首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Aerobic microorganisms have evolved a variety of siderochromes, special ligands which can dissolve insoluble ferric iron and facilitate its transport into the cell. We have found that enb mutants of Salmonella typhimurium blocked in the biosynthesis of enterobactin (its natural iron carrier) are able to utilize siderochromes of different types made by other microorganisms as iron carriers. The antibiotic albomycin delta(2) was used to select mutants defective in ferrichrome-mediated iron uptake. Twelve classes of albomycin-resistant mutants, named sid, were defined on the basis of their growth responses to other siderochromes. Most of these classes have genetic lesions in loci that are cotransduced with panC (represented at 9 min on the genetic map). The locus designated sidJ is cotransduced with enb, whereas sidK and sidL are linked with neither panC nor enb. Genetic and physiological data indicate that S. typhimurium has several transport systems of high specificity for a variety of siderochromes produced by other microorganisms.  相似文献   

2.
Mechanisms of siderophore iron transport in enteric bacteria.   总被引:32,自引:19,他引:13       下载免费PDF全文
Uptake of 55Fe- and 3H-labeled siderophores and their chronic analogues have been studied in Salmonella typhimurium LT-2 and Escherichia coli K-12. In S. typhimurium LT-2, at least two different mechanisms for siderophore iron transport may be operative. Uptake of 55Fe- and 3H-labeled ferrichrome and kinetically inert lambda-cis-chromic [3H]deferriferrichrome by the S. typhimurium LT-2 enb7 mutant, which is defective in the production of its native siderophore, enterobactin, appears to occur by two concurrent mechanisms. The first mechanism is postulated to involve either rapid uptake of iron released from the ferric complex by cellular reduction without penetration of the complex or ligand or dissociation of the complex and simultaneous uptake of both ligand and iron coupled with simultaneous expulsion of the ligand. The second mechanism appears to consist of slower uptake of the intact ferric complex.  相似文献   

3.
A variety of natural and synthetic siderophores capable of supporting the growth of Escherichia coli K-12 on iron-limited media also protect strain RW193+ (tonA+ ent-) from the killing action of colicins B, V, and Ia. Protective activity falls into two categories. The first, characteristic of enterobactin protection against colicin B and ferrichrome protection against colicin M, has properties of a specific receptor competition between the siderophore and the colicin. Thus, enterobactin specifically protects against colicin B in fes- mutants (able to accumulate but unable to utilize enterobactin) as predicted by our proposal that the colicin B receptor functions in the specific binding for uptake of enterobactin (Wayne and Neilands, 1975). Similarly ferrichrome specifically protects against colicin M in SidA mutants (defective in hydroxamate siderophore utilization). The second category of protective response, characteristic of the more general siderophore inhibition of colicins B, V, and Ia, requires the availability or metabolism of siderophore iron. Thus, enterobactin protects against colicins V and Ia, but only when the colicin indicator strain is fes+, and hydroxamate siderophores inhibit colicins B, V, and Ia, but only when the colicin indicator strain is SidA+. Moreover, ferrichrome inhibits colicins B, V, and Ia, yet chromium (III) deferriferrichrome is inactive, and ferrichrome itself does not prevent adsorption of colicin Ia receptor material in vitro. Although the nonspecific protection against colicins B, V, and Ia requires iron, the availability of siderophore iron for cell growth is not sufficient to bring about protection. None of the siderophores tested protect cells against the killing action of colicin E1 or K, or against the energy poisons azide, 2, 4-dinitrophenol, and carbonylcyanide m-chlorophenylhydrazone. We suggest that nonspecific siderophore protection against colicins B, V, and Ia may be due either to an induction of membrane alterations in response to siderophore iron metabolism or to a direct interference by siderophore iron with some unknown step in colicin action subsequent to adsorption.  相似文献   

