首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Questions: Exotic plant invasion may be aided by facilitation and broad tolerance of environmental conditions, yet these processes are poorly understood in species‐rich ecosystems such as riparian zones. In the southwestern United States (US) two plant species have invaded riparian zones: tamarisk (Tamarix ramosissima, T. chinensis, and their hybrids) and Russian olive (Elaeagnus angustifolia). We addressed the following questions: (1) is Russian olive able to tolerate drier and shadier conditions than cottonwood and tamarisk? (2) Can tamarisk and cottonwood facilitate Russian olive invasion? Location: Arid riparian zones, southwestern US. Methods: We analyzed riparian tree seedling requirements in a controlled experiment, performed empirical field studies, and analyzed stable oxygen isotopes to determine the water sources used by Russian olive. Results: Russian olive survival was significantly higher in dense shade and low moisture conditions than tamarisk and cottonwood. Field observations indicated Russian olive established where flooding cannot occur, and under dense canopies of tamarisk, cottonwood, and Russian olive. Tamarisk and native riparian plant species seedlings cannot establish in these dry, shaded habitats. Russian olive can rely on upper soil water until 15 years of age, before utilizing groundwater. Conclusions: We demonstrate that even though there is little evidence of facilitation by cottonwood and tamarisk, Russian olive is able to tolerate dense shade and low moisture conditions better than tamarisk and cottonwood. There is great potential for continued spread of Russian olive throughout the southwestern US because large areas of suitable habitat exist that are not yet inhabited by this species.  相似文献   

2.
Abstract: Lowland riparian vegetation in the southwestern United States is critically important for maintaining a high richness and density of breeding birds. Further investigation is needed within riparian corridors, however, to evaluate the relative importance of vegetation type and hydrologic regime for avian density and nest survival as targets for regional conservation or restoration efforts. We estimated the densities of 40 bird species and for species grouped on the basis of nest height and dependence on surface water in gallery cottonwood–willow (Populus spp.–Salix spp.) forests, saltcedar (Tamarix spp.) shrub lands, and terrace vegetation types along a gradient in the hydrologic regime of the San Pedro River, Arizona, USA. We also assessed nest survival for shrub-nesting insectivores and herbivores. Canopy-nesting birds as a group and 14 individual bird species reached their greatest densities in cottonwood forests regardless of the hydrologic regime. Water-dependent birds as a group reached their highest density in both intermittent- and perennial-flow cottonwood stands, but certain species occurred almost exclusively in perennial-flow sites. Two shrub-nesting species and the brown-headed cowbird (Molothrus ater) were most abundant in saltcedar shrub lands, and the brown-headed cowbird was most abundant in saltcedar stands with intermittent flows. Mesquite (Prosopis spp.) and big sacaton (Sporobolus wrightii) grassland each maintained the highest densities of certain species within ≥1 hydrologic regime. Shrub-nesting insectivores had the greatest nest survival in cottonwood, including Arizona Bell's vireo (Vireo bellii arizonae), and also had lower proportions of nests parasitized and preyed upon, although 95% confidence intervals among vegetation types overlapped. Nest survival for both shrub-nesting insectivores and herbivores was lowest in intermittent-flow saltcedar, although, again, confidence intervals overlapped. Nest survival was lower in parasitized than nonparasitized nests in mesquite and across vegetation types for Arizona Bell's vireo and in cottonwood for Abert's towhee (Pipilo aberti). Riparian management that maintains heterogeneous riparian vegetation types, including floodplain vegetation comprising cottonwood–willow gallery riparian forests with some stretches of perennial flow, are important for maintaining the high diversity and abundance of breeding birds on the San Pedro River and probably across the region. Cottonwood stands also appear to maintain highest nest survival for some shrub-nesting birds.  相似文献   

