor epithelial cells. One-half of the gels remained attached to the culture dish and one-half of the gels were detached after 24 h and allowed to float free in the medium. Type II cells grown in association with any of the attached feeder layers became flattened and lost their differentiated phenotype. These cells incorporated no greater percentage of acetate into PC than did cells on plastic. Saturated PC synthesis was modestly increased. PG synthesis declined in parallel with that seen in cells cultured on plastic. Type II cells cultured on feeder layers that were detached assumed their native cuboidal shape and also exhibited many morphological characteristics of differentiated function. These cells incorporated a significantly greater percentage of acetate into PC compared to cells on either plastic or attached feeder layers. Saturated PC synthesis also increased markedly. These cells, however, incorporated no greater percentage of acetate into PG than did cells on plastic or attached feeder layers. These data suggest an important role for cell shape and cell-matrix interactions and maintenance of type II cell differentiation. The effects of cell-cell interactions, while beneficial, appear to be non-specific.  相似文献   

17.
Fibroblast growth factor-2 (FGF2)-mediated signaling plays an important role in fiber cell differentiation in eye lens. We had previously shown that kynurenine (KYN) produced from the overexpression of indoleamine 2,3-dioxygenase (IDO) causes defects in the differentiation of fiber cells, induces fiber cell apoptosis and cataract formation in the mouse lens, and leads to cell cycle arrest in cultured mouse lens epithelial cells (mLEC). In this study, we demonstrate that exogenous KYN reduces FGF2-mediated expression of α-, β-, and γ-crystallin and MIP26 in mLEC. We show that endogenously produced KYN in mLEC of IDO transgenic animals causes similar defects in FGF2-induced protein expression and that a competitive inhibitor of IDO prevents such defects. Our data also show that KYN inhibits FGF2-induced Akt and ERK1/2 phosphorylation in mLEC, which are required for crystallin and MIP26 expression in the lens. KYN does not inhibit FGF2 binding to cells but inhibit phosphorylation of FGFR1in mLEC. Together our data suggest that KYN might inhibit FGF2-mediated fiber cell differentiation by preventing expression of crystallins and MIP26. Our studies provide a novel mechanism by which KYN can exert deleterious effects in cells.  相似文献   

18.
The morphological and cellular changes that occur with differentiation and development of a lentoid structure from cultured mouse lens epithelial cells have been found to be dependent on the presence of lens capsule in association with the cells. The development of the 'lentoid body' is a multiphase process involving cell replication, synthesis of mucosubstances and a basement collagen membrane, cell aggregation and differentiation. Stage-specific synthesis of lens proteins confirms that the genes regulating normal differentiation in vivo are operating in the in vitro system. The hydrated collagen gel studies described in this report demonstrate that the cuboidal morphology and apical-basal polarity of the lens epithelial cells are dependent on their relationship with the lens capsule. Following a replicative phase the cells assume a mesenchyme-like morphology and migrate into the gel. Trypsinized cells freed from the lens capsule replicate but form colonies on the surface of the gel. The implications of these results are discussed with respect to previous observations made on normal lens development and the abnormalities associated with the congenital cataractous embryonic lens.  相似文献   

19.
20.
Acrylamide, a known disrupter of intermediate filaments, has been used to produce the collapse of vimentin filaments in bovine lens epithelial (BEL) cells, and its potential modulation of staurosporine-induced apoptosis has been investigated. In BEL cells, short treatments with acrylamide caused the collapse of vimentin filaments and microtubules and the almost complete disappearance of stress fibers, with thick f-actin bundles remaining in the cell periphery. Actin organization was less affected in cells pretreated with colchicine and in spreading cells, suggesting that extended microtubules and vimentin filaments are required for acrylamide to produce its maximal effects. Acrylamide alone slightly increased apoptosis compared to controls. However, simultaneous exposure to acrylamide and staurosporine for 8h produced significantly less apoptosis than staurosporine alone, and preincubation with acrylamide followed by staurosporine markedly reduced apoptosis at 8 and 24h of treatment. Acrylamide seems therefore to have a dual effect on BEL cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号