4.
5.
Enterobactin-mediated iron transport in Pseudomonas aeruginosa.   总被引:21,自引:9,他引:12       下载免费PDF全文
K Poole  L Young    S Neshat 《Journal of bacteriology》1990,172(12):6991-6996
A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin. Apparently, at least two uptake systems for ferrienterobactin exist in P. aeruginosa: one of higher affinity which is specifically inducible by enterobactin under iron-limiting conditions and the second, of lower affinity, which is also inducible under iron-limiting conditions but is independent of enterobactin for induction.  相似文献   

6.
Two high-affinity iron uptake systems are known in Salmonella typhimurium, one utilizing iron-enterochelin and the other utilizing ferrichrome. It has been shown previously that expression of several elements of the iron-enterochelin uptake system are regulated by the iron content of the medium, with growth in high-iron medium resulting in repression of enzymes of enterochelin synthesis and degradation and of the ability of whole cells to take up iron-enterochelin. In this study we describe a mutant strain in which growth in high-iron medium was associated with constitutive expression of: (i) iron-enterochelin uptake by whole cells; (ii) ferrichrome uptake by whole cells; (iii) synthesis of enterochelin; (iv) intracellular degradation of iron-enterochelin; and (v) synthesis of three major outer membrane proteins (OM1, OM2, and OM3). In contrast, in the wild-type strain these properties were expressed only after growth in iron-deficient medium. It is proposed that the mutation affects a gene responsible for regulating expression of the structural genes for the components of the high-affinity iron uptake systems. The term fur, for iron (Fe) uptake regulation, is suggested for this new class of mutant.  相似文献   

7.
《Fungal biology》2022,126(8):521-527
Manipulation of iron bioavailability in the banana rhizosphere may suppress Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc). However, iron starvation induced by application of synthetic iron chelators does not effectively suppress Fusarium wilt. It is unclear whether Foc can subvert iron chelators and thereby evade iron starvation through the synthesis of iron-scavenging secondary metabolites, called siderophores. In vitro studies were conducted using iron-deficient growth medium and medium supplemented with a synthetic iron chelator, 2,2′-dipyridyl, to mimic iron starvation in Foc Tropical Race 4 (Foc TR4). Concentration of extracellular siderophores increased three-fold (p < 0.05) in the absence of iron. Liquid chromatography-mass spectrometry analysis detected the hydroxamate siderophore, ferrichrome, only in the mycelia of iron-starved cultures. Moreover, iron-starved cultures exhibited a reduction in total cellular protein concentration. In contrast, out of the 20 proteinogenic amino acids, only arginine increased (p < 0.05) under iron starvation. Our findings suggest that iron starvation does not cause a remodelling of amino acid metabolism in Foc TR4, except for arginine, which is required for biosynthesis of ornithine, the precursor for siderophore biosynthesis. Collectively, our findings suggest that biosynthesis of siderophores, particularly ferrichrome, could be a counteractive mechanism for Foc TR4 to evade iron starvation.  相似文献   

8.
9.
By using a non-enterobactin-producing enb-7 mutant of Salmonella typhimurium LT2 as a biological indicator, a novel screening method was developed for identifying mutants of Ustilago maydis defective in the biosynthesis of the siderophores ferrichrome and ferrichrome A. Two classes of siderophore mutations, both recessive, were isolated after mutagenesis of haploid cells of the corn smut fungus. Class I mutants no longer produced ferrichrome while retaining the ability to produce ferrichrome A; class II mutants were defective in the production of both ferrichrome and ferrichrome A. Genetic and biochemical data suggest that class II mutants are defective in the ability to hydroxylate L-ornithine to delta-N-hydroxyornithine, the first step in the biosynthesis of these siderophores. A genomic library of wild-type U. maydis DNA was constructed in the cosmid transformation vector pCU3, which contains a dominant selectable marker for hygromycin B resistance. Two cosmids, pSid1 and pSid2, were identified in this library by their ability to complement class II siderophore auxotrophs. The production of both siderophores was concomitantly restored in the majority of the resultant transformants. Transforming DNA could be recovered from the fungal, cosmid-containing transformants by in vitro packaging with lambda bacteriophage extracts. Alternatively, the clones could be identified by a sib selection procedure. Cotransformation was found to occur at a high frequency in the fungus and was used to determine that a 2.5-kilobase HindIII-NruI fragment in pSid1 was responsible for complementing the class II siderophore biosynthetic mutation.  相似文献   