3.
To explore the roles of plasticity and genetic variation in the response to spatial and temporal climate variation, we established a common garden consisting of paired collections of native and introduced riparian trees sampled along a latitudinal gradient. The garden in Fort Collins, Colorado (latitude 40.6°N), included 681 native plains cottonwood (Populus deltoides subsp. monilifera) and introduced saltcedar (Tamarix ramosissima, T. chinensis and hybrids) collected from 15 sites at 29.2–47.6°N in the central United States. In the common garden both species showed latitudinal variation in fall, but not spring, leaf phenology, suggesting that the latitudinal gradient in fall phenology observed in the field results at least in part from inherited variation in the critical photoperiod, while the latitudinal gradient in spring phenology observed in the field is largely a plastic response to the temperature gradient. Populations from higher latitudes exhibited earlier bud set and leaf senescence. Cold hardiness varied latitudinally in both fall and spring for both species. For cottonwood, cold hardiness began earlier and ended later in northern than in southern populations. For saltcedar northern populations were hardier throughout the cold season than southern populations. Although cottonwood was hardier than saltcedar in midwinter, the reverse was true in late fall and early spring. The latitudinal variation in fall phenology and cold hardiness of saltcedar appears to have developed as a result of multiple introductions of genetically distinct populations, hybridization and natural selection in the 150 years since introduction.  相似文献   

4.
Establishment of native riparian communities through natural seedfall may be a viable reclamation alternative at some alluvial sand and gravel mines where water level can be controlled in the abandoned pit. We experimented with this approach at a pit in Fort Collins, Colorado, where a drain culvert equipped with a screw gate allows water levels to be manipulated. From 1994 to 1996 we conducted a series of annual drawdowns during the period of natural seedfall of Populus deltoides subsp. monilifera (plains cottonwood), Salix amygdaloides (peachleaf willow), and S. exigua (sandbar willow), thus providing the bare, moist substrate conducive to establishment of these species. Establishment was highly variable from year to year; in the fall following establishment, frequency of occurrence on 0.5-m2 sample plots ranged from 8.6% to 50.6% for cottonwood, 15.9% to 22.0% for peachleaf willow, and 21.7% to 50.0% for sandbar willow. Mean densities, however, were comparable to those reported for other locations. Concurrent establishment of the undesirable exotic Tamarix ramosissima (saltcedar) was a problem, but we were able to eradicate most saltcedar seedlings by reflooding the lower elevations of the annual drawdown zones each fall. At the end of the 3-year period, at least one of the three native woody species survived on 41.1% of the plots, while saltcedar was present on only 6.1%. In addition to the potential for establishing valuable native habitats, adaptations of the techniques described may require less earth moving than other reclamation approaches.  相似文献   

5.
In semi-arid regions, a major population limitation for riparian trees is seedling desiccation during the dry season that follows annual spring floods. We investigated the stress response of first-year pioneer riparian seedlings to experimental water table declines (0, 1 and 3 cm day−1), focusing on the three dominant cottonwood and willows (family Salicaceae) in California’s San Joaquin Basin. We analyzed growth and belowground allocation response to water stress, and used logistic regression to determine if these traits had an influence on individual survival. The models indicate that high root growth (>3 mm day−1) and low shoot:root ratios (<1.5 g g−1) strongly predicted survival, but there was no evidence that plants increased belowground allocation in response to drawdown. Leaf δ13C values shifted most for the best-surviving species (net change of +3.5 per mil from −30.0 ± 0.3 control values for Goodding’s willow, Salix gooddingii), implying an important role of increased water-use efficiency for surviving water stress. Both S. gooddingii and sandbar willow (S. exigua) reduced leaf size from controls, whereas Fremont cottonwood (Populus fremontii) sustained a 29% reduction in specific leaf area (from 13.4 to 9.6 m2 kg−1). The functional responses exhibited by Goodding’s willow, the more drought-tolerant species, may play a role in its greater relative abundance in dry regions such as the San Joaquin Basin. This study highlights the potential for a shift in riparian forest composition. Under a future drier climate regime or under reduced regulated river flows, our results suggest that willow establishment will be favored over cottonwood.  相似文献   

