首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salt tolerance of the freshwater tubificid Limnodrilus hoffmeisteri varied from an LD 50 of 10 ppt to 10.5 ppt for mature and immature worms without sediment, 9.4 to 10.5 in sand, and 14.3 for immatures acclimated to 5 ppt. Ilyodrilus templetoni was similarly intolerant to higher salinities. The estuarine Tubificoides gabriellae tolerated salt water, but was susceptible to freshwater, with LD 50's of 2 and 3.5 when acclimated to 5 and 10 ppt sea water. It survived immersion in freshwater for 3 hours. The estuarine naidids Paranais litoralis and frici experienced mortalities at both high and low salinities but showed a wide tolerance range. The coastal tubificid Monopylephorus irroratus showed almost complete tolerance to the salinity range employed. The findings reflected field distributions especially when interstitial salinities were measured, but worms did not occupy the full range of habitats possible in terms of salinity alone.  相似文献   

2.
In euryhaline crabs, ion-transporting cells are clustered into osmoregulatory patches on the lamellae of the posterior gills. To examine changes in the branchial osmoregulatory patch in the blue crab Callinectes sapidus in response to change in salinity and to correlate these changes with other osmoregulatory responses, crabs were acclimated to a range of salinities between 10 and 35 ppt. When crabs that had been acclimated to 35 ppt were subsequently transferred to 10 ppt, both the size of the osmoregulatory patch on individual gill lamellae and the specific activity of Na+, K+-ATPase in whole-gill homogenates increased only after the first 24 h of exposure to dilute seawater. Enzyme activity and size of patch area increased gradually and reached their maxima (increasing by 200% and 60%, respectively) 6 days following transfer to 10 ppt seawater and then remained at these levels. Patch size at acclimation varied inversely with the salinity for seawater dilutions below 26 ppt (the isosmotic point of the crab), although it did not vary in salinities at or above 26 ppt. Thus, the size of the patch clearly is modulated with acclimation salinity, but it increases only in those salinities in which the crab hyperosmoregulates. An increase in the total RNA/DNA ratio in gill homogenates, the lack of mitotic figures in the lamellae, and the lack of incorporation of bromodeoxyuridine into nuclei of lamellar epithelial cells during acclimation to dilute seawater were interpreted as evidence that no cell proliferation had occurred and that increases in the size of the osmoregulatory patch occurred through differentiation of existing gas exchange cells or of undifferentiated epithelial cells into ion-transporting cells.  相似文献   

3.
The scuticociliate Uronema nigricans is an opportunistically parasitic marine ciliate known to cause disease in some aquacultural environments with epizootics documented from marine larval rearing systems, marine aquaria and in southern bluefin tuna Thunnus macoyii growout enclosures. This study examined growth responses of laboratory cultures of the ciliate and prey bacteria to variations in temperature and salinity, and the efficacy of potential chemotherapeutants for control of U. nigricans infections. Differences in ciliate growth responses were marginal at temperatures of 10 to 25 degrees C and at salinities between 15 and 35 ppt, though 3.5 ppt or less was lethal. Ciliates were found to be sensitive to fluctuations in bacterial densities, which may be a factor in the seasonal occurrence of the ciliate-related disease in tuna. Commonly used chemotherapeutants such as formalin, malachite green and hydrogen peroxide were all effective against the ciliate during in vitro trials.  相似文献   