10.
Strains of Salmonella typhimurium which are unable to synthesize their normal iron transport agent, enterobactin, and which must be supported with an exogenous chelator (siderophore) on certain media, were used to examine various types of wood for the presence of chelators. Western red cedar wood, Thuja plicata, was observed to contain large amounts of three substances that in low concentration would serve as chelators for S. typhimurium. The chelators from T. plicata were characterized and found to be alpha-, beta-, and gamma-thujaplicin. Other planar cyclic alpha-hydroxyketones were examined, and several were found to function as chelators for S. typhimurium.  相似文献   

11.
In Escherichia coli, isochorismate is a common precursor for the biosynthesis of the siderophore enterobactin and menaquinone (vitamin K2). Isochorismate is formed by the shikimate pathway from chorismate by the enzyme isochorismate synthase encoded by the entC gene. Since enterobactin is involved in the aerobic assimilation of iron, and menaquinone is involved in anaerobic electron transport, we investigated the regulation of entC by iron and oxygen. An operon fusion between entC with its associated regulatory region and lacZ+ was constructed and introduced into the chromosome in a single copy. Expression of entC-lacZ was found to be regulated by the concentration of iron both aerobically and anaerobically. An established entC::kan mutant deficient in enterobactin biosynthesis was found to grow normally and synthesize wild-type levels of menaquinone under anaerobic conditions in iron-sufficient media. These results led to the demonstration of an alternate isochorismate synthase specifically involved in menaquinone synthesis encoded by the menF gene. Consistent with these findings, the entC+ strains were found to synthesize enterobactin anaerobically under iron-deficient conditions while the ent mutants failed to do so.  相似文献   

12.
Siderophores bind ferric ions and are involved in receptor-specific iron transport into bacteria. Six types of siderophores were tested against strains representing the 12 different serotypes of Actinobacillus pleuropneumoniae. Ferrichrome and bis-catechol-based siderophores showed strong growth-promoting activities for A. pleuropneumoniae in a disk diffusion assay. Most strains of A. pleuropneumoniae tested were able to use ferrichrome (21 of 22 or 95%), ferrichrome A (20 of 22 or 90%), and lysine-based bis-catechol (20 of 22 or 90%), while growth of 36% (8 of 22) was promoted by a synthetic hydroxamate, N5-acetyl-N5-hydroxy-L-ornithine tripeptide. A. pleuropneumoniae serotype 1 (strain FMV 87-682) and serotype 5 (strain 2245) exhibited a distinct yellow halo around colonies on Chrome Azurol S agar plates, suggesting that both strains can produce an iron chelator (siderophore) in response to iron stress. The siderophore was found to be neither a phenolate nor a hydroxamate by the chemical tests of Arnow and Csaky, respectively. This is the first report demonstrating the production of an iron chelator and the use of exogenous siderophores by A. pleuropneumoniae. A spermidine-based bis-catechol siderophore conjugated to a carbacephalosporin was shown to inhibit growth of A. pleuropneumoniae. A siderophore-antibiotic-resistant strain was isolated and shown to have lost the ability to use ferrichrome, synthetic hydroxamate, or catechol-based siderophores when grown under conditions of iron restriction. This observation indicated that a common iron uptake pathway, or a common intermediate, for hydroxamate- and catechol-based siderophores may exist in A. pleuropneumoniae.  相似文献   