6.
Higher atmospheric concentrations of CO2 can offset the negative effects of flooding or salinity on plant species, but previous studies have focused on mature, rather than regenerating vegetation. This study examined how interacting environments of CO2, water regime, and salinity affect seed germination and seedling biomass of floating freshwater marshes in the Mississippi River Delta, which are dominated by C3 grasses, sedges, and forbs. Germination density and seedling growth of the dominant species depended on multifactor interactions of CO2 (385 and 720 μl l−1) with flooding (drained, +8-cm depth, +8-cm depth-gradual) and salinity (0, 6% seawater) levels. Of the three factors tested, salinity was the most important determinant of seedling response patterns. Species richness (total = 19) was insensitive to CO2. Our findings suggest that for freshwater marsh communities, seedling response to CO2 is species-specific and secondary to salinity and flooding effects. Elevated CO2 did not ameliorate flooding or salinity stress. Consequently, climate-related changes in sea level or human-caused alterations in hydrology may override atmospheric CO2 concentrations in driving shifts in this plant community. The results of this study suggest caution in making extrapolations from species-specific responses to community-level predictions without detailed attention to the nuances of multifactor responses.  相似文献   

7.
1. We examined the role of flooding on the leaf nutrient content of riparian trees by comparing the carbon : nitrogen : phosphorus (C : N : P) ratio of leaves and litter of Rio Grande cottonwood (Populus deltoides ssp. wislizenii) in flood and non‐flood sites along the Middle Rio Grande, NM, U.S.A. The leaf C : N : P ratio was also examined for two non‐native trees, saltcedar (Tamarix chinensis) and Russian olive (Elaeagnus angustifolia), and six species of dominant riparian arthropods. 2. Living leaves and leaf litter of cottonwoods at flood sites had a significantly lower leaf N : P ratio and higher %P compared with leaves and litter at non‐flood sites. A non‐flood site downstream from wastewater effluent had a significantly lower litter C : N ratio than all other sites, suggesting N fertilisation through ground water. The non‐native trees, saltcedar and Russian olive, had higher mean leaf N content, N : P ratio, and lower C : N ratio compared with cottonwoods across study sites. 3. Riparian arthropods ranged from 5.2 to 7.1 for C : N ratio, 56–216 for C : P ratio, and 8.9–34 for N : P ratio. C content ranged from 25 to 52% of dry mass, N content from 4.7 to 10.8%, and P content from 0.59 to 1.2%. Differences in stoichiometry between high C : nutrient leaf litter and low C : nutrient invertebrates suggests possible food‐quality constraints for detritivores. 4. These results suggest that spatial and temporal variation in the C : N : P ratio of cottonwood leaves and leaf litter is influenced by surface and subsurface hydrologic connection within the floodplain. Reach‐scale variation in the elemental composition of riparian organic matter inputs may have important implications for decomposition, nutrient cycling, and food webs in river floodplain systems.  相似文献   

8.
Seed germination and seedling emergence are key processes for population recruitment. Flooding and grazing are disturbances forming gaps that may strongly influence recruitment patterns in space and time, but their combined effects and action mechanisms have rarely been addressed. In this study we analysed the effects of microhabitat conditions associated with winter flooding and spring‐summer defoliation on seed germination and seedling establishment of Paspalum dilatatum, a dominant perennial C4 grass in native grasslands of the Flooding Pampa, Argentina. The dynamics of seedling emergence from natural seed banks and buried seeds was studied in a factorial experiment with flooding and defoliation treatments applied to soil monoliths (mesocosms) collected from natural grassland. Additional laboratory experiments were applied to investigate seed germination under different combinations of temperature, light quality and simulated flooding. Seed germination and seedling emergence of P. dilatatum were promoted by flooding and high intensity defoliation. Gaps generated by flooding were maintained by high intensity defoliation exercising a synergistic effect on survival seedlings. Flooding resulted in the breaking of seed dormancy and higher germination rates associated with alternating temperature and the activation of the phytochrome system. Our results indicate that microhabitat conditions associated with the disturbances forming gaps, such as flooding and heavy grazing, synergistically promote the recruitment process of this dominant grass species.  相似文献   