4.
Massive anthropogenic changes in estuarine salinities, from manipulations of freshwater flows, are again occurring through governmental projects “correcting” past freshwater alterations. The downstream effects of increased freshwater on seagrass meadows, a major fisheries and ecosystem habitat, are not clear. Spectral responses to low salinities were quantitatively delimited for the important habitat seagrass Thalassia testudinum utilizing spectral reflectance measurements for the first time (non-invasive sampling). Over a range of salinities (32–16 parts per thousand sea salts [ppt] for 24 h) and spectra (308–1138 nm), Thalassia specimens showed statistically significant differences in spectral values (P < 0.05) between treatments at normal (32 ppt) and 50% reduced (16 ppt) seawater. Mature blades yellowed at low salinities. Reflectance changes at 525 nm and 650–680 nm at low salinities suggested changes in xanthophylls and chlorophylls. Four indices were also used to characterize the reflectance spectra to delineate the effect of the salinity changes: (1) The normalized difference vegetation index (NDVI) for mature blades reduced at 16 ppt from that at 32 ppt. (2) The chlorophyll normalized difference index (Chl NDI) suggested chlorophyll content decreases in response to reduced salinity. (3) The structure independent pigment index (SIPI), higher in mature blades at 16 ppt than new blades, indicates a higher carotenoid : chlorophyll ratio in mature blades. (4) The photochemical reflectance index (PRI) suggested a lower photochemical efficiency at lower salinities. The main low-salinity effect on Thalassia physiology delineated herein is likely through changes in pigmentation (decreases in chlorophyll and changes in xanthophyll cycle epoxidation).  相似文献   

5.
Acute salinity tolerance limits for the estuarine spawning spotted seatrout, Cynoscion nebulosus (Cuvier). were evaluated by examining 18 h survival of larvae in an extensive range of salinity treatments (0 to 56 ppt). Larvae from eggs spawned in two different salinities (24 and 32 ppt) as well as larvae acclimated in hypersaline and brackish waters were compared. Both upper and lower salinity tolerance limits showed an age-linked pattern, decreasing to a minimum tolerance range (6.4 to 42.5 ppt) at age 3 days after hatching (at 28 o C) and increasing to the widest range tolerated (1.9 to 49.8 ppt) on the last day tested (age 9 days). Acclimation to hyposaline conditions was demonstrated by larvae spawned at 32 ppt although significant hypersaline acclimation could not be demonstrated. Altered upper limits to the range tolerated by larvae from different spawning salinities indicated parental and/or early acclimation effects are important. Consistently greater vulnerability to both hyper- and hyposaline conditions at age 3 days after hatching was observed in all tests conducted. Exposures related to the onset of feeding at this time are likely explanations for this reduced tolerance.  相似文献   

6.
Spotted seatrout are capable of spawning in a wide range of salinities. Along the Texas Gulf Coast, bay salinities increase from an average of 14 ppt in Galveston Bay to an average of 40 ppt in Lower Laguna Madre due to the negative gradient of freshwater inflow from north to south. Tagging studies have shown that the majority of spotted seatrout do not migrate between adjacent bay systems. Spawning salinity has been shown to affect many properties of eggs including the diameter and salinity of neutral buoyancy. Spotted seatrout from two historically different salinity regimes (Matagorda Bay (MB) and Upper Laguna Madre (ULM)) were kept in the laboratory and induced to spawn in three salinities: 20, 30, and 40 ppt. The purpose of this study was to evaluate eggs at each of the three salinities and between the two bay systems. Two-way ANOVA showed a significant effect on the egg diameter of bay and spawning salinity, and a significant interaction between bays and spawning salinity. No significant difference in size at hatch was found between spawning salinities or between bays. Hatch rates in spawning salinity were >90% in all cases. Regression of wet weight on spawning salinity was highly significant for both bays. Eggs spawned in 20 ppt have the largest wet weight and eggs spawned in 40 ppt have the smallest wet weight, irrespective of parental bay origin. Percentage of water varied between 92% for 20 ppt spawned eggs and 86% in 40 ppt spawned eggs. Neutral Buoyancy Salinity (NBS) of eggs increased with increasing spawning salinity. Eggs spawned by the Upper Laguna Madre fish held at 20 ppt were not positively buoyant at 20 ppt. The results of this study suggest that spotted seatrout are locally adapted to the prevailing salinity regime within an estuary.  相似文献   

7.
Ecophysiological responses of Litopenaeus vannamei were evaluated as functions of environmental salinity and animal size. Growth rate, routine metabolic rate, limiting oxygen concentration, and marginal metabolic scope were determined for L. vannamei acclimated to, and tested at, salinities of 2, 10, and 28 ppt, all at 28 °C. Routine metabolic rate (RMR), estimated as oxygen-consumption rate per unit body weight for fasted, routinely-active shrimp, was independent of salinity but decreased with increasing shrimp weight. Limiting oxygen concentration for routine metabolism (LOCr) decreased with increased shrimp weight for the 10 and 28 ppt treatments, but not for the 2 ppt treatment. Marginal metabolic scope (MMS = RMR/LOCr) also decreased with increasing shrimp weight and was independent of salinity. Growth rate was significantly less at 2 ppt than at either 10 or 28 ppt, which gave similar growth rates.  相似文献   