13.
Exogenous inorganic pyrophosphate increases the biomass yield of Escherichia coli. In this report, we show that the effect of pyrophosphate is related to iron uptake. We have found that addition of pyrophosphate, ammonium iron (III) citrate or iron (III) chloride, in M63 minimal medium containing 1.7 microM of iron, causes an increase in growth yield. In contrast to iron chloride or ammonium iron (III) citrate, exogenous pyrophosphate is deleterious to strains unable to synthesize enterobactin. Thus the positive effect of pyrophosphate is related to the enterobactin uptake system expressed in a low iron content medium. Pyrophosphate in minimal medium has a repressing effect on the expression of Fur-regulated genes. In iron rich medium where enterobactin synthesis is strongly decreased, addition of pyrophosphate increases expression of Fur-regulated genes. Furthermore, this latter regulatory effect of pyrophosphate in iron-rich medium is enhanced in the absence of enterobactin synthesis. It has also been shown that addition of pyrophosphate protects the cell against the oxidative stress caused by the presence of hydrogen peroxide in an iron-rich containing medium. These results indicate that pyrophosphate acts as an iron-chelating agent, could trigger the enterobactin-dependent iron uptake system and could promote an increased binding of iron to enterobactin.  相似文献   

14.
Under iron-deficient conditions the smut fungus Ustilago sphaerogena produces two kinds of siderophores, ferrichrome and ferrichrome A. Regulation of ligand biosyntheses and uptake mechanisms of the iron chelates were studied to determine the role of each chelate in U. sphaerogena. The biosynthesis of each ligand was differentially regulated. Ferrichrome A, the more effective chelate, was preferentially synthesized under more extreme conditions of iron stress, but completely repressed when the cell was supplied with sufficient iron. In contrast, biosynthesis of ferrichrome was strongly but not completely repressed by iron. The mechanism of repression was examined using a newly developed in vivo synthesis assay. Chromium and gallium-containing siderophore analogs had no effect on siderophore ligand biosynthesis. Iron, added as siderophores, resulted in increased oxygen uptake and amino acid transport, which was soon followed by decreased ligand biosynthesis, suggesting that regulation may be indirect and related to oxidative metabolism. Uptake experiments were used to rule out a ligand-exchange mechanism for ferrichrome A-iron transport. The data suggest that ferrichrome A-iron is taken up at a specific site that results in a rapid distribution of iron inside the cell.  相似文献   

15.
The functional interaction of outer memberane proteins of E. coli can be studied using phage and colicin receptors which are essential components of penetration systems. The uptake of ferric iron in the form of the ferrichrome complex requires the ton A and ton B functions in the outer membrane of E. coli. The ton A gene product is the receptor protein for phage T5 and is required together with the ton B function by the phages T1 anf ?80 to infect cells and by colicin M and the antibiotic albomycin, a structural analogue of ferrichrome, to kill cells. The ton B function is necessary for the uptake of ferric iron complexed by citrate. Iron complexed by enterochelin is only transported in the presence of the ton B and feu functions. Cells which have lost the feu function are resistant to the colicins B, I or V while ton B mutants are resistant to all colicins. The interaction of the ton A, Ton B, and feu functions apparently permits quite different “substrates” to overcome the permeablility barrier of the outer membrane. It was shown for ferrichrome dependent iron uptake that the complexing agent was not altered and could be used repeatedly. Only very low amounts of 3H-labeled ferrichrome were found in the cell. It is possible that the iron is mobilized in the membrane and that desferriferrichrome is released into the medium without having entered the cytoplasm. Growth on ferrichrome as the sole iron source waw used to select revertants of T5 resistant ton A mutants. All revertants exhibited wild-type properties with the exception of partial revertants. In these 4 strains, as in the ton A mutants, the ton A protein was not detectable by SDS polyacrylamide gel electrophoreses of outer membranes. Albomycin resistant mutants were selected and shown to fall into 5 categories: (1) ton A; (2) ton B mutants; (3) mutants with no iron transport defects and normal ton A/ton B functions, which might be target site mutants; (4) mutants which were deficient in ferrichrome-mediated iron uptake but had normal ton A/ton B functions. We tentatively consider that the defect might be located in the active transport system of the cytoplasmic membrane; (5) a variety of mutants with the following general properties: most of them were resistant to colicin M, transported iron poorly, and, like ton B mutants, contained additional proteins in the outer membrane. The outer membrane protein patterns of wild-type and ton B mutant strains were compared by slab gel electrophoresis in an attempt to identify a ton B protein. It was observed that under most growth conditions, ton B mutants overproduced 3 proteins of molecular weights 74,000–83,000. In extracted, iron-deficient medium, both the wild-type and ton B mutant strains had similar large amounts of these proteins in their outer membranes. The appearance of these proteins was suppressed by excess iron in both wild-type and mutant. From this evidence it is apparent that the proteins appear as a response to low intracellular iron rather than being controlled by the ton B gene. The nature of these proteins and their possible role in iron transport is disussed.  相似文献   