9.
Most major rivers in the southwestern United States have been hydrologically altered to meet human needs. Altered hydrological regimes have been associated with declines in native riparian forests. Today, many riparian areas have little or no regeneration of native riparian species and are now dominated by exotic Saltcedar (Tamarix chinensis Lour.). Success of riparian restoration efforts at least partially depends on the number of seedlings surviving the first growing season. Seedling survival is influenced by many abiotic and biotic factors including competition from other plants and available soil moisture, which is partially dependent on soil texture. In this study, we evaluated the relative importance of four soil categories (sandy loam, loam, silt, and clay), rate of soil moisture decline, salinity, beginning‐ and end‐season Saltcedar density, initial Cottonwood (Populus deltoides Marshall subsp. wislizenii (Wats.) Eckenw.) seedling density, percent vegetation cover by potential dominant competitors Pigweed (Amaranthus L.) and Barnyard grass (Echinochloa crusgalli L., Beauv.), and average total vegetation height to Cottonwood seedling survival. Factors influencing seedling survival differed among the four soil types. Rate of moisture decline was important in sandy soils, whereas vegetation height influenced seedling survival in loamy soils. Overall, models of seedling survival in all the four soil types indicated rate of moisture decline as the single most important variable influencing Cottonwood survival. High initial densities of Saltcedar were correlated to higher survival in Cottonwood seedlings. Therefore, it is important to identify soil texture and understand soil moisture decline rates when proposing riparian Cottonwood restoration.  相似文献   

10.
In South Australia, Swamps of the Fleurieu Peninsula are critically endangered due to past vegetation clearance and changes in hydrology, but still contain a high diversity of threatened plant species. This vegetation community provides habitat for 82 threatened ground-stratum plant species, including the nationally critically endangered subshrub Hibbertia tenuis which is endemic to these swamps. With infrequent burning, native ferns and taller shrubs outcompete these species. We conducted glasshouse trials to determine the potential of fire to regenerate threatened and other swamp plant species. Soil samples from eight swamps were used in germination trials with half of each sample treated with heat plus smoke, and half left untreated. Samples were spread onto trays (n = 188), and seedling emergence was recorded for twelve months. Emergence was dominated by native species (2649 seedlings m−2) compared to exotics (675 seedlings m−2). In total, 48 native and 25 introduced species germinated, with 21% of germinated native species absent from the above-ground vegetation. The dominant native fern Gleichenia microphylla did not emerge from any soil samples, indicating that recovery likely lags behind that of ground-strata species, giving them time to establish and set seed before being outcompeted. Thirty-four rare or threatened species germinated, including five species absent from above-ground vegetation. Of all native species that emerged, only five were confined to heat plus smoke treatments, suggesting most species will regenerate without fire if overstorey competition is reduced. However, seedling emergence of native shrubs/subshrubs more than doubled with the fire treatment. Of particular importance, H. tenuis showed an 18-fold increase in germination when treated with heat plus smoke. This study supports the utility of ecological burns as a management tool to regenerate threatened plant species in long-undisturbed peaty heathlands on permanent swamps.  相似文献   

11.
We measured seed germination and seedling survivorship of spotted knapweed, Centaurea stoebe, in a series of laboratory and field experiments to evaluate the efficacy of seed limitation as a management focus. This work was initiated 6 years after introduction of several biological control agents. The soil seed bank of the site used in this study contained a mean density of 5,848 seeds/m2 (ranging from 0 to 16,364 seeds/m2), and 92% of the seeds isolated from soils were shriveled, discolored, and/or partially decayed. Additionally, none of the intact seeds germinated, suggesting that the viable seed bank at our field study site has been exhausted. Centaurea stoebe seeds were planted into pots under a range of soil nitrogen (N) availability, with half of the pots containing a single density of previously established seedlings of a native cool-season grass, slender wheatgrass (Elymus trachycaulus). A watering regime mimicking local precipitation was applied. Spotted knapweed exhibited large biomass responses to N addition, but the presence of grasses suppressed the ability to exploit this N. Surprisingly, low soil N conditions improved knapweed survivorship in the presence of grasses. Nevertheless, recruitment and biomass were still far below the levels reached in the absence of competition. To evaluate the effect of density on successful recruitment, Centaurea stoebe seed was introduced into a meadow at three densities matching reduced levels of seed production under the constraints of seed predators. These densities were sown with or without a seed mixture of native species, into an existing plant community lacking C. stoebe, and seedling recruitment was recorded over 2.5 years. Across all plots and densities sown (568–2,272 seeds m−2 year−1), seedling recruitment was less than 1%. The invasion potential of spotted knapweed was greatly diminished when realistic levels of plant competition and biological control limit seed production. We therefore conclude that a combination of seed limitation and shortage of ‘safe sites’ within undisturbed vegetation can limit densities of C. stoebe.  相似文献   