8.
Abstract. We studied the effects of brackish water on larval attachment, events of metamorphosis, and juvenile mortality in three colonial ascidian species that live in a Florida coastal lagoon. Eudistoma olivaceum and Eudistoma hepaticum are restricted in their adult distribution to areas of relatively high and constant salinity near inlets, whereas Ecteinascidia turbinata extends more than 20 km into the Indian River, where salinity can be much more variable. In all three species, metamorphosis proceeded more quickly at 33 ppt than at lower salinities. The thresholds for successful metamorphosis differed among species in a manner that corresponded to the adult distributions, with E. turbinata being capable of completing metamorphosis at salinities as low as 22 ppt, E. hepaticum as low as 24 ppt, and E. olivaceum as low as 26 ppt. Larvae of both Eudistoma species delayed settlement in very low salinity water, whereas those of E. turbinata settled very quickly, then failed to complete metamorphosis. Juvenile mortality at salinities lower than 22 ppt was 100% for all three species. Survival in salinities higher than 22 ppt was strongly correlated with salinity in E. olivaceum and E. hepaticum , but not E. turbinata.  相似文献   

9.
In line with current conservation efforts, some success in the captive breeding of the seahorse Hippocampus kuda (Teleostei: Syngnathidae) has been achieved. To evaluate the salinity tolerance of these hatchery‐bred juveniles, 9‐week‐old H. kuda were transferred without prior acclimatization from ambient full strength seawater (32–33 ppt) to salinities ranging from freshwater to 85 ppt. Survival, growth, and total body water content were determined after 4 and 18 days of exposure. Juvenile H. kuda are able to survive in dilute seawater (15 ppt) for at least 18 days without any compromise in growth (both wet and dry body weight), survival, and total body water. Fish abruptly transferred to freshwater succumbed within 4–24 h, while survival of 5 ppt‐reared fish decreased to ca. 65% in 18 days. Although 10 ppt‐reared seahorses had growth and survival comparable with the control (30 ppt seawater), total body water was significantly elevated indicating reduced adaptability. The upper limit of H. kuda salinity tolerance was 50 ppt. Fish reared at salinities ≥55 ppt succumbed within 24 h. Like several other marine teleosts, growth and survival of juvenile H. kuda tended to peak in diluted seawater salinities of 15 and 20 ppt. These results indicate the possibility of growing hatchery‐bred H. kuda in brackishwater environments.  相似文献   

10.
Vibrios are bacteria of marine and estuarine origin that can cause human diseases, such as cholera, and also affect aquatic organisms. The impact of storm-driven changes in salinity and suspended particulate matter (SPM) on cultivable Vibrio counts (CVC) and distribution in Karnaphuli estuary, Bangladesh, was compared before and after a strong cyclone in mid May 2007 and after a monsoon landslide a month later. CVC were higher (~103 colony forming units—cfu/ml) at estuary’s mouth (salinity 20–15 parts per thousand, ppt) and steeply declined landwards. CVC and their proportion of total aerobic bacteria were highest after the cyclone and also increased after the landslide, likely due to higher SPM loads. The cyclone did not significantly change previous fecal coliform abundance, contrasting with the ten times increase after the landslide. Sewage input enhanced CVC near the point sources. CVC and salinity correlated highly significantly at salinities <10 ppt; however, at higher values dispersion increased, probably due to the effect of sediment resuspension on CVC. Cyclone or heavy rainfall-mediated turbidity changes jointly with salinity gradients can significantly influence abundance and distribution of estuarine vibrios. Extended salt intrusion and higher turbidities in tropical estuaries by stronger and more frequent storms and deforestation-derived erosion could favor Vibrio growth, with increasing risks for aquatic resources and human health in the coastal zone.  相似文献   