16.
TolC is the outer membrane component of tripartite efflux pumps, which expel proteins, toxins and antimicrobial agents from Gram‐negative bacteria. Escherichia coli tolC mutants grow well and are slightly elongated in rich media but grow less well than wild‐type cells in minimal media. These phenotypes have no physiological explanation as yet. Here, we find that tolC mutants have highly aberrant shapes when grown in M9‐glucose medium but that adding iron restores wild‐type morphology. When starved for iron, E. coli tolC mutants synthesize but cannot secrete the siderophore enterobactin, which collects in the periplasm. tolC mutants unable to synthesize enterobactin display no growth or morphological defects, and adding exogenous enterobactin recreates these aberrations, implicating this compound as the causative agent. Cells unable to import enterobactin across the outer membrane grow normally, whereas cells that import enterobactin only to the periplasm become morphologically aberrant. Thus, tolC mutants grown in low iron conditions accumulate periplasmic enterobactin, which impairs bacterial morphology, possibly by sequestering iron and inhibiting an iron‐dependent reaction involved in cell division or peptidoglycan synthesis. The results also highlight the need to supply sufficient iron when studying TolC‐directed export or efflux, to eliminate extraneous physiological effects.  相似文献   

17.
Under iron-deficient conditions the smut fungus Ustilago sphaerogena produces two kinds of siderophores, ferrichrome and ferrichrome A. Regulation of ligand biosyntheses and uptake mechanisms of the iron chelates were studied to determine the role of each chelate in U. sphaerogena. The biosynthesis of each ligand was differentially regulated. Ferrichrome A, the more effective chelate, was preferentially synthesized under more extreme conditions of iron stress, but completely repressed when the cell was supplied with sufficient iron. In contrast, biosynthesis of ferrichrome was strongly but not completely repressed by iron. The mechanism of repression was examined using a newly developed in vivo synthesis assay. Chromium and gallium-containing siderophore analogs had no effect on siderophore ligand biosynthesis. Iron, added as siderophores, resulted in increased oxygen uptake and amino acid transport, which was soon followed by decreased ligand biosynthesis, suggesting that regulation may be indirect and related to oxidative metabolism. Uptake experiments were used to rule out a ligand-exchange mechanism for ferrichrome A-iron transport. The data suggest that ferrichrome A-iron is taken up at a specific site that results in a rapid distribution of iron inside the cell.  相似文献   

18.
In Bradyrhizobium japonicum, iron uptake from ferric siderophores involves selective outer membrane proteins and non-selective periplasmic and cytoplasmic membrane components that accommodate numerous structurally diverse siderophores. Free iron traverses the cytoplasmic membrane through the ferrous (Fe2+) transporter system FeoAB, but the other non-selective components have not been described. Here, we identify fsrB as an iron-regulated gene required for growth on iron chelates of catecholate- and hydroxymate-type siderophores, but not on inorganic iron. Utilization of the non-physiological iron chelator EDDHA as an iron source was also dependent on fsrB. Uptake activities of 55Fe3+ bound to ferrioxamine B, ferrichrome or enterobactin were severely diminished in the fsrB mutant compared with the wild type. Growth of the fsrB or feoB strains on ferrichrome were rescued with plasmid-borne E. coli fhuCDB ferrichrome transport genes, suggesting that FsrB activity occurs in the periplasm rather than the cytoplasm. Whole cells of an fsrB mutant are defective in ferric reductase activity. Both whole cells and spheroplasts catalyzed the demetallation of ferric siderophores that were defective in an fsrB mutant. Collectively, the data support a model whereby FsrB is required for reduction of iron and its dissociation from the siderophore in the periplasm, followed by transport of the ferrous ion into the cytoplasm by FeoAB.  相似文献   