12.
Myricaria laxiflora, an endangered shrub species distributed along the banks of the Yangtze River in the Three Gorges area, is completely submerged from June to October every year. It is generally assumed that summer flooding has a strong impact on the survival and growth of seedlings. We designed an outdoor randomized block experiment on the responses of seedling survival and growth to different flooding depth and flooding duration treatments during the flood season in the Three Gorges area. Seedling survival rate, aboveground biomass, belowground biomass, total biomass, root depth, length of primary branch and the number of primary and secondary branches were examined.M. laxiflora was found to acclimate to summer flooding by becoming dormant and losing biomass. Seedlings of M. laxiflora ceased growing during the summer flooding season, regardless of the flooding depth and flooding duration they were subjected to. The number of primary and secondary branches, aboveground biomass and total biomass of seedlings was reduced with prolonged flooding. The length of primary branches and aboveground biomass were more sensitive to flooding than other measured parameters and differed significantly between the onset and the end of flooding.In each flooding treatment most seedlings of M. laxiflora survived a flooding period of 2 months and recovered rapidly after the flooding was terminated in September. After 3 months of recovery, aboveground biomass, total biomass and the number of the primary branches increased significantly. Furthermore, seedling survival and growth in the flooding treatments were not significantly different from the controls both during the summer flooding stage and in the recovery stage. All of these results suggest that summer flooding does not affect seedling survival and growth in this species. On the contrary, flooding released seedlings from the stress of drought during summer and facilitated seedling establishment. M. laxiflora appears to cope adaptively with the flooding cycle by going into a state of dormancy during the flood season.  相似文献   

13.
马赟花  张铜会  刘新平  毛伟  岳祥飞 《生态学报》2015,35(12):4063-4070
通过人工模拟降雨试验研究了科尔沁沙地优势草本植物尖头叶藜萌发和幼苗建成对春季小降雨事件(2、4、8 mm和自然降雨)的响应。结果表明:不同降雨处理对尖头叶藜的萌发和幼苗建成有显著影响(P0.05)。8mm降水量是促使尖头叶藜萌发的最小降雨阈量。不同降雨量处理下尖头叶藜萌发数量大小顺序为:8mm处理对照4 mm处理2mm处理;而高度和冠幅依次是2 mm处理(2.23 cm和7.15 cm2.)对照(2.03 cm和6.21 cm2)4mm处理(1.86 cm和5.01 cm2)8mm处理(1.48cm和4.72 cm2);降雨量为8mm的地上生物量最多(45.26 g/m2),对照为35.49g/m2、4mm处理为26.54g/m2、2mm处理为15.26g/m2。尖头叶藜幼苗的水分利用效率与每次降水量呈显著地正相关关系,随着每次降雨量的增大地上生物量逐渐增大。本试验中各处理的总降雨量一致,但地上生物量不同且差异显著。每次降雨量×降雨次数的分布状况影响了尖头叶藜幼苗的地上生物量。科尔沁沙地尖头叶藜萌发及其幼苗建成在密度、形态和水分利用效率和地上生产力上对不同模式的小降雨做出了积极的响应。  相似文献   

14.
Bottomland hardwood forests of the southeastern United States have declined in extent since European settlement. Forest restoration activities over the past decade, however, have driven recent changes in land use through an intensified afforestation effort on former agricultural land. This intense afforestation effort, particularly in the Lower Mississippi Alluvial Valley, has generated a demand for alternative afforestation systems that accommodate various landowner objectives through restoration of sustainable forests. We are currently studying an afforestation system that involves initial establishment of the rapidly growing native species eastern cottonwood (Populus deltoides Bartr. ex Marsh.), followed by enrichment of the plantation understory with Nuttall oak (Quercus nuttallii Palm.). In this article, we examine the growth and biomass accumulation by Nuttall oak seedlings to determine whether this species can be established and whether it will develop beneath the cottonwood overstory. After 3 years of growth beneath cottonwood canopies, Nuttall oak seedlings were similar in height (126 cm), but were 20% smaller in root‐collar diameter than seedlings established in open fields. Seedlings established in the open accumulated more than twice the biomass of seedlings growing beneath a cottonwood canopy. However, the relative distribution of accumulated biomass in seedlings did not differ in the two environments. Ten percent of total seedling biomass was maintained in leaf tissue, 42% was maintained in stem tissue, and 48% was maintained in root tissue on open‐grown seedlings and seedlings established in the understory of cottonwood plantations. Though establishment in the more shaded understory environment reduced Nuttall oak growth, seedling function was not limited enough to induce changes in plant morphology. Our results suggest that an afforestation system involving rapid establishment of forest cover with a quick‐growing plantation species, followed by understory enrichment with species of later succession, may provide an alternative method of forest restoration on bottomland hardwood sites and perhaps other sites degraded by agriculture throughout temperate regions.  相似文献   