11.
Abstract Mass mortalities of fauna are known to occur in estuarine environments during flood events. Specific factors associated with these mortalities have rarely been examined. Therefore, the effect of exposing, to lowered salinities, an infaunal bivalve that is susceptible to mass mortalities during winter flooding in a southern Australian estuary was tested in the present study. In a laboratory experiment, low salinities (≤6 parts per thousand [ppt]), which mimicked those expected during flood events in the Hopkins River estuary, were shown to affect Soletellina alba, both lethally and sublethally. All bivalves died at 1 ppt, while those at 6 ppt took longer to burrow and exhibited a poorer condition than those at 14 and 27 ppt. The limited salinity tolerance of S. alba suggests that lowered salinities are a likely cause of mass mortality for this species during winter flooding.  相似文献   

12.
The lack of quantitative data on the environmental tolerances of the early life-history stages of invading species hinders estimation of their dispersal rates and establishment ranges in receptor environments. We present data on salinity tolerance for all stages of the ontogenetic larval development of the invading predatory gastropod Rapana venosa, and we propose that salinity tolerance is the dominant response controlling the potential dispersal (=invasion) range of the species into the estuaries of the Atlantic coast of the United States from the current invading epicenter in the southern Chesapeake Bay. All larval stages exhibit 48-h tolerance to salinities as low as 15 ppt with minimal mortality. Below this salinity, survival grades to lower values. Percentage survival of R. venosa veligers was significantly less at 7 ppt than at any other salinity. There were no differences in percentage survival at salinities greater than 16 ppt. We predict that the counterclockwise, gyre-like circulation within the Chesapeake Bay will initially distribute larvae northward along the western side of the DelMarVa peninsula, and eventually to the lower sections of all major subestuaries of the western shore of the Bay. Given the observed salinity tolerances and the potential for dispersal of planktonic larvae by coastal currents, establishment of this animal over a period of decades from Cape Cod to Cape Hatteras is a high probability.  相似文献   

13.
The primitive pulmonate snail Amphibola crenata embeds embryos within a smooth mud collar on exposed estuarine mudflats in New Zealand. Development through hatching of free-swimming veliger larvae was monitored at 15 salinity and temperature combinations covering the range of 2-30 ppt salinity and 15-25 °C. The effect of exposure to air on developmental rate was also assessed. There were approximately 18,000 embryos in each egg collar. The total number of veligers released from standard-sized egg collar fragments varied with both temperature and salinity: embryonic survival was generally higher at 15 and 20 °C than at 25 °C; moreover, survival was generally highest at intermediate salinities, and greatly reduced at 2 ppt salinity regardless of temperature. Even at 2 ppt salinity, however, about one-third of embryos were able to develop successfully to hatching. Embryonic tolerance to low salinity was apparently a property of the embryos themselves, or of the surrounding egg capsules; there was no indication that the egg collars protected embryos from exposure to environmental stress. Mean hatching times ranged between 7 and 22 days, with reduced developmental rates both at lower temperature and lower salinity. At each salinity tested, developmental rate to hatching was similar at 20 and 25 °C. At 15 °C, time to hatching was approximately double that recorded at the two higher exposure temperatures. Exposing the egg collars to air for 6-9 h each day at 20 °C (20 ppt salinity) accelerated hatching by about 24 h, suggesting that developmental rate in this species is limited by the rates at which oxygen or wastes can diffuse into and from intact collars, respectively. Similarly, veligers from egg capsules that were artificially separated from egg collars at 20 °C developed faster than those within intact egg collars. The remarkable ability of embryos of A. crenata to hatch over such a wide range of temperatures and salinities, and to tolerate a considerable degree of exposure to air, explains the successful colonization of this species far up into New Zealand estuaries.  相似文献   