19.
Pseudomonas aeruginosa is considered a strict aerobe that possesses several enzymes important in the disposal of toxic oxygen reduction products including iron- and manganese-cofactored superoxide dismutase and catalase. At present, the nature of the regulation of these enzymes in P. aeruginosa Is not understood. To address these issues, we used two mutants called A4 and C6 which express altered Fur (named for ferric uptake regulation) proteins and constitutively produce the siderophores pyochelin and pyoverdin. Both mutants required a significant lag phase prior to log-phase aerobic growth, but this lag was not as apparent when the organisms were grown under microaerobic conditions. The addition of iron salts to mutant A4 and, to a greater extent, C6 cultures allowed for an increased growth rate under both conditions relative to that of bacteria without added iron. Increased manganese superoxide dismutase (Mn-SOD) and decreased catalase activities were also apparent in the mutants, although the second catalase, KatB, was detected in cell extracts of each fur mutant. Iron deprivation by the addition of the iron chelator 2,2'-dipyridyl to wild-type bacteria produced an increase in Mn-SOD activity and a decrease in total catalase activity, similar to the fur mutant phenotype. Purified wild-type Fur bound more avidly than mutant Fur to a PCR product containing two palindromic 19-bp "iron box" regions controlling expression of an operon containing the sodA gene that encodes Mn-SOD. All mutants were defective in both ferripyochelin- and ferripyoverdin-mediated iron uptake. Two mutants of strain PAO1, defective in pyoverdin but not pyochelin biosynthesis, produced increased Mn-SOD activity. Sensitivity to both the redox-cycling agent paraquat and hydrogen peroxide was greater in each mutant than in the wild-type strain. In summary, the results indicate that mutations in the P. aeruginosa fur locus affect aerobic growth and SOD and catalase activities in P. aeruginosa. We postulate that reduced siderophore-mediated iron uptake, especially that by pyoverdin, may be one possible mechanism contributing to such effect.  相似文献   

20.
Numerous bacteria have evolved different iron uptake systems with the ability to make use of their own and heterologous siderophores. However, there is growing evidence attributing alternative roles for siderophores that might explain the potential adaptive advantages of microorganisms having multiple siderophore systems. In this work, we show the requirement of the siderophore enterobactin for Escherichia coli colony development in minimal media. We observed that a strain impaired in enterobactin production (entE mutant) was unable to form colonies on M9 agar medium meanwhile its growth was normal on LB agar medium. Given that, neither iron nor citrate supplementation restored colony growth, the role of enterobactin as an iron uptake-facilitator would not explain its requirement for colony development. The absence of colony development was reverted either by addition of enterobactin, the reducing agent ascorbic acid or by incubating in anaerobic culture conditions with no additives. Then, we associated the enterobactin requirement for colony development with its ability to reduce oxidative stress, which we found to be higher in media where the colony development was impaired (M9) compared with media where the strain was able to form colonies (LB). Since oxyR and soxS mutants (two major stress response regulators) formed colonies in M9 agar medium, we hypothesize that enterobactin could be an important piece in the oxidative stress response repertoire, particularly required in the context of colony formation. In addition, we show that enterobactin has to be hydrolyzed after reaching the cell cytoplasm in order to enable colony development. By favoring iron release, hydrolysis of the enterobactin-iron complex, not only would assure covering iron needs, but would also provide the cell with a molecule with exposed hydroxyl groups (hydrolyzed enterobactin). This molecule would be able to scavenge radicals and therefore reduce oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号