15.
There is growing recognition that seeds influence one another prior to, or shortly after, germination. Both interspecific and intraspecific seed–seed interactions have been reported, but for the latter, the evidence is almost exclusively from laboratory and greenhouse studies so that it is unclear whether such intraspecific seed interactions occur under field conditions. We tested how Lespedeza cuneata seed density influenced seedling emergence within a native grassland located in Kansas, USA and whether this response was related to seed leachate. The percentage of L. cuneata seedlings that emerged under field conditions was negatively related to seed density. After confirming this pattern in the greenhouse, we found that at low seed densities, addition of seed leachate had similar effects on seedling emergence as high seed densities in the absence of leachate. Our results provide some of the best evidence to date, that intraspecific seed density can influence seedling emergence in the field and that these effects are likely linked to seed leachate.  相似文献   

16.
17.
The aim of this study was to analyse the regeneration of Pinus pinaster after wildfire and the possible inter and intraspecific competition during the first 3 years after fire. The study area is located in a P. pinaster stand in León province (NW Spain). Three study sites (S1, S2 and S3) were established in an area burned in 1998. In each site, three permanent plots (20 × 1 m) were marked. A total of 20 quadrats of 1 m 2 were studied in each plot. The number and height of pine seedlings 1, 2 and 3 years after fire was recorded in each quadrat. The regeneration of understorey vegetation in the quadrats was analysed concurrently. The significance of linear correlations among the number and height of seedlings and understorey vegetation cover was tested by calculating Pearson correlation coefficients.Seed germination and seedling emergence took place massively during the first year after the fire and decreased through time. The height growth was constant over the 3 years at site S2, while a growth burst could be observed between years 2 and 3 at sites S1 and S2. Also, pines from site S2 reached shorter maximum heights in all years compared to pines from site S1 and S3. The understorey vegetation showed minimal regeneration during the first year but then increased greatly with time. Woody understorey cover and total vegetation cover were negatively correlated with pine seedling density in sites with a high number of seedlings (e.g. S1 and S3). When woody cover, total cover and pine seedling density were low (e.g. S2), there were no correlations. There was a positive correlation between vegetation cover and the maximum height of Pinus seedlings in all study sites.  相似文献   

18.
Many natural processes in the riparian cottonwood (Populus deltoides) forest of the Middle Rio Grande (MRG) in the southwestern United States have been disrupted or altered, allowing non‐native plants such as saltcedar (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) to establish. We investigated reptilian responses to restoration efforts by sampling communities of lizards at 12 study sites invaded by non‐native plants along the MRG in New Mexico for 7 years (2000–2006). Sites within three regions were randomly assigned to one of the three treatments to remove non‐native plants and woody debris, or as untreated controls. We used pitfall and funnel traps to capture, mark, and release lizards from June to September. Principal components analysis of 15 vegetation variables identified five factors that best explained variation among sites before and after removal of non‐native plants. Relative abundances for four of six common species of lizards were associated with vegetation characteristics that significantly changed after plant removal. Species were either positively associated with the more open, park‐like understory found in treated sites or negatively associated with debris heaps and thickets of non‐native plants found in untreated sites. Eastern fence lizards (Sceloporus consobrinus) and New Mexico whiptails (Aspidoscelis neomexicana) increased in relative abundance after non‐native plants were removed. Overall, removal of non‐native plants seems beneficial, or at least is non‐damaging, to lizard communities of the MRG forest. Providing information on habitat associations of lizard communities will help land managers balance management objectives with other considerations, such as providing important wildlife habitat.  相似文献   