14.
The impact of different environmental salinities on the energy metabolism of gills, kidney, liver, and brain was assessed in gilthead sea bream (Sparus aurata) acclimated to brackish water [BW, 12 parts/thousand (ppt)], seawater (SW, 38 ppt) and hyper saline water (HSW, 55 ppt) for 14 days. Plasma osmolality and levels of sodium and chloride presented a clear direct relationship with environmental salinities. A general activation of energy metabolism was observed under different osmotic conditions. In liver, an enhancement of glycogenolytic and glycolytic potential was observed in fish acclimated to BW and HSW compared with those in SW. In plasma, an increased availability of glucose, lactate, and protein was observed in parallel with the increase in salinity. In gills, an increased Na+-K+-ATPase activity, a clear decrease in the capacity for use of exogenous glucose and the pentose phosphate pathway, as well as an increased glycolytic potential were observed in parallel with the increased salinity. In kidney, Na+-K+-ATPase activity and lactate levels increased in HSW, whereas the capacity for the use of exogenous glucose decreased in BW- and HSW- acclimated fish compared with SW-acclimated fish. In brain, fish acclimated to BW or HSW displayed an enhancement in their potential for glycogenolysis, use of exogenous glucose, and glycolysis compared with SW-acclimated fish. Also in brain, lactate and ATP levels decreased in parallel with the increase in salinity. The data are discussed in the context of energy expenditure associated with osmotic acclimation to different environmental salinities in fish euryhaline species.  相似文献   

15.
Low-salinity adaptability was investigated in a flatfish spotted halibut Verasper variegatus during the period from late metamorphic larvae to early juveniles by a 20-day rearing experiment under different salinity regimes (1, 4, 8, 16 and 32 ppt). Effects of low-salinity on growth and development were examined and the changes in the prolactin (PRL) production level in the pituitary and the gill chloride cell morphology were examined as physiological backgrounds for low salinity adaptation. PRL cells and chloride cells were identified by immunocytochemistry with a specific antiserum for PRL188 and Na+,K+-ATPase. Most of the fish exposed to over 4 ppt survived for 20 days, but all the fish exposed to 1 ppt died within 5 days. Fish kept in intermediate salinities (8, 16 ppt) grew significantly better than those in the control group (32 ppt). Fish exposed to 4 ppt attained almost the same body length as the control group at 20 days after transfer, although these fish showed an abnormally dark body color as well as delayed development. These results suggested that spotted halibut has a high-adaptability to low-salinity environments and prefers an intermediate salinity near iso-osmolality (about 12 ppt) from the late metamorphic larval stage, but does not completely adapt to a hypoosmotic of 4 ppt salinity or less than half of the osmolality. The percentage of PRL-cell volume to pituitary volume was significantly higher at 4 ppt than in the control group. The chloride cells in gill filaments were significantly larger at 4 ppt than in the control group. These results suggest that juveniles could adapt to a low-salinity environment due to the activation of PRL production and enlargement of chloride cells. These laboratory findings suggest that late metamorphic larvae and early juveniles of spotted halibut may utilize a low salinity environment such as estuarine tidal flats or very shallow coastal areas as their nursery grounds in the sea.  相似文献   

16.
In the Mississippi River Delta, the common wetland grass, Phragmites australis, displays high genetic diversity, as several genetically distinct populations are co-occurring. Differences in salinity tolerance may be an important factor determining these populations’ distribution in the delta. Our study investigated the salt tolerance of four genotypes exposed to 0, 10, 20, 30, and 40 ppt salinity. The growth rate, biomass, and the light-saturated photosynthetic rate were stimulated at 10 ppt salinity and inhibited at salinities higher than 20 ppt, compared to controls. Increased concentrations of Cl? and Na+ were found in the roots and older leaves of plants exposed to high salinities. Salt tolerance levels differed between genotypes. High salinity tolerance was mainly achieved by reduced water uptake and vacuole compartmentalization of toxic ions. The most tolerant genotype sustained biomass and photosynthesis even at 40 ppt, whereas the most sensitive genotype did not survive salinities higher than 20 ppt. Our findings show that the observed occurrence of different genotypes in the Mississippi River Delta is correlated to genetically determined differences in salinity tolerance. Further investigations are needed to better understand the role that salinity tolerance plays in the invasion of certain introduced P. australis genotypes.  相似文献   