19.
Aim Ecoregions represent biophysical zones where environmental factors enable the development of particular plant communities. Ecoregions are generally large but abrupt transitions occur in areas with rapid physical change. A particularly abrupt transitional sequence occurs in the Rocky Mountain region of south‐western Alberta where fescue prairie, aspen parkland and mountain ecoregions occur within 15 km. To investigate plant adaptation across ecoregions, our study investigated the influences of a natural disturbance (flooding) and an artificial disturbance (cattle grazing) on reproductive and population processes of black cottonwood (Populus balsamifera subsp. trichocarpa, Torr. & Gray), the dominant riparian tree. Location We studied cottonwoods throughout their elevational range along two free‐flowing, first‐order streams, Yarrow and Drywood creeks. Cottonwood was the only prominent tree in the prairie ecoregion, the dominant riparian tree in the parkland and extended upward through the montane ecoregion where it was a pioneer species for the mixed coniferous–deciduous woodland. Cottonwoods did not occur in the higher elevation sub‐alpine ecoregion. Methods Thirty‐six cross‐sectional sampling transects were located across the three ecoregions with cottonwoods, and in ungrazed and grazed areas of each ecoregion. Rectangular 100 m2 tree and 2 m2 seedling quadrats were positioned along the transects, and substrate and vegetation were assessed. Historic hydrological data were analysed relative to flood recurrences and seasonal flow patterns. Results Overall, the cottonwoods displayed a sawtooth shaped ‘punctuated progressive age structure’ with many young trees, progressively fewer older trees, and about four pulses of increased recruitment over the past century. This was considered to provide a healthy cottonwood population and recruitment pulses were apparently associated with flood events with appropriate peak timing and magnitude and a gradual post‐flood stage recession. However, analyses of tree, sapling and seedling data indicated that flood‐associated seedling recruitment was less important and clonal processes were more important for cottonwood recruitment in the montane ecoregion, the highest ecoregion with cottonwoods. The correlation between flood events and cottonwood recruitment was strongest in the mid‐elevation parkland ecoregion suggesting greater reliance on flood‐associated seedling recruitment. There was little correlation with flooding and limited recruitment in the fescue prairie ecoregion in recent decades and the disturbed age structure probably results from cattle impacts that have prevented recruitment and produced a decrepit cottonwood forest population. Main conclusions These analyses suggested that a healthy cottonwood population displayed a sawtooth shaped ‘punctuated progressive age structure’ and that cottonwood reproduction processes varied across ecoregions with increased clonality in the highest montane ecoregion. Cattle grazing impacts on reproduction were most severe in the lowest prairie ecoregion that is treeless except for the riparian zone. We conclude that appropriate strategies of instream flow regulation, land‐use policies and practices, and conservation and restoration efforts should be refined according to ecoregion to recognize the differences in cottonwood reproductive and population ecology.  相似文献   

20.
Continuing loss of native orchid habitat has lead to an increased emphasis on orchid conservation. Major obstacles in the production of native orchid seedlings for use in conservation have been: (1) development of efficient and reliable seed germination protocols and (2) an understanding of early seedling growth and development. Effects of six asymbiotic media (Modified Lucke, Murashige & Skoog, Lindemann, Vacin & Went, Malmgren Modified, Knudson C), four exogenous cytokinins (BA, Zea, Kin, 2-iP), and three photoperiods (0/24, 16/8, 24/0 h L/D) were examined on seed germination and early protocorm development of Habenaria macroceratitis, a rare native Florida terrestrial orchid. Finally, the effects of three photoperiods (8/16, 12/12, 16/8 h L/D) on in vitro seedling development were examined. Percent seed germination was highest on both LM and KC after seven weeks culture (LM = 89.1%, KC = 89.2%); however, protocorm development was enhanced on MM after both seven and 16 weeks. Both zeatin and kinetin at 1 μM enhanced seed germination (Zea = 58.1%, Kin = 47.2%). Final percent seed germination (91.7%) and protocorm development (Stage 4) was increased in the absence of light (0/24 h L/D). In␣vitro seedlings cultured under 8/16 h L/D conditions produced the highest number of tubers per seedling (1.06) with the greatest tuber (42.7 μg) and shoot (fwt = 69.5 μg) biomass and tuber diameter (3.1 mm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号