17.
Three populations of non-native Asian swamp eels are established in peninsular Florida (USA), and comprise two different genetic lineages. To assess potential for these fish to penetrate estuarine habitats or use coastal waters as dispersal routes, we determined their salinity tolerances. Swamp eels from the three Florida populations were tested by gradual (chronic) salinity increases; additionally, individuals from the Miami population were tested by abrupt (acute) salinity increases. Results showed significant tolerance by all populations to mesohaline waters: Mean survival time at 14 ppt was 63 days. The Homestead population, a genetically distinct lineage, exhibited greater tolerance to higher salinity than Tampa and Miami populations. Acute experiments indicated that swamp eels were capable of tolerating abrupt shifts from 0 to 16 ppt, with little mortality over 10 days. The broad salinity tolerance demonstrated by these experiments provides evidence that swamp eels are physiologically capable of infiltrating estuarine environments and using coastal waters to invade new freshwater systems.  相似文献   

18.
The ability of harmful algal species to form dense, nearly monospecific blooms remains an ecological and evolutionary puzzle. We hypothesized that predation interacts with estuarine salinity gradients to promote blooms of Heterosigma akashiwo (Y. Hada) Y. Hada ex Y. Hara et M. Chihara, a cosmopolitan toxic raphidophyte. Specifically, H. akashiwo's broad salinity tolerance appears to provide a refuge from predation that enhances the net growth of H. akashiwo populations through several mechanisms. (1) Contrasting salinity tolerance of predators and prey. Estuarine H. akashiwo isolates from the west coast of North America grew rapidly at salinities as low as six, and distributed throughout experimental salinity gradients to salinities as low as three. In contrast, survival of most protistan predator species was restricted to salinities >15. (2) H. akashiwo physiological and behavioral plasticity. Acclimation to low salinity enhanced H. akashiwo's ability to accumulate and grow in low salinity waters. In addition, the presence of a ciliate predator altered H. akashiwo swimming behavior, promoting accumulation in low‐salinity surface layers inhospitable to the ciliate. (3) Negative effects of low salinity on predation processes. Ciliate predation rates decreased sharply at salinities <25 and, for one species, H. akashiwo toxicity increased at low salinities. Taken together, these behaviors and responses imply that blooms can readily initiate in low salinity waters where H. akashiwo would experience decreased predation pressure while maintaining near‐maximal growth rates. The salinity structure of a typical estuary would provide this HAB species a unique refuge from predation. Broad salinity tolerance in raphidophytes may have evolved in part as a response to selective pressures associated with predation.  相似文献   

19.
The salinity tolerance ofVaucheria dichotoma, a siphonous Xanthophycean alga was investigated. The alga survived an external osmotic potential range between 74 and 1, 176 mOsmol (ca. 2.5 and 40.0 ppt. (parts per thousand]). Turgor pressure was regulated in salinities ranging from 74 to 441 mOsmol. With further increase of the salinity, turgor pressure decreased from 153 to 9 mOsmol (0.44 to 0.08 MPa). At 441 mOsmol salinity the major intracellular ions were present in the following concentrations (mM/l cell water): K+, 145; Na+; 90; sulphate, 91; Cl, 91. Under the most severe salinity stress (1,176 mOsmol) the ionic concentration increased to (mM/l cell water): K+, 250; Na+, 75; sulphate, 35; Cl, 351. The content of amino acids: alanine (Ala), threonine (Thr and glutamic acid (Glu) was lower, nerver exceeding 5–11 mM, however; the concentrations were positively correlated with salinity.  相似文献   

20.
Summary The gammarid amphipod Onisimus litoralis, which inhabits arctic and subarctic intertidal and under-ice habitats, is a euryhaline hyperosmotic regulator. It survives 10 d exposures to salinities from 5 to 55 ppt. It hyperregulates its hemolymph osmolality during 3 h exposures to dilutions of 33 ppt seawater and remains hyperosmotic for at least 2 w. The hemolymph is isosmotic to the medium after 12 h exposures to salinities higher than 33 ppt. The gammarid amphipod Anonyx nugax, which inhabits arctic and subarctic subtidal areas, tolerates salinities from 23 to 45 ppt with little mortality. Unlike Onisimus, however, it is an osmoconformer and its hemolymph becomes isosmotic to all dilute salinities within its tolerance range after 12 h and to concentrated media after 3 h. The salinity tolerances and osmoregulatory abilities of both species are reflected in their distributions in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号